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Abstract 

Tropical cyclones pose significant threats to coastal regions, and have a major 

negative influence on the environment and society. Precise cyclone identification 

and intensity estimation are crucial for effective early warning systems and disaster 

prevention. Traditional methods rely on manual interpretation and empirical models, 

often lacking efficiency and accuracy. This study proposes a deep learning frame-

work that utilizes satellite image sequences for cyclone detection, classification, and 

intensity estimation. Unlike conventional models relying solely on spatial or manual 

features, the proposed hybrid architecture integrates Convolutional Neural Networks 

(CNNs) and ConvLSTM to learn spatiotemporal patterns jointly. Key innovations 

include the clustering-based cyclone region isolation method, sequence-level data 

augmentation, and the use of SMOTE to mitigate class imbalance. The proposed 

approach demonstrates substantial improvement in accuracy over baseline models, 

achieving 99.16% accuracy for binary classification using VGG16. An accuracy of 

81.1 ± 4.33% across cyclone intensity levels, and an RMSE of 7.79 ± 1.27 knots in 

wind speed prediction using the ConvLSTM-based model. All models are evaluated 

using 5-fold cross-validation on CIMSS Tropical Data Archive and IMD Best-Track 

datasets. Overall, these results show an exciting potential for future use of deep 

learning for real time forecasting and early warning systems. Future work will also 

look to improve or increase model generalization, either through using ensemble 

learning, or potentially more complex architectures and larger datasets.

Introduction

Among the most damaging weather events, tropical cyclones frequently cause disas-
ter in inland and coastal regions by producing strong winds, torrential rainfall, storm 
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surges, and widespread flooding. Since climate change has increased the frequency 
and strength of tropical cyclones in recent years [1,2], early warning systems, disas-
ter planning, and mitigation activities depend heavily on the precise detection and 
estimation of cyclone intensity. Forecasting the intensity of cyclones is inherently 
complex and difficult because it demands a deep understanding of the dynamic 
interactions between oceanic and atmospheric systems. All these include sea surface 
temperature, humidity, vertical wind shear, and atmospheric pressure gradients in 
developing, moving, and intensifying a cyclone.

The most conventional and used traditional intensity estimation method is the 
Dvorak technique, used since the 1970s as a guideline in TCs assessment [3]. The 
Dvorak method is based on a satellite image interpretation done by means of visible 
and infrared determination. Meteorologists estimate intensity based on certain cloud 
patterns, storm eye formations, and temperature gradients. Despite its proven record 
for decades, the Dvorak technique relies on human skill and judgment in interpre-
tation, allowing significant room for differences in severity classification, especially 
for weakly structured or rapidly intensifying cyclones [4]. It is generally less effective 
for cloud-filled or irregularly shaped cyclones, where the structural characteristics 
necessary for classification are not easily discernible. Besides the Dvorak, since 
then Numerical Weather Prediction [5] has also been extensively used in the cyclone 
intensity estimation. These models use complex mathematical equations and atmo-
spheric physics to simulate the behaviour of cyclones according to a series of mete-
orological parameters, including wind speed, pressure variation, levels of humidity, 
and ocean temperatures. These models are very computationally intensive and thus 
require a capacity for high-performance computing and an extensive dataset of real-
time meteorological data [5].

The traditional numerical models often fail to exploit the spatial and temporal pat-
terns in the satellite imagery to the fullest extent possible, thereby limiting their predict-
ability. Deep learning and data-driven approaches have transformed many aspects of 
meteorology, such as cyclone detection and intensity estimation [6]. CNNs are partic-
ularly well-suited for analysing high-resolution satellite images of tropical storms since 
they have demonstrated remarkable success in automated image analysis [7]. Fig 1 
shows an example of a satellite image from the CIMSS tropical cyclone data archive, 
highlighting complex cloud structures associated with a tropical cyclone. Such features 
serve as critical inputs for training spatial models like CNNs. Unlike traditional meth-
ods that rely on handcrafted features and manual interpretation, CNNs automatically 
extract hierarchical spatial features from cyclone images, allowing them to differenti-
ate cyclone structures from non-cyclone atmospheric formations with minimal human 
intervention [8]. This automation reduces subjectivity, increases consistency, and 
enhances efficiency. Therefore, CNN-based models are highly valuable for operational 
cyclone forecasting. However, several challenges persist in deep learning- 
based approaches. One of the major issues is that generalizability models trained 
on cyclone data from one region (e.g., the North Indian Ocean) may not perform well 
on cyclones from other basins (e.g., Atlantic or Pacific) due to regional differences in 
cyclone morphology and environmental conditions [9].
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Additionally, interpretability remains a challenge, prompting the development of explainable AI (XAI) techniques 
to make these models more transparent and trustworthy to meteorologists [10]. While this study does not directly 
incorporate XAI techniques, its development underscores the importance of model interpretability in operational 
forecasting. Several recent studies have attempted to incorporate deep learning for TC intensity estimation. Many 
existing models either ignore temporal dependencies or treat sequential image frames independently, limiting 
their ability to capture evolving storm dynamics. Furthermore, existing approaches often neglect challenges such 
as image resolution variability, missing frames, and dataset imbalance, which are prevalent in real-world cyclone 
data.

This study aims to estimate and classify the intensity of tropical cyclones using deep learning models, with a focus 
on the north indian ocean region, a cyclone-prone area with densely populated coastlines, where timely forecasts are 
crucial for minimizing human and economic losses. The primary objectives include: Binary classification of cyclone and 
non-cyclone satellite images. Multi-class classification of cyclones into predefined intensity levels and intensity estimation 
to predict wind speeds. To achieve these objectives, the research work proposes a novel deep learning architecture that 
combines convolutional layers for spatial feature extraction with ConvLSTM layers for modelling temporal evolution. The 
proposed methodology addresses several challenges, including class imbalance, noisy backgrounds, and data scarcity in 
sequential satellite imagery.

The unique contributions and novelty of this research work are:

Fig 1.  Original satellite image of a tropical cyclone sourced from the cooperative institute for meteorological satellite studies (CIMSS).

https://doi.org/10.1371/journal.pone.0330705.g001
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1.	Spatiotemporal Feature Learning: Jointly capture spatial and temporal patterns, improving intensity estimation over 
models using either alone.

2.	Cyclone Region Isolation: A clustering-based method isolates the cyclone area by reducing background noise to 
enhance feature relevance.

3.	Sequence-Level Augmentation: Temporally-consistent data augmentation to better preserve sequence integrity during 
training.

4.	Class Imbalance Handling: The impact of imbalanced cyclone grade classes is addressed using the SMOTE technique, 
improving classification robustness.

5.	Hybrid Architecture: The model architecture combines CNNs for spatial analysis and ConvLSTM for temporal dynam-
ics, offering better representational efficiency than standalone models.

The findings of this study have significant implications for early warning systems, disaster response strategies, and 
operational meteorology, contributing to the development of more accurate and automated cyclone classification models. 
The rest of this paper is structured as follows: The related works section reviews related works and existing approaches. 
The methodology section presents the dataset and methodology used in this work. The result and discussion section 
includes details experimental results and discussions. The future scope and challenges sections contain the limitations, 
along with directions for future research. Finally, the conclusions section concludes the study by summarizing the main 
findings, contributions, limitations, and potential future directions.

Related works

There are many traditional approaches to forecasting tropical cyclones (to include the Dvorak method [3] and numerical 
weather prediction (NWP) [5] models) which have been very successful in many respects for operational meteorology, but 
they also come with several limitations associated with their core assumptions. One major issue is that many of these meth-
ods, like the Dvorak method, are predicated upon subjective interpretation/analysis, and this can and does introduce intra- 
and inter-analyst biases [11,12]. Moreover, these methods have challenges that make it difficult to understand qualitatively 
what ‘real’ tropical cyclone behavior is where the highly complex, nonlinear, and time-dependent nature of tropical cyclones 
is concerned. For instance, with the proof-of-concept work using mixed methods, forecasting of rapid intensification and 
structural evolution requires analysis of short time scales not adequately addressed by Dvorak or NWP methods, an analyti-
cal gap which is substantive by previous research [13]. Since these methods have limited generalization that spans multiple 
basins because of some limitations in data collection and meteorological dynamics, they simply don’t work as well outside of 
their training areas [14]. Additionally, traditional methods fail to provide the spatial-temporal resolution that a reliable real-time 
intensity estimate would require [15,16]. These limitations make a transition to machine learning (ML) and deep learning (DL) 
approaches for addressing intensity forecast issues especially relevant in tropical cyclone analysis, as these techniques are 
designed to handle high-dimensional datasets, temporal dependence, and various environmental conditions of storms.

Recent advancements in deep learning techniques, in particular CNNs and recurrent neural networks (RNNs), have 
facilitated the estimation of tropical cyclone (TC) intensity: C. Zhang et al. (2021) [12] proposed a TC intensity estimation 
model called TCICENet which seamlessly combines classification (of TC’s) and CNN-based regression on infrared (IR) 
satellite images; the results achieved RMSE 8.60 kt and MAE 6.67 kt, which outperformed traditional studies and previous 
DL models. Sattar et al. (2025) [17] made a GRU (Gated Recurrent Unit) model that used high-resolution meteorological 
data that spans 37 isobaric (pressure) levels, achieved MAE 4.16, 34.35% better than the mean absolute error of the Saf-
Net. These models illustrate the advantages brought by spatial and temporal aspects of the data, which help to provide 
a better tropical cyclone intensity classification estimation. To fill in gaps of either purely data-driven or physics-based 
models, hybrid models have been explored.
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Varalakshmi et al. (2023) [18] combined CNN models (AlexNet, VGG16) with regressors (e.g., SVR – Support Vector 
Regressor, and Linear Regression) and achieved RMSE values of 4.88 kt. Z. Ma et al. (2024) [19] presented a dual- 
attention model based on an Xception backbone, which fused multi-scale IR and water vapor images with a Laplacian 
pyramid fusion and attention modules and achieved 11.4% improvement in RMSE and 8% improvement in MAE. These 
multi-branch, multimodal models provide a balance of accuracy and complexity, which shows potential for operational 
forecasting. Transformer-based models and attention mechanisms were explored and improved TC intensity estimation 
due to their ability to capture long-range dependencies and complex spatial-temporal patterns. Zhao et al. (2025) [15] 
introduced TFA-Net, a dual-branch transformer net with gated feature fusion on sequential satellite images, resulting in an 
RMSE of 7.21 kt, and R² of 0.93. Tian et al. (2024) [20] developed ViT-TC, a vision transformer with multitask  
learning, outperforming CNN baselines with MAE 6.49 kt. Zhang et al. (2025) [21] proposed STIA, integrating spatial- 
to-temporal and temporal-to-spatial attention modules on Himawari-8 image sequences, achieving RMSE 3.61 m/s and 
MAE 2.83 m/s, surpassing state-of-the-art models by over 10% in RMSE reduction. These works demonstrate transform-
ers’ potential for precise and responsive TC intensity prediction.

Multi-task learning (MTL) and cross-basin generalization remain critical challenges. Ding et al. (2024) [22] proposed 
CBIL-TCIE, a cross-basin incremental learning model predicting maximum sustained wind (MSW) and minimum sea-level 
pressure (MSLP), mitigating catastrophic forgetting and improving performance by 19.2% over fine-tuning. Zhao et al. 
(2024) [23] developed MT-GN, integrating shared CNNs with graph-based task embedding to learn task relationships and 
spatial correlations, achieving 90.37% classification accuracy and RMSE 9.50 kt. These highlight MTL and graph learning 
as key to robust, transferable TC forecasting. Multi-source data fusion also advances TC estimation accuracy. Xu et al. 
(2024) [24] proposed FHDTIE, combining satellite imagery and reanalysis data via clustering, U-Net, and graph convolu-
tional networks, achieving lowest RMSE and MAE across 10 datasets. W. Tian et al. (2024) [25] introduced TC-Rolling, 
fusing multi-source satellite imagery with deviation-angle variance (DAV) via 3D CNN and Convolutional Block Attention 
Module, reporting RMSE 4.48–13.94 kt and outperforming baselines. W. Tian et al. (2024) [25] introduced TC-Rolling, 
fusing multi-source satellite imagery with deviation-angle variance (DAV) via 3D CNN and Convolutional Block Attention 
Module, reporting RMSE 4.48–13.94 kt and outperforming baselines.

Generative models and augmentation are used to address data scarcity. Pang et al. (2021) [26] incorporated DCGAN 
and YOLOv3 to synthetically augment data. The study achieved 97.78% classification accuracy and 81.39% average pre-
cision. Ibrar et al. (2025) [13] applied an LSTM autoencoder and Gaussian filters to detect disturbances in estuarine envi-
ronments. The tests produced MSE 0.0359, illustrating the ability of unsupervised methods like autoencoders for anomaly 
detection. Regional models enhance local applicability. Mawatwal and Das (2024) [14] incorporated CNN and YOLO 
and trained a hybrid architecture based on images from North Indian Ocean satellite data. The resulting model achieved 
98.4% accuracy for cyclone detection and 63.83% accuracy for intense classifying of five categories with RMSE 16.2 kt. 
Pal et al. (2024) [27] proposed Small Skip Net (SSN) to use as a lightweight model where skip connections and residual 
blocks mitigated vanishing gradients and reduced data load. In testing, SSN achieved 92.35% classification accuracy on 
80 bytes of small imagery data from INSAT-3D satellite images, outperforming deeper networks, also offered for real-
time operations. Previous ML model types also exhibited effectiveness while being more interpretable than deep learning 
due to features available to the study models. For example, Kar and Banerjee (2021) [28] demonstrated Random Forest 
classifiers were trained from a combination of geometric IR satellite features achieved 86.66% accuracy; model correctly 
classified more than Dvorak. Kar et al. (2019) [11], incorporated multilayer perceptrons and used statistics extracted from 
spatiotemporal aspects of the satellite to classify intensities with 84% accuracy.

The incorporation of physical models with ML builds upon previous approaches to improve performance. Niu et al. 
(2025) [29] created a hybrid model by linking the ML-based Pangu with the physics-based WRF model through spectral 
nudging along with a data assimilation approach that used observed FY-4B satellite data, leading to an overall improve-
ment of 20.3% for typhoon track forecasts, and a reduction of 12.5% typographical intensity error. Cheng et al. (2025) [16] 
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implemented a convolutional neural network (CNN) model with layers that were rotation-invariant and multi-frame satellite 
motion, achieving improvements of RMSE and Mean Absolute Error > 22%. Forecasting of rapid intensification (RI) was 
still problematic. Sharma et al. (2025) [30] used SMOTE to develop an interpretable support vector machine (SVM) model 
on aspects of the SHIPS dataset achieving a Probabilities of Detection of 0.88 and Heidke Skill Score of 0.492 for the 
Indian Ocean, equaling the SHIPS-RII-C model, which illustrated the interest in ML and the potential for RIs to be detected 
with ML. Regardless we propose several limitations to the body of research. Many studies fail to compare their models 
using standardized datasets for the community to compare the performance. Furthermore, while older methods are often 
criticized, the majority of works do not appropriately create a barrier of entry to compare old vs new deep learning models. 
The supply of models that embody lightweight and operationally feasible outcomes that are between low-to-high fidelity 
– like the event-based super-resolved model (SSN) proposed by Pal et al. (2024) [27] – is sparse. Further, there is little 
discussion regarding whether interpretability will always be feasible or not, (e.g., most transformer and hybrid CNN-ML 
frameworks lack interpretability).

In conclusion, the literature from 2019 to 2025 reflects a clear shift from manual and shallow-learning methods to 
complex, data-driven deep learning approaches. These include multi-task learning, attention mechanisms, transformer 
architectures, and physically informed modeling strategies. The summary of this methodology is given in Table 1 catego-
rized by approach. Each method is evaluated based on its technique, key advantages, and limitations, providing insight 
into trends and research gaps in cyclone forecasting. While these methods have led to substantial gains in performance, 
challenges related to benchmarking, explainability, computational efficiency, and generalization across basins remain 
open avenues for future research. Bridging these gaps is essential for transitioning from high-accuracy research models 
to reliable, real-time operational forecasting systems.

Methodology

The methodology begins by inputting and preprocessing satellite images to enhance quality and prepare data for analysis. 
A binary classification model is then used to detect the presence of a cyclone. If no cyclone is detected, the process ends; 

Table 1.  Summary of methodologies in cyclone intensity estimation (2019–2025).

Methodology Type Representative Studies Technique used Advantage Limitation

Traditional Methods Dvorak Technique, NWP 
[3,5]

Manual interpretation, rule-based 
analysis

Operationally established, 
interpretable

Subjective, low  
spatial-temporal res-
olution, basin-specific 
limitations

CNN & RNN-based 
Deep Learning

TCICENet [12], GRU-
based model [17]

CNNs, residual blocks, 3D CNNs, 
GRU-based sequence modeling

Learns spatiotemporal patterns; 
outperforms traditional models

High computa-
tional cost; limited 
explainability

Hybrid CNN + ML 
Models

Varalakshmi et al. (2023) 
[18], Z. Ma et al. (2024) 
[19]

CNN + SVR/LR, attention fusion, 
multi-branch networks

Enhances accuracy via multi-
modal fusion and classic ML 
interpretability

Limited generalization; 
fusion complexity

Transformer & Attention- 
based Models

TFA-Net [15], ViT-TC [20], 
STIA [21]

Vision Transformer, attention fusion, 
spatial-temporal interactions

Captures long-range dependen-
cies, saliency-aware learning

Resource-intensive; 
interpretability and 
real-time viability 
concerns

Multi-Task Learning 
(MTL)

CBIL-TCIE [22], MT-GN 
[23]

Shared CNNs, cross-basin incre-
mental learning, graph-based task 
modeling

Simultaneous MSW & MSLP 
prediction; avoids forgetting when 
adapting

Requires more data 
and training complexity

Multi-source Fusion 
Models

FHDTIE [24], TC-Rolling 
[25]

Satellite + reanalysis fusion, U-Net, 
CBAM, GCN

Integrates spatial/temporal/envi-
ronmental features

Fusion design can 
be ad hoc; difficult to 
optimize weights

https://doi.org/10.1371/journal.pone.0330705.t001

https://doi.org/10.1371/journal.pone.0330705.t001
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otherwise, detected cyclone images undergo clustering and filtering to refine the data. For detected cyclones, the system 
performs two parallel tasks: intensity estimation using a regression model and intensity classification using a multiclass 
classifier, where SMOTE is applied to handle class imbalance. The process outputs both estimation and classification 
results for further meteorological analysis. Fig 2 illustrates this systematic approach for cyclone intensity estimation and 
classification using satellite imagery.

Data collection and source

The satellite (long wave Infrared) images are collected from the University of Wisconsin – (CIMSS, https://tropic.ssec.
wisc.edu/) [31]. Satellite images of 15 tropical cyclones of the North Indian Ocean focusing on the last 10 years of data 
(2013–2022) are selected for the study. The dataset provides a spatial resolution of 10 km, with a temporal resolution of 3 
or 6 hours for continuous monitoring of tropical cyclone development and progression. The IMD Cyclone Best Track Data 
provided by the India Meteorological Department (IMD) through the (https://mausam.imd.gov.in/) [32], maintained by the 
Regional Specialized Meteorological Centre (RSMC) in Delhi is used for labelling the intensity. The best track data con-
tains information on tropical cyclone parameters, including latitude, longitude, central pressure, and maximum sustained 
wind speed, recorded at regular intervals. The cyclone intensity measurements are provided with a resolution of 5 knots to 
ensure accurate classification and analysis of different storm categories.

Data preprocessing

The satellite images undergo preprocessing to enhance feature extraction and classification accuracy. The steps include:

Fig 2.  Workflow diagram illustrating the complete cyclone intensity estimation and classification framework proposed in this study.

https://doi.org/10.1371/journal.pone.0330705.g002

https://tropic.ssec.wisc.edu/
https://tropic.ssec.wisc.edu/
https://mausam.imd.gov.in/
https://doi.org/10.1371/journal.pone.0330705.g002
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1.	Cropping & Resizing: Each image is cropped to focus on the cyclone region and resized to 310 × 310 pixels.

2.	Gray Scaling: Converts images to a single-channel format, reducing computational complexity.

3.	Gaussian Blur: Applied to smooth pixel variations and remove noise.

4.	Erosion: Enhances cyclone boundary visibility by reducing small cloud artifacts.

These preprocessing steps aim to reduce background noise and enhance model robustness. Fig 3 illustrates the 
workflow: (a) the cyclone region is initially cropped to focus on the indian ocean only, (b) the satellite images were manu-
ally cropped and resized to 310 × 310 pixels while preserving a 1:1 aspect ratio. This specific resolution helps exclude the 
cyclone eye from the centre, enhancing model robustness by incorporating more varied, non-cyclonic regions. It strikes a 
practical balance between spatial detail and computational efficiency, as larger sizes increase memory usage and train-
ing time without meaningful performance improvement. Therefore, 310 × 310 was selected as an effective input size for 
capturing spatiotemporal cyclone patterns. (c) Morphological erosion is applied to remove grid lines, artificial borders, 
and other high-contrast artifacts commonly present in satellite images. These elements do not carry meaningful meteo-
rological information and can mislead the model during training. d) Gaussian blur is used to smooth the image, reducing 
high-frequency noise and helping the model focus on broader spatial patterns rather than isolated pixel-level variations. 
Together, these steps enhance the quality of input data and support more stable and generalizable learning. The dataset 
contains a total of 1,200 images, which are split into training and testing sets using an 80−20 ratio. The split is stratified 
based on cyclone intensity levels to ensure that each class is proportionally represented in both subsets. To enhance the 
training dataset, data augmentation techniques such as rotation, horizontal flipping, and zooming are applied, following 
the approach described in [33].

Binary classification of cyclones

The binary classification (cyclone vs. non-cyclone), utilizes transfer learning with VGG16, ResNet50, and InceptionV3 
[34–36]. These models are chosen because:

•	 VGG16: Captures fine-grained spatial details.

•	 ResNet50: Mitigates vanishing gradient issues through residual connections.

•	 InceptionV3: Utilizes multi-scale feature extraction for better pattern recognition.

Algorithm 1 describes the training procedure of the transfer learning-based cyclone classification model, making use of 
pretrained CNNs like VGG16, ResNet50, or InceptionV3. The model takes advantage of extracting spatial features from 

Fig 3.  (a) Original satellite image of a cyclone, (b) resized version (310 × 310 pixels), (c) eroded image highlighting key features, and (d) 
Gaussian-blurred image used for noise reduction.

https://doi.org/10.1371/journal.pone.0330705.g003

https://doi.org/10.1371/journal.pone.0330705.g003
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the pretrained models, while only tuning the last few for the cyclone task. The models retain their convolutional layers 
while replacing the output layer with a fully connected layer (256 neurons), dropout layer, and sigmoid output. Training is 
performed using Adam optimizer (LR = 0.0001) for 40 epochs with batch size 32. Performance is evaluated using accu-
racy, precision, recall, F1 score, and a confusion matrix [37]. Fig 4 shows the feature maps extracted from the first con-
volutional layer (Conv1) of the VGG16 model. (a) shows a non-cyclone image, while (b) depicts a cyclone image. These 
maps reveal how the model captures low-level spatial features like edges and cloud formations, essential for cyclone 
detection. Different filters highlight distinct patterns, such as outer cloud bands or the cyclone’s eye [34]. The varying acti-
vation intensities indicate that VGG16’s initial layers focus on edge detection and texture representation, forming the basis 
for deeper layers to learn cyclone-specific features.

Algorithm 1. Training of transfer learning-based cyclone classification.

Initialize pretrained CNN M  (VGG16, ResNet50, InceptionV3) with frozen convolutional base, retaining 
spatial feature extraction.

1 Load & preprocess dataset D = { (Xi,Yi) }
N
i=1, where X  represents cyclone/

non-cyclone images, and Y  represents labels. Resize X  to 224 × 224, normalize 
X ← X/255.0, augment using random rotation, flipping, zooming, and split into 
Dtrain,Dval

2 Extract hierarchical features via FM(X), flatten convolutional outputs from layer L,  
and pass through dense layers with ReLU activation, dropout p = 0.5, and batch 
normalization

3 Attach classifier C(x) with fully connected layers, ReLU activations, and final sig-
moid activation for binary classification.

4 Define loss function L = – 1
N

∑N
i=1 yilogŷi + (1 – yi) log (1 – ŷi), optimize using Adam 

(α = 10–4,β1 = 0.9, β2 = 0.999).

5 Train model for T  epochs using mini-batch SGD (batch size m = 32), fine-tuning 
last k  convolutional layers, employing early stopping and checkpointing the best 
weights based on validation loss.

Fig 4.  Feature maps from the first convolutional layer (Conv1) showing activations for (a) a non-cyclone image and (b) a cyclone image, illus-
trating early layer feature extraction differences.

https://doi.org/10.1371/journal.pone.0330705.g004

https://doi.org/10.1371/journal.pone.0330705.g004
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Cyclone segmentation techniques

To isolate cyclone regions from satellite images, various clustering techniques are applied:

•	 K-Means Clustering

•	 DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [38]

•	 Agglomerative Clustering

•	 Gaussian Mixture Models (GMM)

•	 Mean Shift

A comparative analysis is conducted to determine the most effective segmentation technique, using the silhouette score 
to measure performance based on cohesion and separation. Texture-based feature extraction methods further enhance 
segmentation accuracy and reduce background noise. Gabor filtering detects swirling cyclone structures by convolving 
the grayscale image with orientation-specific kernels [39], while Local Binary Pattern (LBP) captures fine-grained texture 
variations to distinguish the cyclone from surrounding cloud formations. The Canny edge detector enhances intensity gra-
dients, refining the cyclone’s boundary [40].

To achieve precise segmentation, the extracted feature maps are combined with the K-Means mask using pixel-wise 
logical operations. Morphological filtering is used to remove small cloud artifacts and noise. Techniques such as open-
ing (erosion followed by dilation) eliminate minor unwanted regions while closing (dilation followed by erosion) ensures 
cyclone structures remain intact, minimizing false positives and improving segmentation reliability. Fig 5 illustrates this 
process: (a) the original satellite image, (b)K-Means segmentation output, (c) the feature-based mask integrating tex-
ture and edge features. The feature mask, refined using Gabor filtering, LBP, and Canny edge detection, ensures better 
segmentation and is used for training classification models. After segmentation, contour detection identifies the cyclone’s 
ROI, with the largest contour representing the cyclone. Furthermore, classification models trained on labelled cyclone data 
categorize the cyclone as a tropical depression, storm, or severe cyclone [41].

Fig 5.  (a) Pre-processed satellite image, (b) K-Means clustered segmentation output, and (c) feature-based mask highlighting 
cyclone-relevant regions extracted.

https://doi.org/10.1371/journal.pone.0330705.g005

https://doi.org/10.1371/journal.pone.0330705.g005


PLOS One | https://doi.org/10.1371/journal.pone.0330705  December 5, 2025 11 / 24

Cyclone intensity estimation and classification

The proposed cyclone intensity and classification framework is designed to estimate and categorize multiple cyclone 
intensity levels using sequences of satellite images and a deep spatiotemporal learning model. The architecture integrates 
TimeDistributed convolutional layers with ConvLSTM, forming a hybrid model tailored to the spatiotemporal nature of 
cyclone evolution. ConvLSTM networks are particularly suited for spatiotemporal data, where both the spatial structure 
and their temporal evolution are critical. Traditional CNNs or LSTMs, when used in isolation, fail to simultaneously capture 
these joint dependencies. The ConvLSTM layer, by applying convolutional operations within the recurrence, allows the 
model to learn motion-aware spatial features across sequential frames, an essential aspect of tropical cyclone dynamics. 
The process begins by providing a cyclone intensity label to categorical text in the dataset. It is numerically encoded using 
label encoding to make it compatible with the softmax-based classification output. To model temporal patterns of cyclone 
evolution, images are grouped into sequential frames, where each sample consists of four consecutive satellite images. 
Because we are taking satellite images with a six-hourly gap, only four satellite images will be there for a day. The target 
label for a sequence corresponds to the cyclone intensity of the last frame in that sequence. To enhance the model’s abil-
ity to generalize and learn robust spatial features, frame-wise data augmentation is performed [33].

Specifically, each frame in a sequence undergoes random transformations independently. These include horizontal 
flipping, rotations up to 30 degrees, zooming, and width/height shifts of up to 30%. This technique allows the model to 
learn features invariant to orientation, scale, and position, while preserving the temporal structure of the cyclone evolution 
across sequences. Unlike standard augmentation approaches applied only once per image, this frame-wise augmenta-
tion is embedded directly into the preprocessing pipeline, increasing the diversity of samples while maintaining sequence 
integrity. To ensure generalization and minimize bias, the model is evaluated using 5-fold cross-validation and is averaged 
across folds for both classification and estimation. Early stopping is applied to terminate training once convergence is 
detected, reducing the risk of overfitting.

As shown in Fig 6, the estimation model begins by extracting spatial features using TimeDistributed Conv2D layers, 
which apply convolutional operations independently to each frame in a four-image sequence. Table 2 describes the 
Layer-wise comparison of the ConvLSTM-based architectures used for cyclone wind speed estimation and intensity 
classification. Differences in convolutional depth, filter size, and dropout rates highlight trade-offs in model complexity and 
target task. The estimation network includes three convolutional layers with 32, 64, and 128 filters (3 × 3 kernels, ReLU 
activation), each followed by 2 × 2 max pooling and dropout layers (rates of 0.2, 0.3, and 0.4, respectively) to downsample 
feature maps and reduce overfitting. These frame-level features are passed to a ConvLSTM2D layer with 128 filters and 
a 3 × 3 kernel, which captures both spatial patterns and their temporal evolution. Unlike traditional LSTMs, ConvLSTM 
retains spatial structure, enabling it to detect motion cues like spiral rainbands or eye development. The output from the 
ConvLSTM layer is flattened and passed through a Dense layer with 256 units and a 0.5 dropout rate, followed by a final 
output neuron that predicts the normalized wind speed. The model is trained using the Huber loss function, chosen for its 
robustness to outliers, and optimized with Adam (learning rate = 0.001).

Algorithm II. Training of ConvLSTM for Cyclone Intensity estimation.

Initialize model parameters θ, ω, learning rate α, batch size m, penalty coefficient λ, and Adam optimizer 
hyperparameters β1, β2.

1 Load dataset D ={ (xi, yi) }
N
i=1, where xi represents input images and yi rep-

resents wind speeds.

2 Normalize wind speeds y = StandardScaler(y)

3 Construct time-series sequences St = {xt–k, . . . , xt}

4 For k = 1, 2, . . . , N  do

5   For t = 1, 2, . . . , ncritic do

6     For i = 1, 2, . . . , m do
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Initialize model parameters θ, ω, learning rate α, batch size m, penalty coefficient λ, and Adam optimizer 
hyperparameters β1, β2.

7         Sample a sequence St ∼ p(S) and corresponding wind speed label yt.

8         Pass St through TimeDistributed CNN layers with ReLU activations 
and dropout regularization.

9         Extract temporal features using ConvLSTM with 3D kernels.

10         Flatten features and pass through fully connected dense layers.

11         Compute loss L(i) = HuberLoss (ypred, yt)

12       End For

13     Update critic parameters ω ← Adam
(
∇ω

1
m

∑m
i=1 L

(i),ω,α,β1,β2
)
.

14   End For

15   Sample new mini-batch {S(i)
t }

m
i=1

16   Update generator parameters θ ← Adam
(
–∇θ

1
m

∑m
i=1 L

(i), θ,α,β1,β2
)

17   End For

18   Store the best model weights based on validation loss.

19   Train until early stopping criteria is met.

Algorithm II describes the training process in detail, including sequence sampling, feature extraction, and parameter 
updates. A known challenge in cyclone datasets is class imbalance, where certain intensity classes may be underrep-
resented. To mitigate this, the Synthetic Minority Over-sampling Technique (SMOTE) is applied to the training data [42]. 

Fig 6.  Schematic block diagram of the ConvLSTM-based deep learning architecture employed for cyclone intensity estimation and 
classification.

https://doi.org/10.1371/journal.pone.0330705.g006

https://doi.org/10.1371/journal.pone.0330705.g006


PLOS One | https://doi.org/10.1371/journal.pone.0330705  December 5, 2025 13 / 24

Before resampling, image sequences are reshaped into flat feature vectors. SMOTE then generates synthetic examples 
for the minority classes to balance the class distribution. After resampling, the data is reshaped back into the original tem-
poral sequence format suitable for deep learning.

Fig 7 shows the class distribution before and after applying SMOTE in this study, showing how class imbalance 
among cyclone intensity categories is corrected through synthetic oversampling. After data augmentation and 
before applying SMOTE, the class distributions were 451, 202, 450, 306, and 347. After applying SMOTE, each 

Table 2.  Model architecture comparison of estimation vs classification.

Layer Index Layer Type Estimation Model Classification Model

1 TimeDistributed Conv2D Filters: 32, Kernel: (3,3), Activation: ReLU Filters: 32, Kernel: (3,3), Activa-
tion: ReLU, L2(0.01)

2 TimeDistributed MaxPooling2D Pool Size: (2,2) Pool Size: (2,2)

3 TimeDistributed Dropout Rate: 0.2 Dropout (not TimeDistributed), 
Rate: 0.3

4 TimeDistributed Conv2D Filters: 64, Kernel: (3,3), Activation: ReLU Filters: 64, Kernel: (3,3), Activa-
tion: ReLU, L2(0.01)

5 TimeDistributed MaxPooling2D Pool Size: (2,2) Pool Size: (2,2)

6 TimeDistributed Dropout Rate: 0.3 Dropout (not TimeDistributed), 
Rate: 0.4

7 TimeDistributed Conv2D Filters: 128, Kernel: (3,3), Activation: ReLU Not included

8 TimeDistributed MaxPooling2D Pool Size: (2,2) Not included

9 TimeDistributed Dropout Rate: 0.4 Not included

10 ConvLSTM2D Filters: 128, Kernel: (3,3), Activation: ReLU Filters: 64, Kernel: (3,3), Activa-
tion: ReLU, L2(0.01)

11 Dropout Rate: 0.5 Not included

12 Flatten Yes Yes

13 Dense Units: 256, Activation: ReLU, L2 
Regularization

Units: 128, Activation: ReLU, 
L2(0.01)

14 Dropout Rate: 0.5 Rate: 0.5

15 Output Dense Units: 1 (Regression) Units: len(label_encoder.
classes_), Activation: Softmax 
(Classification)

https://doi.org/10.1371/journal.pone.0330705.t002

Fig 7.  Class distribution of cyclone intensity categories before and after applying SMOTE to the training dataset.

https://doi.org/10.1371/journal.pone.0330705.g007

https://doi.org/10.1371/journal.pone.0330705.t002
https://doi.org/10.1371/journal.pone.0330705.g007
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class was balanced to 451 samples. The classification model shares a similar architecture with the estimation 
model, with key differences in depth and complexity. It includes only two TimeDistributed Conv2D layers (with 32 
and 64 filters, respectively), compared to the deeper convolutional stack in the estimation model. Additionally, the 
ConvLSTM2D layer in the classification network uses 64 filters, whereas the estimation model employs 128 filters. 
These modifications reduce the model’s complexity while preserving its ability to capture essential spatiotemporal 
features required for classifying cyclone intensity. The output of the ConvLSTM is flattened and passed to a dense 
layer with 128 neurons and ReLU activation, followed by a dropout layer with a rate of 0.5. Finally, a softmax out-
put layer maps the output to multiple cyclone intensity classes.

Algorithm III. Training of ConvLSTM for Cyclone Intensity Classification

Input: {Xn, yn, gn}, where n = 1, 2, . . . , N ; hyperparameters α, λ, β maximum epochsE
Output: Trained model f(X; θ)

1 Initialize θ randomly

2 Load dataset {Xn, yn} from source and apply preprocessing P (Xn), including resiz-
ing, normalization, and augmentation

3 Encode labels yn using label mapping L (yn)

4 Construct temporal sequences St = {X(i)
t , y

(i)
t }

M
i=1 with time stepsT

5 Split St into training set Dtrain and testing set Dtest using stratified sampling

6 Reshape Xn into (M,T,H,W,C) format for ConvLSTM processing

7 while θ not converged & maximum epochs E not reached do

8 for each mini-batch B ⊂ Dtrain do

9         Pass B through ConvLSTM model:
          ct = σ (Wc ∗ Xt + bc) for convolutional layers
            ht = σ (Wh ∗ ct + Uh ∗ ht–1 + bh) for LSTM layers

10          Compute loss L(θ) as sparse categorical cross-entropy with 
regularization:

         L(θ) = –
∑

i yilog (ŷi) + λ
∣∣|θ|∣∣2

11         Compute gradient ∇θL(θ) via backpropagation

12         Update model parameters using Adam optimizer:
        θ ← θ – α∇θL(θ)

13     end for

14     Compute validation loss Lval(θ) on Dtest

15     Apply learning rate scheduler and early stopping conditions if necessary

16 end while

17 Evaluate final model f(X; θ) on Dtest using accuracy, precision, recall, and F1-score

18 Return trained model θ

Algorithm III outlines the procedure for training the ConvLSTM model for cyclone intensity classification. It 
includes input preprocessing, sequence construction, data augmentation, loss computation, and performance eval-
uation. Training is performed using the Adam optimizer with a learning rate of 0.0005. The loss function is sparse 
categorical cross-entropy, which is regularized with L2 penalties to prevent overfitting. Early stopping (patience = 3) 
and a learning rate reduction mechanism (factor = 0.5, patience = 2) are used to optimize training convergence 
[43]. Training occurs over a maximum of 50 epochs with a batch size of 32. All experiments were executed on a 
high-performance computing (HPC) cluster using the max_dgx queue with a job configuration of 1 node, 10 CPUs, 
and 2 NVIDIA GPUs on a DGX. The allocated GPUs ensured efficient training and evaluation of the deep learning 
model, with hardware availability and utilization verified dynamically during runtime.
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Results and discussion

Binary classification of cyclone

The binary classification of cyclone intensity was performed using three pre-trained deep learning models, VGG16, 
ResNet50, and InceptionV3, alongside a classical baseline model, Logistic Regression. Fig 8 illustrate a visual compari-
son across different models used for binary classification of cyclone vs. non-cyclone images. VGG16 outperforms others, 
highlighting its strong feature extraction capability for cyclone detection. Table 3 provides Binary classification perfor-
mance of different models including VGG16, ResNet50, InceptionV3, and Logistic Regression. VGG16 achieves the high-
est accuracy and F1 score, demonstrating its effectiveness in distinguishing cyclone from non-cyclone imagery. VGG16 
achieved the highest accuracy (99.16%), followed by InceptionV3 (98.33%) and ResNet50 (96.67%), whereas Logistic 
Regression obtained a lower accuracy of 93.52%. The deep learning models significantly outperformed the baseline, 
demonstrating their superior ability to capture complex spatial patterns in cyclone imagery. While ResNet50 introduces 
residual learning, its performance slightly lags due to its complex architecture, which may require more data for optimal 
generalization [44].

Clustering algorithm performance in cyclone segmentation

A comparative analysis of different clustering algorithms K-Means, Mean Shift, Agglomerative Clustering, DBSCAN, and 
Gaussian Mixture, based on their average Silhouette Scores is done and shown in Fig 9. Average Silhouette Scores for 
different clustering algorithms used in cyclone region isolation. Mean Shift achieved the highest score, indicating superior 
cluster separation and cohesion for segmenting cyclone-relevant regions in satellite imagery. K-Means followed with a 
score of 0.7398, showing strong clustering performance. Agglomerative Clustering and Gaussian Mixture had moderate 
scores of 0.7182 and 0.6899, respectively. DBSCAN performed the worst with a score of 0.6472, suggesting that it may 

Fig 8.  Comparative performance of different models for binary cyclone classification.

https://doi.org/10.1371/journal.pone.0330705.g008

https://doi.org/10.1371/journal.pone.0330705.g008
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struggle with clear boundary definition in cyclone segmentation. This comparison helps in selecting the most effective 
clustering technique for cyclone feature extraction.

Cyclone intensity estimation and classification model evaluation

Both K-Means and MeanShift clustering algorithms were employed to preprocess the dataset before estimation and clas-
sification, and their impact on performance was evaluated.

Fig 10 and Fig 11 present the training and validation error curves - Mean Absolute Error (MAE) and Root Mean Square 
Error (RMSE), respectively across 5-fold cross-validation on the Meanshift dataset. In both Figs, the error consistently 
decreases across epochs for each fold, indicating effective convergence of the model during training. The validation 
curves closely follow the training trends in most folds, suggesting good generalization with minimal overfitting. While minor 
fluctuations in validation metrics are observed, especially in MAE plots for folds 2 and 5, the overall trend confirms stable 
model learning and robustness across all folds. The model achieved an average RMSE of 8.31 ± 1.10 over five folds, with 
a total training time of 9742.57 seconds, reflecting both the computational cost and predictive accuracy of the proposed 
spatiotemporal deep learning framework.

Table 3.  Performance metrics of various models for binary cyclone intensity classification.

Model Accuracy Precision Recall F1 Score

VGG16 0.991667 0.983607 1.0 0.991736

ResNet50 0.966667 0.937500 1.0 0.967742

InceptionV3 0.983333 0.967742 1.0 0.983607

Logistic Regression 0.9352 0.93 0.95 0.94

https://doi.org/10.1371/journal.pone.0330705.t003

Fig 9.  Comparison of clustering algorithms (K-Means, MeanShift, etc.) based on the average Silhouette Score.

https://doi.org/10.1371/journal.pone.0330705.g009

https://doi.org/10.1371/journal.pone.0330705.t003
https://doi.org/10.1371/journal.pone.0330705.g009
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Fig 12 and Fig 13 illustrate the training and validation MAE and RMSE per epoch, respectively, across 5-fold 
cross-validation for the enhanced experimental setup. In all five folds, both MAE and RMSE show a consistent 
decreasing trend, indicating effective model convergence and generalization. The close alignment between train-
ing and validation curves suggests that the model is not overfitting and is robust across different validation splits. 
Minor fluctuations in the validation RMSE, especially in folds 2 and 5, are within acceptable bounds and highlight 

Fig 10.  Training and validation Mean Absolute Error (MAE) per epoch across five-fold cross-validation using the MeanShift clustered dataset.

https://doi.org/10.1371/journal.pone.0330705.g010

Fig 11.  Training and validation Root Mean Square Error (RMSE) per epoch across five-fold cross-validation using the MeanShift clustered 
dataset.

https://doi.org/10.1371/journal.pone.0330705.g011

https://doi.org/10.1371/journal.pone.0330705.g010
https://doi.org/10.1371/journal.pone.0330705.g011
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the natural variability in temporal satellite-based intensity estimation. The model achieved an average RMSE of 
7.79 ± 1.27 with a total training time of 7743.23 seconds, demonstrating improved performance and computational 
efficiency over prior configurations.

Based on the experimental results, the K-Means-based framework outperformed the MeanShift-based setup, achiev-
ing a lower average RMSE of 7.79 ± 1.27 compared to 8.31 ± 1.10. Additionally, K-Means required less training time 
(7743.23 sec) than MeanShift (9742.57 sec), highlighting its computational efficiency. While MeanShift is more adaptive 

Fig 12.  Training and validation MAE per epoch across five-fold cross-validation using the K-Means clustered dataset.

https://doi.org/10.1371/journal.pone.0330705.g012

Fig 13.  Training and validation RMSE per epoch across five-fold cross-validation using the K-Means clustered dataset.

https://doi.org/10.1371/journal.pone.0330705.g013

https://doi.org/10.1371/journal.pone.0330705.g012
https://doi.org/10.1371/journal.pone.0330705.g013
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to complex cluster shapes, K-Means proved more effective and stable for cyclone region isolation in this context. Hence, 
K-Means was selected as the optimal clustering approach for the proposed model.

The MeanShift-clustered dataset achieved slightly higher average accuracy (0.8110) than the KMeans-based approach 
(0.8015), suggesting it forms more effective clusters for classification tasks. However, this came at the cost of a longer 
average training time per fold (1776.18s vs. 1504.80s). Despite having more misclassified samples (106 vs. 94), Mean-
Shift demonstrated better class separation, especially in the confusion matrix for D and SCS classes. On the other hand, 
K-Means had fewer misclassifications and trained faster, making it more computationally efficient but slightly less accu-
rate. Fig 14 shows a misclassified sample from the K-Mean cluster dataset where the true class is ‘CS’ (Cyclonic Storm), 
but the model predicted ‘VSCS’ (Very Severe Cyclonic Storm). The evaluation results are summarized in Table 4, and cor-
responding confusion matrices are presented in Fig 15 a) (KMeans) and Fig 15 b) (MeanShift). The confusion matrix for 
K-Means (Fig 15 a) shows better precision for the CS and DD classes, while MeanShift (Fig 15 b) improves classification 
for D and SCS, suggesting it handles more ambiguous classes slightly better. Yet, MeanShift also demonstrates a higher 
tendency toward class confusion, particularly between neighboring intensity levels like D and DD. MeanShift is preferable 
when accuracy and deeper class separation are the priorities, ideal for applications requiring high reliability in cyclone 
prediction. K-Means is a better choice when efficiency and lower training overhead are critical, such as in time-sensitive or 
resource-constrained forecasting systems.

The proposed spatiotemporal deep learning framework demonstrated superior performance in both cyclone intensity 
estimation and classification tasks compared to baseline models. While MeanShift achieved a slightly higher classifica-
tion accuracy (81.10%) than K-Means (80.15%), it incurred greater training time and more misclassifications, particularly 
in regions with ambiguous class boundaries. K-Means proved to be more computationally efficient and more balanced 
in precision across multiple classes, making it ideal for time-sensitive applications. Table 5 describes the performance 
comparison of the proposed framework against baseline models (LSTM, GRU, CNN) for both cyclone intensity classifica-
tion and wind speed estimation. The proposed model outperforms others in classification accuracy and estimation error 
(RMSE), achieving the highest classification accuracy (81.1 ± 4.33) and competitive estimation RMSE (8.31 ± 1.10 RMSE). 

Fig 14.  Example of misclassification, showing four consecutive cyclone images where the true class (Cyclonic Storm, CS) was incorrectly 
predicted as Very Severe Cyclonic Storm (VSCS).

https://doi.org/10.1371/journal.pone.0330705.g014

Table 4.  K-Means vs. Meanshift clustered datasets for cyclone intensity classification.

Metric KMeans MeanShift

Misclassified Samples 94 106

Accuracy (Avg over 5 folds) 0.8015 ± 0.0154 0.8110 ± 0.0433

Training Time (Fold 5) 1254.05 seconds 1319.94 seconds

Avg Training Time per Fold 1504.80 seconds 1776.18 seconds

https://doi.org/10.1371/journal.pone.0330705.t004

https://doi.org/10.1371/journal.pone.0330705.g014
https://doi.org/10.1371/journal.pone.0330705.t004
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These results confirm the effectiveness of the proposed hybrid framework in capturing cyclone dynamics with higher preci-
sion and robustness, making it a strong candidate for operational tropical cyclone analysis systems.

Future scope and challenges

In this study, one of the principal issues is the relatively small dataset (1,200 images) which restricts a model’s capability 
to learn robust and generalizable spatiotemporal features. This problem is significant for rare or extreme cyclone inten-
sity classifications, as greater representation is required due to their relatively low frequency to avoid biased learning and 
subsequently poor classification performance. Moreover, increased risk of overfitting is another consequence of limited 
representation, particularly for deep learning models which rely heavily on large datasets. To partially mitigate this limita-
tion, image augmentation techniques such as rotation, zoom, and flipping were applied to artificially expand the training 
dataset and introduce variability. However, further dataset expansion through data synthesis remains necessary.

While deep learning models have drastically improved cyclone intensity estimation and classification, data availabil-
ity and quality are among the key challenges left to address, where future research could be directed [20]. To enhance 
cyclone intensity classification, model architecture is one of the most insightful-providing future research directions. Con-
vLSTM has been confirmed to be effective for capturing spatio-temporal dependencies [45], while developing hybrid deep 

Fig 15.  Confusion matrices illustrating cyclone intensity classification performance using (a) the K-Means clustered dataset and (b) the Mean-
Shift clustered dataset. 

https://doi.org/10.1371/journal.pone.0330705.g015

Table 5.  Performance comparison of the proposed framework with baseline architectures.

Sl.no Architecture Intensity classification Intensity estimation

1 Proposed 81.1 ± 4.33 7.79 ± 1.27

2 LSTM 68.18 ± 4.65 9.35 ± 1.9

3 GRU 69.09 ± 4.6 8.18 ± 0.7

4 CNN [14] 63.83 ± 1.3 16.2 ± 0.9

https://doi.org/10.1371/journal.pone.0330705.t005

https://doi.org/10.1371/journal.pone.0330705.g015
https://doi.org/10.1371/journal.pone.0330705.t005
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learning models could further improve performance. For instance, merging ConvLSTM with Transformer-based architec-
tures such as Vision Transformers (ViTs) could enhance the ability to extract long-range features. The dataset would be 
augmented by providing features to the model that can learn more generalizable patterns. Additionally, future work could 
incorporate Monte Carlo dropout during inference to estimate predictive uncertainty through multiple stochastic forward 
passes.

Alternatively, Bayesian deep learning techniques, such as variational inference, can be used to model parameter uncer-
tainty. which offers more reliable forecasts for operational meteorology.

Although SMOTE was applied to reduce class imbalance, there is still minimal representation of cyclone intensity 
categories, particularly Very Severe Cyclonic Storms (VSCS) or above, contributing to a classification bias and thereby 
decreasing model sensitivity to these potential high-impact events. Model underrepresentation in severe cyclone catego-
ries leads to the misclassification of severe cyclones, which is detrimental to early warning systems. Perhaps the next step 
can help alleviate this feature underrepresentation through more advanced handling of imbalance such as using adaptive 
synthetic oversampling, cost sensitive learning, or category specific weighted loss functions. A future consideration could 
also be to develop either class-conditional synthetic data generation using GANs or variational autoencoders to produce 
realistic storm examples from the rare categories, which could better support model robustness and recall on the severe 
cyclone categories. A detailed consideration of spatial, temporal, and other environmental factors would assist in devel-
oping a thorough presentation of cyclone behaviour and provide for better accuracy in forecasting. Another problem any 
studied cyclone will face is the temporal resolution of images taken by satellites. Due to time intervals set when taking 
photographs, satellite images may fail to capture rapid fluctuations in cyclone intensity due to their limited temporal resolu-
tion. Future studies can contrast proposed higher-frequency satellite images, probable over-spatial analyses, or interpola-
tion methods that would help assess intensity variation between images. This usually helps bring out better representation 
for cyclone evolution in a continuous sense, hence increasing predictive modelling.

To broaden the applicability of the proposed model, future research should explore its adaptability to other ocean 
basins such as the Atlantic and Pacific. Variations in satellite sensors, image resolutions, and distinct atmospheric dynam-
ics across basins can introduce distributional differences between source and target datasets. Transfer learning and 
domain adaptation techniques can be employed to fine-tune models trained on North Indian Ocean data for use in other 
basins, thereby increasing their generalizability and operational value. Another major concern is modelling generalisation 
across different ocean basins. Cyclone characteristics vary in various regions due to differences in oceanic and atmo-
spheric conditions. Models trained on North Indian Ocean cyclone data may not generalise well to cyclones in the Atlantic 
or Pacific basins due to regional climatic differences. Domain adaptation and transfer learning techniques can be explored 
to overcome this [45]. These approaches let you fine-tune the model from one region’s data into another so it’s more 
equipped for different climatic conditions.

Despite advancements in deep learning, computational complexity remains a challenge. Training ConvLSTM-based 
models is computationally intensive, and their high inference cost poses challenges for real-time deployment [20]. Such 
inference currently relies on heavy computation and cannot be operational because swift and efficient prediction is always 
desired. To address the feasibility of real-time deployment, future work can explore model compression techniques, such 
as pruning or quantization, and adopt lighter architectures like MobileNet-based ConvLSTM variants. Additionally, real-
time forecasting can benefit from deploying the trained model on edge devices or cloud-integrated platforms, which enable 
low-latency predictions critical for disaster management.

In terms of integration into operational pipelines, future studies must evaluate not just model accuracy but also latency, 
scalability, and ease of deployment under varying environmental conditions. Solutions like edge deployment, modular 
architectures, and scalable cloud computing environments can facilitate this integration. Facing these challenges and 
gazing ahead into future advancements, cyclone classification and intensity estimation models would eventually become 
more certain and reliable. Integration of advanced deep learning techniques, multi-modal data fusion, domain adaptation, 
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and real-time deployment strategies will add great value to the accuracy and usability of these models. These develop-
ments will further contribute to efficient early warning systems, incentives to work towards proactive measures, and a 
consequent reduction in the impact of cyclones on vulnerable communities. May AI-driven cyclone forecasting lead to 
great insights into new horizons, greatly transforming the circulation and tracking of storms from the eyes of meteorolo-
gists. Bridging current gaps and improving existing models will enable researchers to develop cyclone monitoring systems 
capable of real-time application.

Conclusion

This research provides a cutting-edge deep learning model and procedure for detecting, segmenting, estimating intensity, 
and classifying cyclones using satellite images. Transfer learning models (VGG16, ResNet50, and InceptionV3) were ana-
lyzed for a comparative performance whereby VGG16 had the highest accuracy of 99.16%, which was attributed to better 
feature extraction. Mean Shift achieved a higher Silhouette Score of 0.7772 during cyclone segmentation in comparison 
to K-Means, thereby demonstrating its suitability of being applied for cyclone isolation. ConvLSTM was used for cyclone 
intensity estimation and classification, where the clustering-based dataset obtained improved generalization. The model 
trained on the Mean Shift-clustered dataset produced a RMSE of 8.31 ± 1.10 whereas K-Means had 7.79 ± 1.27, implying 
a better RMSE in intensity estimation. While Meanshift based clustering provided better distinction between cyclone inten-
sity levels at 81.1 ± 4.33%, K Mean performed better in intensity estimation. Other challenges such as data imbalance, 
computational complexity, and model generalization across different ocean basins still derive further advancement in the 
study. This study proposes future research directions, including hybrid deep learning models combining ConvLSTM and 
Vision Transformers coupled with Bayesian deep learning for uncertainty estimation and domain adaptation techniques for 
better generalization across different climatic conditions. Moreover, the applications of lightweight architectures combined 
with cloud implementations can improve the real-time forecasting of AI-driven cyclone prediction to practically feasible 
operational levels. With the advent of these primary challenges and the application of ascendant AI-based techniques, 
cyclone monitoring and forecasting should be prioritized in future meteorological research. Such advancements will con-
tribute in no small way to increased accuracy in early warning systems, hence achieving better disaster preparedness and 
mitigation, significantly reducing the adverse effects of tropical cyclones on vulnerable communities.
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