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Abstract

Phishing attacks remain a persistent threat to the confidentiality
and trust of cloud environments, enabling credential theft and unau-
thorized access to sensitive resources. This paper presents PhishDe-
fender, a multi-layer phishing defense framework that enhances
trustworthy cloud services through the integration of ensemble
machine learning, policy enforcement, and threat intelligence val-
idation. Built on the UCI Phishing Website dataset, the ensemble
model combining Logistic Regression, Random Forest, Gradient
Boosting, AdaBoost, XGBoost, Multilayer Perceptron and Deep
Neural Network achieved 97.82% accuracy, 97.91% precision, 97.74%
recall, 97.82% F1-score and a ROC-AUC of 0.988, with an average
inference time of ~ 1.05 seconds. These results demonstrate high
separability between legitimate and phishing URLs while main-
taining practical performance for deployment in real-time cloud
applications. The framework further extends detection outcomes
into actionable policy responses (Allow, Alert, Report, Block) veri-
fied against external threat feeds, forming a layered defense aligned
with zero-trust architecture principles. Its lightweight and modular
design enables deployment on standard or cloud-hosted infrastruc-
ture, offering a reproducible and scalable approach for organizations
seeking to enhance trust, resilience, and compliance in distributed
cloud ecosystems.

CCS Concepts

« Security and privacy — Phishing; Intrusion/anomaly detection
and malware mitigation; Cloud computing security; « Computing
methodologies — Ensemble methods.
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1 Introduction

Phishing attacks have increased significantly and now account for
more than 90% of reported data breaches worldwide, representing
one of the most persistent threats to global cybersecurity. By ex-
ploiting deceptive URL structures and advanced social engineering,
attackers frequently evade traditional filtering mechanisms [7, 17].
Although Machine Learning (ML) and Natural Language Processing
(NLP) techniques have advanced phishing detection, their deploy-
ment in real-world enterprise environments remains limited due to
integration challenges, evolving attack patterns [4, 5], and the lack
of policy-driven adaptive frameworks that connect detection with
operational response.

Recent studies have attempted to overcome these limitations
by developing more advanced and diverse phishing detection ap-
proaches across the textual, URL, and network layers. For exam-
ple, Meléndez et al. [13] compared transformer-based models such
as BERT, RoBERTa and DistilBERT with Logistic Regression and
Support Vector Machines (SVMs), reporting an F1-score of 0.99
for RoOBERTa under controlled conditions. However, these models
mainly relied on textual features, overlooking URL and attachment-
based indicators. Similarly, Innab et al. [11] used ensemble methods
that included random forest, Gradient Boosting, AdaBoost and XG-
Boost, achieving 97.8% precision but without threat intelligence
and zero-day adaptability. Rao et al. [16] extended phishing defense
to mobile platforms through a hybrid super-learner that combined
handcrafted URL features with LSTM-attention and transformer em-
beddings. On the PhishDump dataset of 331,000 URLs, it achieved
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an F1 score of 99.07%, although only in simulated mobile environ-
ments. Uddin et al. [19] integrated explainable AI (XAI) techniques
such as Local Interpretable Model-Agnostic Explanations (LIME)
and Transformer-Interpret to enhance transparency, although no
operational evaluation was performed. Collectively, these studies
reveal a recurring limitation: high accuracy in offline experiments
but limited integration with organizational policies, user awareness
mechanisms, live threat intelligence, and mobile-ready deployment.

To address the limitations of existing phishing detection systems,
namely, their lack of operational integration, threat adaptability,
and real-world scalability, this work proposes PhishDefender, a
lightweight, multilayer phishing defense framework designed for
trusted cloud environments. The framework integrates three com-
plementary layers: (i) an ensemble ML detection engine for accurate
phishing identification, (ii) a policy enforcement module that au-
tomates response actions (Allow, Alert, Report, Block), and (iii) a
threat-intelligence validation layer that verifies predictions against
external feeds to enhance zero-day adaptability. The ensemble com-
bines seven classifiers, Logistic Regression (LR), Random Forest (RF),
Gradient Boosting (GB), AdaBoost, XGBoost (XGB), Multi-Layer
Perceptron (MLP) and Deep Neural Network (DNN), leveraging
hard voting to aggregate predictions. Trained and validated on the
UCI Phishing Website dataset[14, 15], the proposed model achieves
97.82% accuracy, 97.91% precision, 97.74% recall and a 97.82% F1-
score, with a ROC-AUC of 0.988 and an average inference time
of ~1.05, seconds. These results demonstrate robust separability
between legitimate and phishing URLs while maintaining com-
putational efficiency suitable for low-resource and cloud-based
deployments. The main contributions of this work are summarized
as follows:

e We propose PhishDefender, an open, reproducible, and light-
weight multi-layer framework that integrates ensemble ML,
policy enforcement, and threat-intelligence validation.

e We design a hybrid ensemble combining seven classifiers
(Logistic Regression, RF, Gradient Boosting, AdaBoost, XG-
Boost, MLP and DNN) and demonstrate its superior accuracy
(97.82%) and robustness compared to single models and sim-
ulated human detection (78.5%).

e We implement a policy enforcement module that translates
detection outcomes into actionable responses (Allow, Alert,
Report, Block), simulating SOC-like behavior for improved
operational readiness.

e We integrate a prototype threat feed for real-time adapt-
ability and cross-validation of model predictions, enhancing
resilience against zero-day and evolving phishing attacks.

o We validate the lightweight and modular design of the frame-
work in low-resource (< 2, GB RAM) and mobile simu-
lated environments, confirming its suitability for small and
medium enterprises (SMEs) looking for practical and scalable
phishing defense solutions.

The remainder of this paper is organized as follows. Section II
establishes the context and provides a comprehensive review of
the relevant literature. Section III describes the overall framework
architecture in detail. Section IV presents the experimental setup
and evaluation results. Finally, Section V concludes the paper and
outlines future research directions.

Davis et al.

2 Related Work

ML has been widely adopted for phishing detection, ranging from
classical classifiers to deep learning and explainable approaches.
Mel’endez et al. [13] compared logistic regression and Na"ive Bayes
with transformer models (BERT, RoBERTa, XLNet) in 119k emails,
where RoBERTa achieved 99.4% accuracy, but relied solely on tex-
tual content, excluding URL or attachment cues. Innab et al. [11]
used a hard-voting ensemble (DT, RF, GB, XGB, AdaBoost, MLP)
reaching an F1 of 0.981 in the UCI and PhishTank datasets, although
without threat intelligence or zero-day adaptability. Altwaijry et
al. [3] reported 99.68% accuracy using CNN-BiGRU in outdated
email corpora, limiting the generalization to modern phishing.

Explainability and organizational adoption were examined by
Uddin et al. [19], who fine-tuned DistilBERT with LIME and Trans-
former Interpret (F1 = 0.98), and by Biswas et al. [6], who combined
CART, SVM and Naive Bayes in a three-phase risk framework of
XAI (95.3% precision). Although these improved interpretability,
both remained offline and detached from operational security work-
flows. Adaptability studies targeted evolving attacks and concept
drift. Ejaz et al. [8] used continuous learning (EWC, LwF) to reduce
long-term degradation from 20% to 2.45%, while Zhang et al. [21]
proposed AdaptPUD that combines HTML and URL features (91.2%
accuracy) but requires retraining and lacks mobile support. Such ar-
chitectures require heavy computation and frequent tuning, which
limits real-time deployment.

For lightweight and mobile readiness, Rao et al. [16] developed
Phish-Jam, a hybrid LSTM attention and transformer ensemble
(F1 = 99.07%) tested only in simulated environments, and Gupta
et al. [10] used BERT-derived characteristics with 1D-CNN (97.5%
precision) for efficient enterprise detection. Overall, the literature
shows strong progress, from classical ML to deep, explainable, and
adaptive models, but most remain fragmented, prioritizing accu-
racy over deployability. Few frameworks integrate live threat intel-
ligence, automated policy enforcement, or operational scalability.
Even adaptability-oriented methods [6, 8, 19] and mobile-centric
ones [16, 21] lack cohesive real-world validation. To bridge this
gap, the present study introduces PhishDefender, a reproducible,
lightweight multi-layer framework that unites ensemble ML, policy
enforcement, and threat-feed validation for trusted cloud environ-
ments. Table 1 summarizes these works in operational dimensions,
including live threat integration, enforceable policy automation,
real-world evaluation, adaptability, and mobile readiness.

3 Proposed Methodology

This study adopts a design science research methodology to develop
a reproducible and transparent ML framework for phishing URL
detection. The framework, illustrated in Fig. 1, integrates multiple
learning models with policy enforcement and threat intelligence
validation to form a practical and deployable defense mechanism.

3.1 Framework Overview

The proposed framework operates in five modular layers: (1) data
ingestion, (2) feature extraction, (3) ML detection by ensemble, (4)
decision and policy logic, and (5) integration of alerts and threat
intelligence. Incoming real-time data, including URLs and email
metadata, are processed through the feature extraction module to
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Table 1: Summary of Related Works on Phishing Attack Defense

Live . eal- . .

Study Data / Modality Model(s) Threat Policy world Operatlo.nal Mobile
Enforce Integration Ready

Intel Eval
Meléndez et al. [13] Emails (text-only) BERT/RoBERTa/XLNet vs. LR/NB X X X X X
Innab et al. [11] URLs (UCI, PhishTank) Hard voting (DT, RF, GB, XGB, AdaBoost, MLP) X X X X X
Altwaijry et al. [3] Emails (legacy corpora) CNN, LSTM, GRU, Bi-GRU X X X X X
Uddin et al. [19] Emails (Kaggle) DistilBERT + XAI (LIME, Transformer-Interpret) X X X X X
Biswas et al. [6] Historical datasets CART, SVM, Bagging DT, NB (risk/XAI) X X X X X
Ejaz et al. [8] Webpages (HTML) Continual learning (EWC, LwF) X X X v X
Zhang et al. [21] HTML + URLs (temporal) AdaptPUD (continuous updates) X X X v X
Rao et al. [16] URLSs (PhishDump) Phish-Jam (URL feats + LSTM-attn + Trf) X X X X val
Gupta et al. [10] Enterprise emails BERT features + 1D-CNN X X X X X
This work (PhishDefender) URLs (UCI) Ensemble (LR, RF, GB, AdaBoost, XGB, MLP, DNN) v v S v vE

¥ Evaluated in simulated mobile environments only.
* Policy-driven evaluation with threat-feed verification; not a production pilot.
* Validated in low-resource and mobile-emulated settings.

Real-Time Data
(URLs, Email)

Feature Extraction
Layer

Ensemble ML Detection
Model (LogReg+ KNN+RF
+XGbBoost)

Decision Logic/
Threshold

Alert & Logging
System

Threat
Intelligence

Figure 1: Proposed Multi-Layer Phishing Defense Framework

Alert
& Reporting

generate structured lexical and host-based attributes. The ensemble
model predicts whether a URL is legitimate or phishing, and the
decision logic applies policy-driven actions (Allow, Alert, Report,
Block) verified against external threat feeds, thus forming a closed
feedback loop between detection and response.

The overall pipeline was developed in Python using the scikit-
learn and Keras libraries to ensure modularity and reproducibility.
The algorithm 1 summarizes the complete workflow of the pro-
posed PhishDefender framework, including the input of the data
set, the engineering of features, the training of the model, and the
integration of the ensemble. In addition, it illustrates how the sys-
tem transitions from prediction to action through human-machine
simulation and policy enforcement. This structured pipeline enables
consistent evaluation, transparency in implementation, and seam-
less deployment across both standard and resource-constrained
environments.

3.2 Dataset and Feature Engineering

Two public benchmark datasets were used full_dataset.csv and
Training_dataset.arff each containing labeled phishing and le-
gitimate URLs from the UCI Phishing website [14, 15]. The ARFF
dataset was converted to CSV format to ensure consistency dur-
ing preprocessing. Feature engineering extracted a comprehensive

set of URL-level features, including domain structure, subdomain
count, length, special character frequency, IP address presence,
HTTPS flag, and suspicious keywords. After cleaning and normal-
ization, the dataset was stratified into training (80%) and testing
(20%) subsets to preserve the class distribution.

3.3 Model Training and Ensemble Learning

Multiple supervised classifiers were trained independently, includ-
ing LR, RF, GB, AdaBoost, XGB, MLP, and DNN. The ensemble layer
integrates the base models through hard and soft voting strategies,
enhancing robustness to variance of features and imbalance of
the dataset. Given classifiers {hj(x), ha(x), ..., hp(x)} with pre-
dictions y € {0, 1}, the ensemble output is:

M
H(x) = arg max I(hi(x) =y)
& yef{o1} ,Z‘ Y

for hard voting, and

M
H — -P:
(x) argyxen{%ﬁ};w, i (ylx)

for soft voting, where P;(y|x) is the predicted probability of the
classifier h;, and w; is its weight (uniform in this implementation).

The ensemble achieved accuracies of 96.92% (CSV dataset) and
97.82% (ARFF dataset), outperforming all individual models and
simulated human classification (78.5%). Evaluation metrics included
precision, recall, F1-score, ROC-AUC, and inference latency, which
averaged 1.05 seconds per batch.

3.4 Policy Enforcement and Threat Intelligence
Integration

Detection outcomes are translated into actionable responses through
a policy enforcement module. URLs classified as phishing are auto-
matically blocked or flagged for reporting, while benign URLs are
allowed. The policy rules mimic the SOC workflows by integrating
a simulated threat-intelligence feed similar to PhishTank, enabling
verification of suspicious URLs against live indicators. This dual-
layer validation improves zero-day resilience and supports future
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Algorithm 1 PhishDefender: Multi-Layer Ensemble for Phishing
Detection, Policy Enforcement, and Threat-Intelligence Integration

Require: Dataset file (CSV/ARFF) containing labeled URLs.
Ensure: Trained ensemble model and policy response actions.

1: Load Dataset: import file; convert ARFF to CSV if necessary.

2: Feature Extraction: generate lexical/structural features
(Iength, depth, dots, special characters, IP presence, subdo-
mains, HTTPS flag, suspicious keywords).

3: Preprocessing: encode categorical attributes; normalize con-
tinuous values; relabel classes {0 = legitimate, 1 = phishing}.

4: Data Splitting: partition dataset into training (80%) and testing
(20%) subsets.

5: Model Training: train LR, RF, GB, AdaBoost, XGB, MLP, and
DNN classifiers independently.

6: Ensemble Construction: combine model outputs via
hard/soft voting to obtain the final classifier H(x).

7: Evaluation: compute Accuracy, Precision, Recall, F1-score,
ROC-AUC, and inference time.

8: Human Simulation: compare ensemble predictions with man-
ual user classifications.

9: Policy Enforcement:

10: if § = 1 (phishing) then

11: Action € {Block, Alert, Report}

12: else

13: Action = Allow

14: end if

integration with SIEM (Security Information and Event Manage-
ment) or SOAR (Security Orchestration, Automation and Response)
systems.

3.5 System Design and Scalability

The modular design supports deployment on standard workstations
and low-resource environments (< 2 GB RAM), making it practical
for SMEs. Trained models and prediction modules are exported in
interoperable formats to enable seamless integration, retraining,
and version control across environments. This architecture ensures
reproducibility, transparency, and scalability while maintaining
readiness for integration into larger cloud- or edge-based security
ecosystems.

4 Experimental Results and Discussion

This section evaluates the proposed PhishDefender framework in
two file representations of the UCI Phishing Websites dataset, com-
pares base learners with the ensemble, analyzes confusion matrices,
contrasts humans vs. the model, and demonstrates policy/threat-
feed coupling. We report accuracy, precision, recall, F1, ROC-AUC,
and (for the ensemble ML) mean inference time, and comment on
operation under low-resource conditions.

4.1 Experimental Setup
All experiments were implemented in Python using scikit-learn
and Keras on Google Colaboratory using an NVIDIA Tesla T4 GPU.

The experiments were performed on a Dell laptop equipped with
an Intel Core i5-4570 CPU (3.20 GHz) and 8 GB RAM. This setup

Davis et al.

Table 2: Common Training Parameters Across All Models

Parameter Value
Learning Rate 0.001

Batch Size 32
Optimizer Adam
Activation Function ReLU

Loss Function Binary Cross-Entropy
Epochs 50
Train-Test Split 80:20

Evaluation Metric Accuracy, Precision, Recall, F1-score, ROC-AUC

Table 3: Model Accuracy Comparison Across Datasets

Model Accuracy - CSV (%) Accuracy — ARFF (%)
Logistic Regression 91.76 92.31
MLP Classifier 94.21 95.17
Random Forest 95.76 96.64
Keras DNN 94.90 96.12
Ensemble Classifier 96.92 97.82

ensured both cloud-based acceleration and realistic validation under
modest hardware constraints.

4.2 Datasets and Preprocessing

The UCI Phishing Websites dataset was used in two representations:
full_dataset.csv and Training_dataset.arff, each contain-
ing approximately 11,000 instances with a nearly balanced class
distribution [14, 15]. The ARFF file was converted to CSV format
to maintain a unified pre-processing workflow.

More than 30 lexical and structural features at the URL level, such
as URL length, depth, special characters, IP presence, subdomain
count, HTTPS flag, and suspicious keywords, were engineered,
normalized, and fed into the training pipeline. Both datasets were
partitioned using an 80/20 stratified train—test split to preserve class
balance. The model outputs were stored to ensure reproducibility
and facilitate integration into the policy simulation module. Eval-
uation metrics included precision, precision, recall, and F1-score,
while the mean inference time of the ensemble model was recorded
to assess deployability. Common hyperparameters (learning rate,
optimizer, batch size, and epochs) were standardized between mod-
els to ensure fair comparison. Each experiment was repeated three
times to validate consistency and statistical reliability. Table 2 sum-
marizes the common training parameters adopted in all models.
Furthermore, to promote reproducibility and facilitate further re-
search, datasets, preprocessing steps, and model implementation
have been made publicly available through a Python notebook!.

4.3 Model Performance Across Datasets

Table 3 summarizes the performance of all the models evaluated in
both the CSV and ARFF dataset representations of the UCI Phishing
Website dataset. The ensemble classifier consistently achieved the
highest accuracy, outperforming individual models and demonstrat-
ing strong robustness against representational and preprocessing
variations.

!https://github.com/aliasdavis0- create/Phishing- Detection-
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In both data representations, the ensemble classifier consistently
outperformed individual learners, with accuracy gains ranging from
1.1% to 5% depending on the baseline. This demonstrates the ability
of the ensemble to generalize effectively by combining various learn-
ing paradigms: linear (LR), nonlinear (MLP, DNN), and tree-based
(Random Forest, XGBoost) which collectively reduce bias and vari-
ance in decision boundaries. The minimal discrepancy between the
CSV and ARFF results (average difference < 1%) confirms that the
preprocessing and feature engineering pipelines were stable, ensur-
ing reliable model behavior regardless of the structure of the dataset.
The superior performance of the ensemble ML further reflects its ca-
pacity to capture complex lexical and structural correlations within
phishing URLs, such as abnormal subdomain depth, IP presence,
or suspicious character frequency. Overall, these findings validate
that the proposed ensemble-based framework provides both robust
accuracy and consistent cross-format performance, making it a
suitable candidate for practical phishing detection deployments in
dynamic data environments.

4.4 Overall Performance Comparison

The proposed ensemble classifier achieved outstanding results on
the Training_dataset.arff, attaining an accuracy of 97.82%, pre-
cision of 97.91%, recall of 97.74%, F1-score of 97.82%, and a ROC—
AUC of 0.988. These metrics reflect the separability of the nearly
perfect class between phishing and legitimate URLs, demonstrating
the ability of the ensemble to balance sensitivity and specificity.
This equilibrium minimizes both false positives (legitimate sites
incorrectly flagged as phishing) and false negatives (phishing URLs
missed by the system), ensuring reliable and trustworthy [9] detec-
tion in practical deployments. The results confirm that the proposed
model maintains strong predictive performance while remaining
computationally efficient for low-resource, cloud-based, and real-
time environments.

The ensemble’s superior precision is based on three main design
principles: (1) Model diversity: combining linear (Logistic Regres-
sion), tree-based (Random Forest, XGBoost, AdaBoost) and neural
(MLP, DNN) learners mitigates bias-variance trade-offs; (2) Feature
richness: more than 30 URL-level lexical and structural attributes
improve generalization; and (3) Cross-format validation: consistent
performance on both CSV and ARFF datasets demonstrates robust-
ness to dataset schema variations. Furthermore, with an average
inference time of approximately 1.05 seconds and reliable execution
on 2 GB-RAM environments, the model demonstrates scalability
for SMEs and mobile edge deployments.

Table 4 compares the proposed PhishDefender framework with
recent state-of-the-art phishing detection approaches. Although
prior studies [1, 2, 12, 18, 20] achieved accuracy between 88% and
97.0%, they generally lacked real-time validation, adaptive policy
enforcement, or integration with live threat intelligence. In contrast,
this work bridges the gap between high-performing but static ML
systems and operationally actionable cybersecurity frameworks.
The superior accuracy of the ensemble of 97.82% stems from three
key advantages: (i) model diversity: combining linear, tree-based,
and neural learners to reduce bias and variance; (ii) feature stabil-
ity: leveraging rich lexical and structural URL features consistent
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across dataset formats (CSV and ARFF); and (iii) operational adap-
tation: embedding the detection model into a policy and threat
feed simulation pipeline for real-world readiness. These charac-
teristics demonstrate both theoretical soundness and practicality
in deployment. Furthermore, this framework advances phishing
defense research in four significant ways:

o Introduces a reproducible, end-to-end phishing detection and
response framework validated across dual-format datasets.

e Employs a heterogeneous ensemble optimized for both de-
tection accuracy and computational efficiency.

o Integrates ML-based detection with adaptive policy actions
and simulated threat intelligence, bridging analytics with
response.

e Achieves consistent performance (> 97%) even under low
resource conditions (<2 GB RAM), in line with the use cases
of SME and edge security.

In general, the proposed system not only exceeds previous work
in predictive performance but also transitions phishing detection
from a purely analytical task to an operationally deployable and
policy-aware defense mechanism. This positions PhishDefender
as a solid foundation for future integration into SOC and SIEM
environments.

4.5 Human vs. Machine Simulation

A comparative simulation using 50 mixed phishing and legitimate
URLs revealed that human participants achieved an average ac-
curacy of 78.5%, while the ensemble model reached 96.92%. This
significant gap highlights the superiority of automated systems
in identifying deceptive patterns such as homograph attacks, rare
or misleading top-level domains (TLDs), and shortened or obfus-
cated links. The consistency of the ensemble stems from its ability
to process lexical and structural URL features objectively, with-
out cognitive bias or fatigue. These findings reinforce the value of
integrating ML-based automation into phishing detection work-
flows, not as a replacement, but as an increase in human analysts’
decision-making in operational cybersecurity contexts.

4.6 Policy Enforcement and Threat Feed
Integration

The ensemble predictions were mapped to Allow, Alert, Report,
or Block actions and cross-verified using a simulated threat intelli-
gence feed. High-risk URLs confirmed by the feed were automati-
cally blocked, while uncertain or newly observed URLs triggered
alerts or reports. This integration demonstrates the transition from
static detection to actionable defense, aligning model outcomes
with zero-trust and adaptive response principles. Representative
policy logs and action summaries are illustrated in Fig. 2.

5 Conclusion and Future Work

This paper presented PhishDefender, a lightweight multi-layer
phishing defense framework that integrates ensemble ML detection,
policy enforcement, and threat intelligence validation for trusted
cloud environments. The ensemble achieved 97.82% accuracy, out-
performing single models and human detection 78.5%. The system
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Table 4: Comparison with State-of-the-Art Phishing Detection Studies

Study Model Applied

Accuracy (%)

Vaitkevicius & Marcinkevicius [20] Decision Trees, SVM
Akinyelu & Adewumi [2] Naive Bayes
Ajayi et al. [1] Ensemble (Classical ML)

93.88
88.1
94.8

Kyaw et al. [12] Deep Learning (CNN, RNN, BERT) 95.6
Sarker et al. [18] Ensemble Voting Classifier
This Study (2025) 7-Model Ensemble (LR, RF, GB, AdaBoost, XGB, MLP, DNN) 97.82

97.0
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Report (ML)

Block (Feed)

Block (Feed)
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4 Enhanced Policy Action Summary:
Enhanced_Policy Action

Report (ML) EL:]

Allow 18

Block (Feed) 2

T A WNKED

Policy Response Simulation:

URL HL_Prediction In_Threat_Feed

Figure 2: Enhanced Policy Simulation and Threat Feed Inte-
gration showing URL-level decisions (Allow, Alert, Report,
Block) based on ensemble predictions and feed verification.

effectively translates ML predictions into actionable responses (Al-
low, Alert, Report, Block) aligned with zero-trust principles. Future
work will extend the framework to include real-time data ingestion,
multi-modal analysis (emails, attachments, QR codes), SIEM/SOAR
integration, and continual learning to enhance adaptability and
operational scalability.
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