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Abstract

Electric Discharge Machining (EDM) is a well-established process for fabricating complex
geometries from hard materials. However, identifying the influence of process parameters
remains challenging and costly due to the stochastic nature of EDM and the expense of
experimental validation. Machine Learning (ML) techniques provide an alternative to
mitigate these limitations by enabling predictive modeling with reduced experimental
effort. This research proposes a generalizable framework employing four ML models
to analyze the correlation between EDM inputs and outputs, incorporating 11 levels of
cryogenic electrode treatment. Independent variables include electrode material, cryogenic
conditions, pulse current, and pulse duration, while performance is assessed through
Material Removal Rate (MRR) and Electrode Wear Rate (EWR). The results demonstrate that
Random Forest (RF) and Artificial Neural Networks (ANNSs) achieve superior predictive
performance compared to alternative approaches, improving the R? metric from 0.973 to
0.9956 for EWR in the case of an ANN and from 0.980 to 0.9943 for RF with MRR, compared
with previous work in the literature and the best methods across 30 executions. Both models
consistently yield high predictive accuracy, with R? values ranging from 0.9936 to 0.9979 in
training and testing datasets. Furthermore, ANN significantly reduces mean squared error,
decreasing EWR prediction error from 5.79 to 0.68 and MRR error from 122.75 to 35.89. This
research contributes to a deeper understanding of EDM process dynamics.

Keywords: electric discharge machining; material removal rate; electrode wear rate; cryogenic
treatment; machine learning

1. Introduction

Electric Discharge Machining (EDM), also known as spark machining or spark erod-
ing, enables the machining of intricate shapes in conductive materials regardless of their
hardness [1,2]. Material removal occurs due to a phenomenon that accompanies pulsed
electrical discharges between the working electrode and the workpiece, separated by a
dielectric in the machining gap [1,3]. The process avoids physical contact between the work-
ing material and the workpiece, where the sufficient voltage difference between them gives
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rise to a plasma channel of high energy density. The high temperature of the inter-electrode
gap melts or ablates the workpiece material [4,5]. The EDM process maintains a forced di-
electric flow with essential functions: dissipating heat from the workpiece and the working
electrode, removing solidified particles from the machining gap, and stabilising the process
conditions, allowing for the occurrence of subsequent discharges [6-8]. The thermal nature
of this process causes a change in the physical properties of the surface layer, resulting
in the characteristic formation of three thermally modified layers [9]. In the first layer,
microcracks, which are associated with residual stresses, surface porosity, grain boundary
growth, and changes in chemical composition might be observed [10,11]. EDM has been
adopted in several branches of industry, such as automotive, aerospace, chemical, aviation,
nuclear, petroleum, and medical, because it can be used when conventional machining
techniques are not cost-effective [12,13], e.g., when materials are hard to machine—such
as titanium alloys and nickel-based superalloys, among others—or to produce small, thin-
walled elements with complicated geometry, a.k.a. “micro-machining” [14]. The input
parameters of the EDM process—current intensity, gap voltage, pulse on time, pulse out
time, dielectric type, and working electrode material—can substantially affect the quality
of the final product [3,15].

In the literature, authors delineate a broad spectrum of methodological approaches
and application strategies in which Machine Learning (ML) techniques are employed to
predict or optimize key output characteristics of the EDM process. These studies underscore
that data-driven models—ranging from classical regression frameworks to advanced deep
learning architectures—can be systematically trained to estimate machining performance
indicators such as material removal rate, tool electrode wear, and the resulting surface
integrity. Numerous contributions highlight that the integration of supervised learning
algorithms not only enables the approximation of nonlinear relationships between process
parameters and output responses but also supports multi-objective optimization aimed at
achieving desired technological outcomes [16,17].

Cetin et al. [5] evaluate several ML algorithms to predict electro-erosion wear in
cryogenic-treated electrodes of mold steels. The authors consider algorithms in the do-
main of Ensemble Learning (EL), ANN, Boosting, Decision Trees (DTs), and K-Nearest
Neighbours (KNNSs). The inputs of the ML techniques are the Electrode Material (EM),
Cryogenic Process Conditions (CPC), Pulse Current (PC), and Pulse Duration (PD). The re-
sults show that the EL models provide an accuracy of almost 99% during the training
and testing phases, according to a simple split of the dataset and R-squared (R?) met-
ric. In addition, they identified the most relevant characteristics that affect wear patterns.
Arunadevi and Prakash [7] analyse the MRR and Surface Roughness (SR) to machining
Al7075 + 10% Al,Ol3 materials using WEDM. ANN and LR with pulse time (T,,), Voltage
(Vo), pulse-off (T,¢r), Bed Speed (BS), and Current Intensity (CI) are used to predict output
parameters and to find input values that maximise MRR and minimise SR. The results show
that ANN outperforms LR considering MRR and SR. The authors also identify the optimal
solution using a Pareto front. Jatti et al. [10] present several ML models for the prediction of
MRR during EDM of Nickel-Titanium (NiTi), Nickel-Copper (NiCu), and Beryllium-Copper
(BeCu) alloys. ML regression and classification models based on RE, DTs, Gradient Boosting
(GB), ANN, and Adaptive Boosting (AdaBoost) predict MRR and an MRR value below
5 mm3/min. The input parameters of the algorithms are Workpiece Electrical Conductivity
(WEC), Gap current (Gc), Gap voltage (Gv), Ton, and T,fs. The results show that GB is the
most efficient regression algorithm for predicting MRR with a value R? = 0.930, and RF
outperforms other classification algorithms based on the F1-score with a value of 1. ML
can accurately predict machining performance, support tool design, and process parameter
optimisation. In addition, the authors identify that Gc and Vo have a dominant influence on
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MRR, and cryo-treated electrodes significantly affected MRR. Kaigude et al. [12] evaluate
the prediction of LR, DTs, and RF for SR with AISI D2 steel and EDM and Jatropha oils as di-
electric media. The input parameters consider PC, Gv, Ty, and T, Ff- The results show that
RF provides high accuracy prediction with an R? value of 0.89 and an MSE of 1.36%. Bhan-
dare and Dabade [13] propose an ANN for the prediction of MRR, Tool Wear Rate (TWR),
and SR considering Gas Dielectric Pressure (GDP), PC, Spark on time (So,), and Gap Spark
Voltage (GSV). The results show the effectiveness of the ANN with a prediction accuracy of
89.09%, 87.30%, and 84.83% for MRR, TWR, and RS, considering the Mean Squared Error
(MSE) metric, respectively. Ilani and Banad [14] propose the EDMNet framework with
12 ML approaches based on Deep ANN (DNN), SVR, Voting (VT), Bootstrap aggregating
(Bagging), Extreme Bagging (XBagging), AdaBoost, LR, Ridge regression, Lasso regression,
and Elastic Net regression to predict EDM performance. The prediction of MRR, EWR,
and SR (R;) considers CI, Scanning Speed (SS), T,,, Powder Concentration (PwC), Injection
Pressure (IP), Vibration Frequency (VF), and Amplitude of Vibration (AV). The results show
that EDMNet can be used as a reproducible standardised benchmarking framework that
facilitates ML model comparison in the EDM context. The authors demonstrated that Mul-
tiple LR (MLR) exhibits notably inferior performance compared to non-linear learners such
as ANN and Decision Tree Regression (DTR), highlighting the complexity of the parameter—
response mapping. Cortés-Mendoza et al. [18] study four ML approaches to describe
the correlation of the input and output of the dry EDM process with distilled water as a
coolant for Inconel 625 and Titanium Grade 2. The prediction models based on LR, RE, SVR,
and ANN receive independent variables, T,;,, CI, Vo, Gas Pressure (GP), and Workpiece
Material (WM) to estimate MRR, EWR, working electrode velocity (U), and SR parameters
(R; and Rg;). The average efficiency of the models according to the best R? values for MRR,
EWR, and U was 0.6735, 0.7955, and 0.7739, using a 5-fold Cross-Validation technique
(5CV). Ziyad et al. [19] develop algorithms for DT, RF, GB, and Extreme GB (XGB) to predict
SR with AISI 1060 steel. The prediction strategies consider cutting speed (Vc), Feed rate (F),
workpiece Hardness (H), and Machining Environment (ME). The combination of DT, GB,
and XGB generates a Super Learner Model (SLM) that improves the predictive efficiency of
the models. Additionally, the interpretations of the model’s predictions are clarified using
the Shapley additive explanations (SHAP) technique. Ali et al. [20] address the issue of
accurately predicting the MRR, TWR, and SR output parameters in micro-EDM drilling
using advanced ML methods. This study aims to develop predictive models for EDM
setups using ensemble ML techniques for the TNTZ (Ti-29Nb-13Ta-4.6Zr) machined alloy.
An MLR, a DT, and an ANN estimate the output parameters Volume Removal Rate (VRR),
Overcut (Ov), Circularity Error (CE), and SR parameters. The evaluation employs two key
performance metrics: the Normalised RMSE (NRMSE) and the R? factor. The results show
that MLR performed poorly due to the non-linear nature of the data (with the lowest R?
and highest NRMSE), DTR showed moderate accuracy (with R?> > 75%, and prediction
error < 10% in most cases), and ANN delivered the best results (with R? > 99% and pre-
diction errors < 5%) in all outputs for training and testing data. Sarker et al. [21] define
a methodology to develop optimised weighted average ensemble models to predict the
output parameters of V¢, SR and Spark Gap (SG) in Wire EDM (WEDM) processes. RE,
SVR, and Ridge are used as base models, which represent a different modelling paradigm.
The two ensemble models aimed to enhance prediction accuracy by minimising the RMSE
and Mean Absolute Error (MAE) using weighted averaging of the base models and derived
weights. The evaluation considers multiple performance metrics: RMSE, MAE, MSE, R,
MAPE, RMSPE, RMSLE, RAE, RRSE, and the Mean Relative Signal-to-Noise (MRSN) ratio
to evaluate the prediction of Ty, T rf, Spark gap Voltage (SgV), Peak Current (PkC), Wire
Tension (WT), and Wire Feed (WF). The results indicated that the RMSE optimised ensem-
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ble model achieved the highest prediction accuracy in all response variables, and the MAE
optimised ensemble model outperformed individual base models, with a few exceptions.
Mandal et al. [22] study the Monel K500 EDM process using a new metaheuristic technique
called the Multiobjective Dragonfly (MODA). MODA receives as input PkC, Ty, Duty
Cycle (DC), and Servo Voltage (SV) to predict the parameters of MRR and EWR. The results
show that the model predictions reached R? values of 99.40% and 96.60% for MRR and
EWR, respectively. Moreover, the methodology considers a Box-Behnken design to prepare
the experimental design matrix, and it allows authors to identify a set of non-dominated
solutions and the optimal process input parameters. Kumar and Jayswal [23] present an
NN to optimise the prediction of MRR with WEDM a synthetically generated dataset. T,
Ty 5f, Cl, Vo, WF Rare (WFR) are the inputs of the NN model to estimate MRR. The results
show a R? value of 0.9999, a MAE value of 0.0166, and an MSE value of 0.0004 for the
best NN model based on the Sigmoid activation function. The authors highlight the near-
perfect correlation between the predicted and actual NN values for manufacturers, who can
optimise process parameters to achieve desired machining outcomes, thereby enhancing
efficiency and reducing costs.

Table 1 summarises the main characteristics and parameters, together with their
methodologies and materials, of the related works. The increasing interest in applying
ML techniques to model and predict output parameters in EDM arises from the inherent
complexity of the process and the non-linear relationships between input and output
parameters. Despite promising results in numerous studies, researchers continue to face
a range of methodological and technical challenges that constrain the effectiveness and
generalisability of ML applications in this field.

In light of these, the present study proposes a generalist ML framework designed to en-
hance the predictive accuracy and robustness of models describing Material Removal Rate
(MRR) and working electrode wear (EWR) when using Copper—Tungsten (CT) electrodes,
as originally characterised in [5]. To accomplish this, the research systematically evalu-
ates four predictive modelling approaches—Linear Regression (LR), Random Forest (RF),
Support Vector Regression (SVR), and Artificial Neural Networks (ANN)—for forecasting
MRR and EWR based on key input parameters, namely Electrical Mode (EM), Capacitance
(CPC), Pulse Current (PC), and Pulse Duration (PD). This framework draws inspiration
from the methodology first outlined in Authors’ previous work [18]. The primary goal
of this research is therefore to establish a versatile and empirically validated ML-based
modelling strategy that not only improves predictive performance for MRR and EWR
under limited data conditions but also advances the development of more generalisable
and transferable EDM prediction models.
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Table 1. Main characteristics of related works in the literature.
ML Model(s) Machine Type Inputs Outputs Metrics Material Dielectric Type Working Electrode No. of Trials ~ Dataset Split Ref.
EL, Boosting, ANN, . R?, MSE, RMSE, Petrofer dielectricum .
DTs, kI%N King ZNC K3200 EM, CPC, PC, PD MRR, EWR MAPE AISI P20 tool steel 358 Cu, CuCrZr 176 Simple 70-30 [5]
ANN, LR DK-7732 WEDM Ton, Tors, Vo, BS, CI MRR, SR R?, residuals, Pareto Al7075 + 10% Al,O3 Deionised water * 18 Simple 90-10 [7]
RF, DTs, GB, ANN, Electronica Machine WEC, Gc, GV, Ty, MSE, MAE, R?, NiTi, NiCu, and BeCu QOil with side-wise . .
AdaBoost Tool C400 x 250 Torf MRR F1-Score, AUC alloys flushing Electrolytic Cu 18 Simple §0-20 [10]
Electronica Machine R%, MAE, MAPE, EDM and Jatropha
LR, DTs, RF Tool C400 X 250 PC, Gv, Tou, Ty 7 SR RMSE AISI D2 steel oils Cu 20 CV 66-33 [12]
ANN CNC EDM GDP, PC, S,,,, GSV MRR, TRW, SR MSE Inconel 718 Air Cu 27 Simple 60-40 [13]
DNN, VT, SVR, L
Bagging, XBagging, EDDB;[E:;EI?%%A) CLSS, Ton, PWC, IT, MRR, EWR, R MAE, MSE, RMSE, R? Vari Liquid dielectric with * 284 5CV 80-20 [14]
AdaBoost, LR, Ridge, R VE, AV ’ 7 . ’ 4 arious powder
! spark machine
Lasso, Elastic Net
Electro-discharge o s .
LR, RE,SVR,ANN generator MATRIX T, CLVo,GEWp ~ MRREWRU R, R?,MSE,RMSE ~ [neonel 625 Titanium  Carbon dioxide with Cu 50 5CV 80-20 [18]
MPS Ry Grade 2 deionised water
: WC and Co with
DT, RF, GB, XGB, Powered center lathe R?%,SME, AME, Biodegradable N R
SIM 56266 model V¢, F H,ME SR RMSE AISI 1060 steel hydraulic cutting oil Tlill\el1 tc;zt[‘l}ng 48 10CV 80-20 [19]
DT-110i Hybrid P . . .
MLR, DTR, ANN 1i-EDM VRR, Ov, CE, SR MRR, TWR, SR NRMSE, R TNTZ alloy EDM oil Tungsten carbide 27 Simple 80-20 [20]
RMSE, MAE, MSE, R, ) .
RE SVR, Ridge CNC-WEDM Ton, Evf{" ‘S/\X:Pkc' Ve, SR, SG MAPE, RMSPE, Stir Ca;te‘:l/ SiCp Deionized water Brass wire 54 Simple 80-20 [21]
. RMSLE, RAE, RRSE
MODA ELTECH D-300ZNC PkC, T,,, DC, SV MRR, EWR R? Monel K500 Surfactants + Cooper 27 * [22]
dielectric fluid
NN * Ton, Torf, CI, Vo, WER MRR R?2, MAR, MSE * * * 100 5CV 80-20 [23]
LR, RF,SVR, ANN King ZNC K3200 EM, CPC, PC, PD MRR, EWR R?,MSE, RMSE AISIP20tool steel L etrofer ‘;gegedmum Cu, CuCrZr 176 5CV70-30  Thiswork

% N.B. Parameter not explicitly mentioned in referenced paper.

https://doi.org/10.3390/ma19020438


https://doi.org/10.3390/ma19020438

Materials 2026, 19, 438

6 of 24

2. Materials and Methods
2.1. Test Stand and Sample

EDM experiments were performed on a King ZNC K3200 die-sinking EDM ma-
chine (Kingred Intelligent Equipment (Suzhou) Co., Ltd., Suzhou, China), see Figure 1.
The tests were carried out under constant processing conditions except when deliber-

ately modifying a specific parameter. The dielectric fluid used was Petrofer Dielectricum
358 (PETROFER Chemie, Hildesheim, Germany), a mineral-based oil formulated for
electro-erosive machining.

Figure 1. King ZNC K-3200 EDM machine and its control panel of the experimental setup to perform
the tests [5].

Cylindrical working electrodes made from Cu and CuCrZr, with dimentions of
10 x 30 mm dimensions, see Figure 2, were used for EDM. The cylindrical workpiece
material made of AISI P20 tool steel, a common material in plastic injection mold appli-
cations with dimentions of 14 x 20 mm was machined (Figure 3). Furthermore, Figure 4
shows examples of workpiece material and working electrode, and Table 2 shows both the
chemical composition and properties of electrode materials.

P10 @10

—

5
@)

30 mm
30 mm

CuCrZr

Figure 2. Cu and CuCrZr cylindrical working electrode characteristics of the experimental setup to
perform the tests [5].

014

—

20 mm

AISI P20

Figure 3. AISI P20 workpiece material characteristics [5].
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Figure 4. Example of workpiece and working electrode.

Table 2. Chemical composition and properties of electrode materials (wt.%) [5].

Element (%) Cu Cr Zr
. Cu 100 - -
Material CuCrZr Balance 1 0.1

2.2. Experimental Plan

In total, 176 EDM experiments based on the four-factor test plan with the following
variables: Electrode Material (EM), Cryogenic Process Conditions (CPC), Pulse Current
(PC), and Pulse Duration (PD), were outperformed by [5]. Table 3 shows the input pa-
rameters and the values during the EDM experiments, Section 2.4 provides more detailed
information on these values.

Table 3. Variable input parameters of the experimental plan [5].

Symbol Parameter Values

EM Electrode Material Cu, CuCrZr
CPC Cryogenic Process Conditions 0-24h

PC Pulse Current 4,8,12,16 A
PD Pulse Duration 25,50 us

The electrodes were divided into 11 levels of CT to assess their impact. The cryo-
genically treated electrodes underwent treatment cycles at —140 °C for 15 and 30 min,
aswell as 0, 0.25,0.5, 1, 2, 4, 8, 12, 16, 20, and 24 h, followed by tempering at 175 °C for
one hour [5]. Deep CT in the range of —125 and —196 °C enhances certain mechanical
properties of tool steels, and the most significant increase in properties is obtained by CT
between quenching and tempering [24]. The literature describes several improvements in
the mechanical properties of cryo-treated tool steels: Complete transformation of retained
austenite into martensite, precipitation of fine dispersed carbides and removal of residual
stresses [25].

Each test was repeated three times, and the average of the three experiments was con-
sidered as a test result, to ensure their precision. While EDM is an inherently stochastic and
random process; it is not possible to predict the exact location of the first discharge, and thus
the point at which dielectric breakdown will occur. It is also a process strongly dependent
on voltage, current intensity, and pulse duration, while the material of the tool electrode
and the workpiece itself exert a particularly significant influence on the stability of the
machining operation. For this reason, performing three repeated trials under identical input
conditions provides a necessary level of statistical reliability for the measured outputs. All
input parameters of the process were kept constant throughout the experimental campaign,
and every test was conducted using the same dielectric fluid. This dielectric—specifically
formulated for die-sinking EDM—ensures appropriate dielectric strength, effective heat
removal from the machining zone, good arc-quenching capability, high flash point, ad-
equate stability, and chemical compatibility with the machine components. Since EDM
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is fundamentally a thermally driven process, the literature reports that the temperature
within the plasma channel can reach values as high as 14,000 K. Consequently, maintaining
constant values of voltage, current, and pulse duration and same workpiece and working
electrodes materials—allows us to assume that the repeatability across the individual trials
was preserved to a high degree.

The dataset comprises key variables with distinct central tendencies and levels of
dispersion. The Cryogenic Process Conditions (CPC) exhibit a mean value of 7.98 with a
standard deviation of 8.34, indicating substantial variability relative to the mean. Electrode
Wear (EW) presents a mean of 16.47 and a standard deviation of 15.24, highlighting the
pronounced variability in tool degradation [5]. Finally, Workpiece Wear (WW) records the
highest mean value at 154.65 and a large standard deviation of 82.69, indicating considerable
spread and sensitivity in material removal results [5].

Mass losses after the EDM process define the EWR and MRR values for Cu and
CuCrZr electrodes, and workpieces. The methodology consists of weighting the difference
between the Mass Before Testing (MBT) and the Mass After Testing (MAT) of the electrodes
(MBT, and MAT,) and the workpieces (MBT,, and MAT,,). Both the tool electrode and
the workpiece were weighed using a high-precision analytical balance with an accuracy of
0.0001 g; see Ref. [5].

The EWR and MRR are determined by the following formulas:

EWR[mg/min| = w, 1)
MBTy, — MAT,

MRR[mg/min] = T /

()

where T = 20 is the EDM process time in minutes.

In Table 4, the Pearson Correlation coefficient for set of input and output parameters
was presented. Pearson Correlation coefficient represents the linear dependence between
pairs of variables in the dataset. Each coefficient reflects both the strength and the di-
rection of the linear relationship, with values ranging from —1 to +1. A coefficient close
to +1 indicates a strong positive linear association, whereas a value near —1 reflects a
strong negative linear relationship. Coefficients around 0 suggest the absence of a linear
dependency, although nonlinear associations may still be present. In the context of this
study, the Pearson matrix provides an initial indication of how input parameters—such
as current intensity, voltage, and pulse duration—co-vary with output measures such as
MRR and EWR. Identifying variables with higher absolute correlation values helps deter-
mine which features may exert a more substantial influence on the predictive modelling
process, while weaker correlations signal parameters that may contribute less to linear
model performance. While analysing the Pearson Correlation coefficient one could notice
that working electrode wear and material removal rate are strongly correlated with current
intensity (positive correlation) and workpiece wear is correlated with working electrode
wear (positive correlation), which means that these parameters have the greatest influence
on the EDM process.

Table 4. Pearson Correlation coefficients for input and output parameters (p-values).

p-Values
Process Conditions (PC) 1 0 0 0.09 0.02
Current Intensity (CI) 0 1 0 0.94 0.98
Pulse Duration (PD) 0 0 1 —0.06 0.05
Working Electrode Wear (WEW) 0.09 0.94 —0.06 1 0.93
Workpiece Wear (WW) 0.02 0.98 0.05 0.93 1
PC CI PD WEW WW
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2.3. Machine Learning Framework

From the authors’ perspective, the central objective of the planned investigations
was to examine the feasibility of applying ML techniques to predict tool-electrode wear
and to estimate the machining efficiency of the EDM process conducted under various
parameter settings and using electrodes subjected to different cryogenic treatment cycles.
For this reason, the subsequent sections of the study concentrate on identifying the most
effective statistical and ML algorithms capable of modelling process behaviour and fore-
casting its outcomes—namely, the material removal rate and the tool-electrode wear. These
two output variables represent one of the key performance indicators in EDM and are
essential for assessing both the stability and effectiveness of the machining process.

Accordingly, the following discussion is devoted directly to methodological as-
pects related to machine learning, with the aim of determining which approaches pro-
vide the most accurate and robust predictive capability for the EDM process under the
conditions investigated.

ML focusses on statistical algorithms that can identify patterns in the data and use
them to predict [26]. Supervised ML is a category of ML paradigm in which models learn
from the labelled datasets to make predictions or classifications on unseen data. They learn
the relationship between input and output data. Recently, several (supervised) ML methods
have overcome the performance of previous approaches or even human skills in some
tasks. Our generalist framework employs four ML methods—LR, RF, SVR, and ANN—to
systematically determine the EDM’s EWR and MRR. They are standard methods in the
literature for predicting.

Linear Regression (LR). First introduced by Galton in the late nineteenth century [27],
LR fits a straight line to the data (“linear equation”) that better represents the relationship
between the dependent variable and the independent features [28]. This equation minimises
the error between the predicted and actual values with respect to the training dataset via
the residual sum of squares, a standard measure to define the level of variance in the
error term (“residuals”) of the model [26]. The LR parameters are easier to fit than other
non-linear models, and the statistical properties of the resulting estimators are easier to
determine. LR is a standard baseline model in ML due to its simplicity, interpretability,
and computational efficiency.

Random Forest (RF). Initially used by Morgan and Sonquist in the early 1960s to
examine determinants of social conditions by recursive partitioning [29], a Decision Tree
(DT) is a non-linear alternative to LR that consists of dividing (“partitioning”) the space into
smaller regions where interactions are more manageable [30]. By implementing recursive
partitions of the space, DTs generate fragments to create simpler models. A prediction
over a tree considers the partitions that define the tree’s structure. The training phase of
a DT finds the thresholds or cuts that create the regions which minimise the MSE. Over-
fitting, high variance, and bias are some important limitations of DTs. To overcome such
limitations, Ho [31] proposed to build multiple trees in stochastically selected subspaces of
the feature space whose capacity could be arbitrarily expanded for increases in accuracy
for both training and unseen data. Known as a Random Forest (RF), it creates several
DTs as a single model to generate the prediction, reducing the limitations of a single DT.
The random sampling with replacement and the random subset of features for each DT
in RF decrease the variance of the model and the correlation between DTs. This ensemble
learning algorithm estimates the final output using the mean output values of the DTs in
the RF, reducing the tendency of the individual trees’ to overfit the data.

Support Vector Regression (SVR). Proposed by Basak, Pal, and Patranabi [32], SVR
implements LR in a high dimensional feature space where input data are mapped via
a non-linear function based on the seminal Vapnik—Chervonenkis work [33]. The SVR
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algorithm establishes a region around the function with a certain tolerance where the points
within the region are considered correct predictions [34]. The main goal of the tube region
is to find the best approximation of the continuous-valued function so that the predictions
inside the tube region minimise the error function. SVR uses Kernel functions to deal
with nonlinear processes where original data are projected into high-dimensional feature
spaces where linear or more complex relationships may exist. Good performance with
multidimensional data, handling small datasets, processing of high-dimensional count
datasets, modelling non-linear decision boundaries, and a low resource-hungry algorithm
are some advantages of SVR. Some disadvantages include Kernel selection, parameter
sensitivity, memory intensive, and lack of probability interpretation.

Artificial Neural Network (ANN). By systematically deploying Rosenblatt’s Percep-
tron [35] to learn to classify patterns using adjustable synaptic weights using the McCulloch-
Pitts mathematical formalism of a human brain neuron [36], an ANN simulates intercon-
nected neurones that provide the structure to solve complex problems [37]. The network
structure consists of independent layers with an arbitrary number of organised neurones.
Layers organise interconnected neurones by edges to create the ANN. The three types of
layers provide different functionalities: The input layer takes the external signals, the hid-
den layers process the input information, and the output layer supplies the final result.
The training process minimises the error in the output prediction for each neurone in the
ANN, considering MSE. Figure 5 shows an example of an ANN with three layers and
seven neurones.

An important limitation for developing an ANN is the definition of several values
in the structure and training process, such as the number of neurons and layers, the inter-
connections of the edges, the number of epochs, the activation function, and the learning
rate, among others. ANNs are widely used in different domains due to their advantages:
no assumptions about data properties or distribution, flexibility, encompassing nonlinear
regression models, handling incomplete data and noise, and scalability [38].

Hidden layer

Input layer Output layer

Figure 5. An ANN with an input layer of two neurons (red circles), a hidden layer with three
neurons (blue circles), and an output layer with two neurons (green circles), where arrows define the
connections and (2-3-2) the configuration of the ANN [18].

Programmed in Python 3.12 with the sklearn 1.4.1 library, our four-method ML frame-
work has been deployed on a workstation with a 10-core Intel(R) Xeon(R) CPU E5-2650 v3
@ 2.30 GHz, 128 GB of memory, and 1.2 TB hard disc, running Linux Ubuntu 20.04.6.

The prediction model is trained with the dataset’s information of four inputs and only
one output value, EWR or MRR. Figure 6 shows the inputs and outputs of the proposed
prediction model for the four ML approaches.
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EM —— LR
CPC RF
PC | SVR
PD — | ANN

— EWR, MRR

Figure 6. Input and output parameters of the proposed prediction models for the four ML approaches.

2.4. Dataset for Machine Learning

Evaluating strategies with real data is fundamental to measuring their performance.
The experimental evaluation considers a dataset with a series of integer and continuous
input variables and continuous output values, see [5] for detailed information. Table 5
shows the characteristics of the input values of the dataset. Usually, 24 h of CPC is enough
to obtain results [25].

Table 5. Input values of the dataset.

Input Values

EM {CuCrZr, Cu}

CPC {0,0.25,0.5,1, 2, 4, 8,12, 16, 20, 24}
PC {4, 8,12, 16}

PD {25, 50}

All feature values are standardised using a method of feature scaling. The standardis-
ation process centres data around a mean of zero and a standard deviation of one to avoid
some features dominating others due to their magnitudes. Figure 7 presents statistical in-
formation about the datasets after standardisation, where the standard score of an instance
x is defined as

z=(x—u)/s, 3)

where u and s are the mean and standard deviation of the training samples, which
allows scaling and scaling back the data between the original representation and its
standardizing version.

B EM Ocpc EPC HPD [ EWR B MRR
2 2.5
1.5 2.0
15
! 1.0
0.5 0.5
0 X 0.0
-0.5
-0.5 o
-1 15
-1.5 2.0

(a) (b)

Figure 7. Standardised inputs (a) and outputs (b) with mean markers (crosses) of the dataset.

The Simple Split technique provides a methodology to compare the performance of LR,
RF, SVR, and ANN. The dataset is randomly divided into two subsets: 70% for training and
30% for testing. The training dataset is used to train the classification model, and the testing
dataset is used to verify the training process. Table 6 shows the number of instances in each
training dataset. The training process applies 5CV during the model training phase [39].
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Table 6. Number of instances in the training and testing datasets after the preprocessing stage.

Training Testing
Inputs N
EWR MRR EWR MRR
EM, CPC,PC,PD 176 123 123 53 53

2.5. Metrics for ML

We consider three standard metrics to evaluate the efficiency of the predictive model:
MSE, RMSE, and R?. The MSE measures the average of the squares of errors and the RMSE
is the quadratic mean of the differences between the observed and predicted values (MSE).
Lower MSE and RMSE values indicate that the model predictions are closer to the true
values. The statistical measure R? determines the proportion of variance in the dependent
variable, which the independent variable can explain. The values of R? close to zero suggest
a weak relationship between the variables and indicate a poor fit of the model for the data.
MSE, RMSE, and R? are expressed as:

MSE = % Y (yi— 7, (4)

RMSE = | =) (i - )2, (5)
R2:1— il\il(;/v\i_yi)z (6)
YN (@ — i)

where y; defines the observed value, §; is the predicted value and ; specifies the mean
valuey; fori=1,...,N.

2.6. ML Configuration

The configuration of the strategies is fundamental for their performance, as inadequate
parameters can limit the efficiency of strategies. So, defining the hyperparameters of
strategies is fundamental during the training phase because they control the learning
process of the ML model. Hence, the proper hyperparameters improve the prediction
model. Hyperparameter optimisation finds values of the parameters that optimise the
model by minimising the loss function on given test data.

Hyperparameters are typically chosen empirically, so many models are trained with
different configurations on the same training dataset, measuring their performance and
retaining the best model [40]. No software in the literature can guarantee that the ideal
hyperparameters for the models will be obtained. We used a grid search that exhaustively
searches for a predefined set of hyperparameters. Although straightforward and easy
to implement, it can be computationally expensive, especially for large hyperparameter
spaces [41]. The results showed that the chosen values for the hyperparameters can provide
performance similar to that reported in the literature.

Table 7 shows the grid values of the hyperparameters for RF with 5CV using the
training dataset. The total number of trained models is 6 x 6 x 4 x 2 = 288. The hyperpa-
rameters for RF include the number of decision trees in the forest (estimators), the maximum
depth of the tree (depth), the minimum number of samples required to split an internal
node (split), and whether bootstrap samples are used when building trees (bootstrap).
The grid search values pursue avoiding overfitting by restricting the depth of the trees,
which reduces the arbitrarily complex trees and avoids the memorization of noise, prevent-
ing tiny/big subgroups with splitting values that generate simpler trees, and bootstrap

https://doi.org/10.3390/ma19020438


https://doi.org/10.3390/ma19020438

Materials 2026, 19, 438

13 of 24

sampling helps each tree to see a different sample of the data. Additionally, we validate
performance with 5CV to avoid overfitting and underfitting.

Table 7. Parameters of RF to find the best prediction model using 5CV [18].

Parameter Values Configurations
Estimators {50, 100, 150, 200, 250, 300} 6
Depth {2,3,4,5,6,7} 6
Split {2,3,4,5) 4
Bootstrap {True, False} 2

Table 8 shows the grid values of the hyperparameters for SVR with 5CV using the
training dataset. The total number of trained models is 9 x 5 x 4 = 180. The hyperparame-
ters for SVR are the type of kernel, the degree of the polynomial kernel function, the epsilon
value, and the number of iterations.

Table 8. Parameters of SVR to find the best prediction model using 5CV [18].

Parameter Values Configurations
Kernel {linear, polynomial, rbf, sigmoid} 346=9*
Degree (2,3,4,5,6,7) o
Epsilon {0.1,0.2,0.3,0.4, 0.5} 5

Iterations {50, 100, 150, 200} 4

* Degree is only applied with a linear kernel.

Table 9 shows the grid values of the hyperparameters for ANN with 5CV using the
training dataset and fully connected layers. The total number of trained models is 6336
for 1584 CNNs with one Hidden Layer (HL), 1584 CNNs with two HLs, 1584 CNNs with
three HLs, and 1584 CNNs with four HLs. The efficiency of the ANN model depends on
the number of HLs and neurons per layer, where the architecture definition follows an
empirical procedure that looks for the best hyperparameters. This procedure is expensive in
terms of time and computational resources because every combination of hyperparameters
must be evaluated.

Appendix A shows the configuration of the best strategies found during the simulation
process for the four ML strategies.

Table 9. Parameters of ANN to find the best prediction model using 5CV [18].

Parameter Values Configurations
Epochs {100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600} 11
1 hidden layer (1HL) {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120} 12

2 hidden layers (1HL-2HL)

{10-5, 20-10, 30-15, 40-20, 50-25, 60-30, 70-35, 80-40, 90-45, 100-

50, 110-55, 120-60} 12

3 hidden layers (1HL-2HL-3HL)

{5-10-5, 10-20-10, 15-30-15, 20-40-20, 25-50-25, 30-60-30, 35-70-

35, 40-80-40, 45-90-45, 50-100-50, 55-110-55, 60-120-60} 12

4 hidden layers (1HL-2HL-3HL-

{5-10-10-5, 10-20-20-10, 15-30-30-15, 20-40-40-20, 25-50-50-25,
30-60-60-30, 35-70-70-35, 40-80-80-40, 45-90-90-45, 50-100-100- 12

4HL) 50, 55-110-110-55, 60-120-120-60}

Activation function {Hyperbolic tangent (tanh), Logistic, Rectified Linear Unit 3
(ReLU)}

Learning rate {0.05, 0.01, 0.005, 0.001} 4
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3. ML Experimental Evaluation

The models with the best performance, considering MSE, RMSE, and R? to predict
EWR and MRR, are used to measure their efficiency with unseen data from the testing
dataset. This Section presents the values obtained after 30 executions, considering R?
as a comparison point with [5], which does not provide standard values for MSE and
RMSE. Note that a strategy with the highest value of R?> during the testing phase does
not necessarily provide the highest value of MSE and RMSE. Moreover, we consider the
highest efficiency with respect to unseen data. The analysis of more than one metric can be
done using a standard multiobjective analysis, such as the Pareto Front or the weighted
sum [7]. In Appendix A, Table A4 shows information about models that consider the MSE
and RMSE metrics.

Figures 8-11 present the error distributions and regression plots corresponding to the
training and testing datasets for best methods. The results indicate only minor discrepancies
between the experimentally measured and model-predicted values of electrode wear and
workpiece material removal. This close agreement suggests that all the investigated models
are capable of capturing the underlying relationships between the process input parameters
and the resulting EDM performance indicators, thereby providing accurate and reliable
predictions within the analysed domain.
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Figure 8. Comparison of the training performance of the best models for EWR with (a) RF and
(b) ANN with their trendlines (red lines).
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Figure 9. Comparison of the testing performance of the best models for EWR with (a) RF and
(b) ANN with their trendlines (red lines).
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Figure 10. Comparison of the training performance of the best models for MRR with (a) RF and
(b) ANN with their trendlines (red lines).
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Figure 11. Comparison of the testing performance of the best models for MRR with (a) RF and
(b) ANN with their trendlines (red lines).

Table 10 shows the results of the LR, RF, SVR and ANN performance evaluation with
respect to the prediction models. The best value for the four approaches is highlighted in
bold font for the two outputs during the training and testing phases. The values represent
an average of 30 executions with different seeds after the training and testing processes.
The average over a larger number of runs with different seeds enhances the reliability and
statistical significance of the results. This approach also helps us to understand the variance
and stability of the proposed strategies. It also presents details on the standard deviation of
models after 30 executions.

ANN and RF outperform LR and SVR with respect to EWR and MRR. ANN provides
the best MSE, RMSE, and R? values for MRR and the EWR training phase. RF performs bet-
ter than other strategies according to all metrics during the EWR testing phase. In addition,
ANN and RF improve the efficiency of state-of-the-art ML algorithms in the literature dur-
ing the training and testing phases. The R? values of both prediction models are between
0.9808 and 0.9976 for the training and testing phases.
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Table 10. Average performance of the best configuration for LR, RE, SVR, and ANN predictors after
30 executions with 5CV according to R2.

Output EWR MRR

Phase Train Test Train Test
MSE 0.0991 4 0.0073 0.1090 £ 0.0190 0.0257 4+ 0.0017 0.02704 0.0191
LR RMSE 0.3146 4+ 0.0118 0.3290 £ 0.0283 0.1603 £ 0.0055 0.1637 4 0.1383
R2 0.9011 4 0.0055 0.8881 4 0.0166 0.9744 4+ 0.0020 0.9719 £ 0.9795
MSE 0.0182 £ 0.0039 0.0351 £ 0.0150 0.0108 4 0.0011 0.0182 £ 0.0087
SVR RMSE 0.1342 4+ 0.0140 0.1830 £ 0.0393 0.1036 £ 0.0053 0.1332 £ 0.0934
R2 0.9818 £ 0.0040 0.9646 £+ 0.0133 0.9893 4 0.0011 0.9813 £ 0.9896
MSE 0.0035 £ 0.0010 0.0191 £+ 0.0159 0.0052 £ 0.0010 0.0120 £ 0.0061
RF RMSE 0.0583 4 0.0084 0.1294 4 0.0485 0.0716 £ 0.0073 0.1085 £0.0780
R2 0.9967 £+ 0.0010 0.9808 + 0.0146 0.9948 + 0.0011 0.9875 4 0.9927
MSE 0.0024 £+ 0.0006 0.0229 4+ 0.0144 0.0040 £ 0.0008 0.0119 £ 0.0066
ANN RMSE 0.0483 4 0.0058 0.1441 4 0.0467 0.0627 £ 0.0066 0.1077 4 0.0810
R2 0.9976 + 0.0006 0.9771 4+ 0.0128 0.9960 -+ 0.0008 0.9877 + 0.9922

[5] R2 0.980 0.973 0.990 0.980

The best values for the two outputs and two stages are highlighted in bold font.

Table 11 shows the percentage of improvement with respect to [5] based on the R?
metric. LR only performs worse than the best algorithm in [5] on both outputs and phases,
and SVR and ANN with respect to the testing set considering EWR. In other cases, SVR, RE,
and ANN improve the efficiency of [5] between 0.13% to 1.77%.

Table 11. Improvement percentage of the models with respect to [5] considering the average value of
R? after 30 executions.

Output Phase LR SVR RF ANN
Train —7.89 0.18 1.67 1.76

EWR Test —9.19 —1.54 0.08 —0.29
Train —0.56 0.93 1.48 1.6

MRR Test —0.81 0.13 0.75 0.77

Table 12 shows the results of the LR, RE, SVR and ANN performance evaluation with
respect to the prediction models. The best value for the four approaches is highlighted in
bold font for the two outputs during the training and testing phases. The values represent
the best of 30 executions with different seeds after the training and testing processes,
and these results can be directly compared with [5].

ANN and RF outperform LR and SVR with respect to EWR and MRR. ANN provides
the best MSE, RMSE, and R? values for the EWR training and testing phases and for the
MRR training phase. RF performs better than other strategies considering all metrics
for the MRR testing phase. Like the average of 30 executions, ANN and RF improve the
efficiency of the latest ML algorithms in the literature during the training and testing phases.
The R? values of both prediction models are between 0.9936 and 0.9979 for the training and
testing phases.

Table 13 shows the percentage of improvement with respect to [5] based on the R?
metric for the best-found strategy. LR only has a lower performance than the best algorithm
in [5], except for the testing set of MRR. SVR, RF, and ANN improve the efficiency of [5]
between 0.01% and 1.79%.
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Furthermore, we analysed MSE and RMSE metrics with the original data to verify
the real efficiency of the models. We consider the MSE and RMSE values for the entire
dataset. Table 14 shows the MSE and RMSE values for all models with respect to the best
predictor of the 30 executions and the best configuration of the model. ANN can reduce
the MSE of EWR from 5.79 to 0.68 and the RMSE from 2.41 to 0.83 with respect to the EL
models. Similarly, ANN decreases MRR from 122.75 to 35.89 for MSE and from 11.08 to
5.99 for RMSE. In addition, SVR provides better predictions than the more complex models
described in [5], which reduces the MSE and RMSE of the EWR from 5.79 to 4.27 and from
2.41 to0 2.07, and the MRR values from 122.75 to 78.57 and 11.08 to 8.86. These values proved
that our simpler models can outperform the efficiency of more complex models, such as
EL, ANN, Boosting, and DT, which simplifies their interpretation and reduces training and
evaluation times.

Table 12. The best performance of LR, RE, SVR, and ANN predictors after 30 executions with 5CV
according to R2.

LR SVR RF ANN [5]
MSE RMSE R? MSE RMSE R? MSE RMSE R? MSE RMSE R? R?

Train 0.1110 0.3331 0.8915 0.0203 0.1425 0.9801 0.0028 0.0532 0.9969 0.0021 0.0461 0.9979 0.980
Test  0.0799 0.2826 09149 0.0130 0.1142 0.9861 0.0056 0.0747 0.9954 0.0040 0.0632 0.9956 0.973

Train  0.0287 0.1695 09710 0.0128 0.1130 0.9879 0.0061 0.0783 0.9936 0.0046 0.0675 0.9953 0.990
Test  0.0194 0.1394 0.9804 0.0087 0.0934 0.9896 0.0062 0.0789 0.9943 0.0068 0.0823 0.9936 0.980

The best values for the two outputs and two stages are highlighted in bold font.

Output Phase

EWR

MRR

Table 13. Improvement percentage of the models with respect to [5] considering the best value of R?
after 30 executions.

Output Phase LR SVR RF ANN
Train —8.85 0.01 1.69 1.79

EWR Test —6.51 0.61 1.54 1.56
Train -0.9 0.79 1.36 1.53

MRR Test 0.04 0.96 1.43 1.36

Table 14. Performance of the best configuration for LR, RF, SVR, and ANN predictors after 30
executions with 5CV and actual MSE and RMSE values.

o LR SVR RF ANN [5]
utput

P MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE
EWR 2347 4.84 427 207 0.84 092 0.68 0.83 579 241
MRR 178.33 13.35 78.57 8.86 4148 6.44 35.89 5.99 122.75 11.08

The lowest values for the two outputs and two metrics are highlighted in bold font.

Figures 12-15 present comparisons between the expected and predicted values for
LR, RF, SVR, and ANN, using all instances from the testing dataset and both electrodes.
These prediction models are the best of the 30 trained models with 5CV, see Table 12. In the
figures, the sample value defines the index of the instance with respect to the 176 elements
in the dataset.

The predicted values for ANN are closer to the actual values for the EWR with the Cu
electrode, see Figure 12, which is in line with the results reported for different metrics. LR
provides the worst approximation among all the models. The difference between the actual
and predicted values is easy to identify for the first 15 samples of the figure. A similar
situation is presented for the EWR with the CuCrZu electrode, see Figure 13, where ANN
has the best performance and LR the worst.
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Similarly, the predicted values for ANN are closer to the actual values for the MRR
with the CuCrZu electrode, see Figure 14, according to the reported results for different
metrics. LR provides the worst approximation among all the models, but the difference
between the actual and predicted values is lower than the results for Cu electrode. Figure 15
shows a similar situation for the MRR with the CuCrZu electrode, where ANN has the best
performance and LR the worst.
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Figure 12. Actual and predicted values of EWR with Cu electrodes for LR, SVR, RF, and ANN.
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Figure 13. Actual and predicted values of EWR with CuCrZr for LR, SVR, RE, and ANN.
150
15 mActual mANN mRF mSVR mLR
£ 100
E 75
& 50
=
R T o
0
4 5 6 7 9 13 15 16 24 25 26 28 32 35 39 41 42 43
Sample
300

2!

MRR [mg/min]
)

g o u o u

o O ©o o o

0

47 48 52 54 59 65 68 71 72 73 74 79 83 84 85 88

Sample

Figure 14. Actual and predicted values of MRR with Cu for LR, SVR, RF, and ANN.
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Figure 15. Actual and predicted values of MRR with CuCrZr for LR, SVR, RF, and ANN.

An important advantage of our strategies and their configuration is the consideration
of a limited number of instances in the dataset, a common situation in the field of machining,
according to the analysis of related work (see Table 1). Small datasets tend to cause problems
of overfitting due to the small data scale and too low feature dimensions. From the ML
perspective, the SVR and RF models have been shown to be suitable for prediction with
small datasets [42].

Moreover, the configurations of the models limit their flexibility; hence, they avoid
overfitting. For instance, the configurations reduce the possibility of overfitting by restrict-
ing the depth and complexity of DTs in RF, and limit model complexity and epochs of
ANN:s. In addition, our methodology rigorously validates the performance by executing
several iterations with different seeds and 5CV. It provides a balance between the model’s
ability to learn patterns and not memorise noise.

For example, Jatti et al. [10] used 2000 epochs to train the ANN model, but overfitting
appeared after 500 epochs, and Kumar [23] reached loss-minimum values around epoch
100, even if the training process considered 1000 epochs. In our implementation, the number
of epochs for the best ANN models is 250 for EWR and 150 for MRR, which are lower than
the 600 epochs (maximum) in the grid search. In the case of EWR, the R? values are the
same between 250 and 600 epochs for the training and testing datasets, which means that
the models did not learn more after 250 epochs. In the case of MRR, the R? value is higher
after 150 epochs for the training dataset, but lower for the testing dataset, which reflects
that the model could incorporate noise.

Underfitting is a possible consequence of limiting the flexibility of the models and the
training time. The results and standard deviations of the best models found confirm the
absence of underfitting because the values R?, MSE, and RMSE are at the same level as the
state-of-the-art models, and their standard deviations are between 0.0006 and 0.0485, see
Table 10. We consider that the use of grid search with the configurations for small datasets
can provide models with high performance and low variability. In addition, training and
testing times were reduced due to the low complexity of the models.

Our study has limitations to consider despite the competitive results and evidence
of the potential use of our approach. The reduced number of instances in the dataset
and a dataset with information of a single EDM machine can limit the interpretability
and generality of our findings. However, it provides guidance to EDM users to define
the proper configurations of the EDM process without performing preliminary studies.
Moreover, it is easily extended to different datasets, configurations, and ML models.

4. Conclusions

Traditional experimental or statistical modelling techniques often prove inadequate
due to the nonlinear and stochastic nature of EDM processes, particularly when different
electrode and workpiece materials are used [16,17]. However, there are still no universal
Machine Learning models developed to predict universal EDM output parameters for
industrial applications. The EDM process is governed by highly nonlinear, multi-physics
phenomena—including dielectric breakdown, plasma channel formation, transient heat
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transfer, and melt ejection—which are intrinsically stochastic and sensitive to microscopic
variations at the electrode—-workpiece interface. As shown in numerous studies, the location
and intensity of individual discharges vary from pulse to pulse, even under nominally iden-
tical parameter settings, which prevents stable, deterministic input-output mappings [43].
This stochastic nature substantially complicates the development of universally transferable
Machine Learning models. Moreover, there is the lack of large, standardised, and heteroge-
neous datasets. EDM experiments are inherently time- and cost-intensive, often restricted to
small sample sizes collected under narrow parameter ranges and specific material-tool com-
binations. Such datasets are not only insufficient for training robust models—particularly
deep learning architectures—but also rarely transferable across studies because of dif-
ferences in electrode materials, workpiece alloys, dielectric fluids, flushing conditions,
and machine-specific control strategies. It is also important to underline that EDM perfor-
mance indicators such as material removal rate and working electrode wear are strongly
material-dependent. The thermal and electrical properties of workpiece materials and elec-
trode materials significantly influence discharge behaviour, crater morphology, and wear
mechanisms. Consequently, ML models trained on one material-tool-dielectric combina-
tion cannot be generalised to other conditions without severe degradation in predictive
accuracy. Additionally, variations in dielectric contamination, debris concentration, tool
wear progression, and servo-control strategies introduce further sources of non-stationary
behaviour not captured in typical datasets. These factors collectively introduce substantial
domain-specific biases, making universal EDM prediction models infeasible with current
data availability and modelling paradigms.

In our study, we first aimed to identify the machine learning models that are most
capable of accurately predicting the output parameters of the EDM process for the specific
conditions investigated. Furthermore, through this experimental work, we contribute to
expanding the dataset available for improving and refining ML models in this domain. The
use of cryogenically treated electrodes has emerged as an alternative to minimising the
wear of the working electrode, improving the precision of the machining and enhancing
surface quality. However, determining the proper input parameters in the EDM to obtain
the required results is complex due to the stochastic nature of the electrical discharges,
time-consuming experimentation, and cost.

The prediction models developed considered realistic input parameters such as elec-
trode material, cryogenic conditions, pulse current, and pulse duration. The 5-fold cross-
validation (5CV) shows that the average efficiency of Artificial Neural Networks (ANNs)
and Random Forest (RF) outperforms Linear Regression and Support Vector Regressor
in terms of EWR and MRR. ANN and RF improve the efficiency of the state-of-the-art
ML algorithms during the training and testing phases. Their coefficients of determination
R? are between 0.9808 and 0.9976 for 30 executions with 5CV, with a R? between 0.9936
and 0.9979 for training and testing with the best predictor of the 30 executions. However,
their mean squared errors are 0.84 and 0.68 for EWR, and 41.48 and 35.89 for MMR, which
outperform 5.79 and 122.75 described in [5], respectively. The obtained results demonstrate
that the proposed approaches achieve higher predictive accuracy than the most effective
ensemble-based strategies reported in the literature [5], indicating an improved ability of
the developed models to represent the EDM process output parameters. The consistently
stable performance observed across a substantial number of independent runs with dif-
ferent random seeds confirms the robustness and reproducibility of the proposed models.
This repeatable behaviour provides evidence of their statistical reliability. Consequently,
the developed models have the potential to significantly reduce the need for extensive
preliminary experimental trials, thereby shortening process setup times and contributing
to a reduction in overall manufacturing costs.
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However, further studies are necessary to evaluate the actual performance and effec-
tiveness of these models in different operational environments. Future work will focus
on incorporating advanced preprocessing techniques and feature engineering strategies
to improve the prediction of machining output parameters, extending the analysis to a
broader range of workpiece materials, tool electrodes, and developing a comprehensive
framework that integrates multiple machine learning approaches.
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Abbreviations

The following abbreviations are used in this manuscript:

5CV 5-fold Cross-Validation MRSE Mean Relative Signal-to-Noise
AdaBoost  Adaptative Boosting MSE Mean Squared Error
ANN Artificial Neural Networks Ov Overcut
AV Amplitude of Vibration PC Pulse Current
Bagging Bootstrap aggregating PD Pulse Duration
BS Bed Speed PkC Peak Current
CE Circulatory Error PwC Powder Concentration
CI Current Intensity R4, Rz, Ry Surface roughness parameters
CcprC Cryogenic Process Conditions ~ R? R squared
CT Cryogenic Treatment RF Random Forest
DC Duty Cycle Ridge Ridge Regression
DNN Deep Neural Network RMSE Root Mean Squared Error
DTs Decision Trees 5G Spark Gap

o . Shapley additive explanations
EDM Electric Discharge Machining =~ SHAP .

technique

EL Ensemble Learning SLM Super Learner Model
Elastic Net  Elastic Net Regression Son Spark on time
EM Electrode Material SR Surface Roughness
EWR Electrode Wear Rate SS Scanning Speed
F Feed rate SgV Spark gap Voltage
GB Gradient Boosting SV Servo Voltage
Gce Gap current SVR Support Vector Regression
GDP Gas Dielectric Pressure Toff Pulse-off
GP Gas Pressure Ton Pulse time
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GSv Gap Spark Voltage TWR Tool Wear Rate

Gv Gap voltage U Working electrode velocity

H Workpiece Hardness Ve Cutting speed

HL Hidden Layer VF Vibration Frequency

P Injection Pressure Vo Voltage

KNN K-Nearest Neighbours VRR Volume Removal Rate

Lasso Lasso Regression VT Voting

LR Linear Regression WEC Workpiece Electrical Conductivity
MAE Mean Absolute Error WEDM Wire EDM

MAT Mass After Testing WF Wire Feed

MBT Mass Before Testing WFR Wire Feed Rate

ME Machining Environment WM Workpiece Material

ML Machine Learning WT Wire Tension

MODA Multiobjective Dragonfly Xbagging  Extrem Bootstrap aggregating
MRR Material Removal Rate XGB Extreme Gradient Boosting
Appendix A

The LR models for correlating the process inputs to outputs with standardized
values are:

EWR = 0.03561338x1 + 0.09912826x, + 0.91865366x3 — 0.02909239x, (A1)
MRR = —0.06223156x1 + 0.02876813x7 + 0.983522073 + 0.06044838x4 (A2)

Table A1l. Best strategies for Random Forest.

Configuration
Parameters
Estimator Depth Split Bootstrap
EWR 200 6 2 True/False
MRR 200 5 4 True/False

Table A2. Best strategies for Support Vector Regression.

Configuration
Parameters
Iterations Epsilon Kernel Degree
EWR 200 0.02 rbf -
MRR 200 0.02 rbf -
Table A3. Best strategies for ANN.
Configuration
Parameters Epochs Neurons per Activation Learning
P Hidden Layers Function Rate
EWR 250 (60, 120, 120, 60) ReLU 0.05
MRR 150 (55, 110, 110, 55) ReLU 0.05

Table A4. Average performance of the best configuration for LR, RF, SVR, and ANN predictors after
30 executions with 5CV according to MSE and RMSE.

LR SVR RF ANN
MSE  RMSE R? MSE  RMSE R? MSE  RMSE R? MSE  RMSE R?

Train  0.1110 03331 0.8915 0.0211 0.1451 09805 0.0028 0.0532 0.9969 0.0027 0.0520 0.9975
Test 0.0799 0.2826 09149 0.0125 0.1119 0.9835 0.0056 0.0747 0.9954 0.0035 0.0595 0.9953

Output Phase

EWR
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Table A4. Cont.

Output Phase

LR SVR RF ANN
MSE RMSE R? MSE  RMSE R? MSE  RMSE R? MSE  RMSE R?

Train  0.0293 0.1712 09715 0.0128 0.1130 0.9879 0.0061 0.0782 0.9943 0.0047 0.0688 0.9955

MRR Test 0.0191 0.1383 0.9795 0.0087 0.0934 0.9896 0.0061 0.0780 0.9927 0.0066 0.0810 0.9922
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