
Automated Instantiation of
Heterogeneous FastFlow CPU/GPU
Parallel Pattern Applications in

Clouds

Boob Suresh

Submitted as part of the requirements for the degree

of MSc in Cloud Computing

at the School of Computing,

National College of Ireland

Dublin, Ireland.

September 2013

Supervisor

Horacio González-Vélez

Alina Mădălina Popescu



Abstract

Parallel scientific workloads typically entail highly-customised software environments,

involving complex data structures, specialised systems software and even distinct hard-

ware, where virtualisation is not necessarily supported by third-party providers. Con-

sidering the expansion of cloud computing in different domains and the development of

different proprietary and open source cloud platforms, users should arguably be able to

automatically and seamlessly migrate their parallel workloads across cloud platforms

using standardised virtual machines based on elasticity rules. However, even if migrat-

ing the workload between the nodes is easier when the nodes have similar configuration

on the same platform, the transition between different platforms raises different issues

such as vendor lock-in, portability and interoperability.

Moreover, the static distribution of virtual appliances was not proved straightforward

because of the time required for user to do all the migrations steps and because of the

vendor lock-in issues.

The aim of this paper is to automate the portability of FastFlow—a C/C++ pattern-

based programming framework for multi/many-core and distributed platforms—using

virtual machines for both CPU and GPU-based environments between heterogeneous

virtualised platforms. Our approach relies on the standard Open Virtualization

Format (OVF) in order to achieve a universal description of virtual appliances. Such

description is not only useful to migrate but also to determine the hardware/system

software configuration needed for switching into any new (cloud) image format. We

have successfully evaluated our work using virtual machines based on VirtualBox and

AWS on local cluster and public cloud providers.

Keywords: Parallel Patterns, FastFlow, automation, portability, interoperabil-

ity, elasticity, Cloud Computing, Vagrant, Chef.

ii



Acknowledgements

This Thesis ‘Automated Instantiation of Heterogeneous FastFlow CPU/GPU Parallel

Pattern Applications in Clouds.’ for Masters in Science degree, was carried out in the

Cloud Competency Centre, National College of Ireland, Dublin.

I would like to express my sincere thanks to my supervisors Horacio González-Vélez

and Alina Mădălina Popescu. I am grateful to them for there effort, valuable guidance,

discussions and for raising up my spirits throughout the work. Every meeting with them

broadened my perspective on the issue and added new aspects to the implementation.

I wish to thank with sincere gratitude to Pramod Pathak, Vikas Sahni, Michael Brad-

ford, Robert Duncan and Keith Brittle for their help in successful completion of this

course. I fail in my duty, if I dont acknowledge Danu Technologies Ltd., for giving

me an oppurtunity to work with them on the real time problems which helped me to

perform well in my thesis. I thank all the people, who helped me directly or indirectly

in completing my thesis work.

I would like to thank my friends (SAT) for supporting me in through this difficult time.

Their help and care helped me a lot to stay concentrated on my studies. I appreciate

their help and I am grateful to them for helping me to adjust in a new country.

I express my deep and ever lasting love and gratitude to my parents and family for their

continuous support and encouragement. This work is specially dedicated to mama,

papa and dadi. To Ishi for cheering me up.

iii



Declaration

I confirm that the work contained in this MSc project report has been composed solely

by myself and has not been accepted in any previous application for a degree. All

sources of information have been specifically acknowledged and all verbatim extracts

are distinguished by quotation marks.

Signed ............................................ Date ......................

Boob Suresh

iv



Contents

Abstract ii

Acknowledgements iii

Declaration iv

1 Introduction 1

1.1 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 4

2.1 Interoperability and Portability issues . . . . . . . . . . . . . . . . . . . 4

2.2 Parameterized Resource allocation . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Market based resource allocation . . . . . . . . . . . . . . . . . . 8

2.2.2 Resource allocation based on auctions . . . . . . . . . . . . . . . 8

2.2.3 Resource allocation based on Service Level Agreements (SLA) . . 9

2.2.4 Resource allocation based on schedulers . . . . . . . . . . . . . . 9

2.2.5 Resource allocation based on Rules . . . . . . . . . . . . . . . . . 9

2.2.6 Resource allocation by scalable computing . . . . . . . . . . . . . 10

2.2.7 Resource allocation for congestion control . . . . . . . . . . . . . 10

2.3 Resource Allocation System (RAS) . . . . . . . . . . . . . . . . . . . . . 10

2.4 Cloud Computing Standards . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Data Management Task Force CIMI and OVF . . . . . . . . . . 12

2.4.2 Open Grid Forum WS-Agreement and OCCI . . . . . . . . . . . 12

2.4.3 Storage Network Industry Association CDMI . . . . . . . . . . . 13

2.5 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Specification 15

4 Implementation 18

4.1 Automation Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Chef Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



4.2.1 Setting Chef Environment . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Vagrant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Evaluation 26

6 Conclusion 30

Bibliography 32

A Chef Server 36

vi



List of Figures

3.1 FastFlow Automation Tool. . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Monitoring Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Chef Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Initializing the knife configuration. . . . . . . . . . . . . . . . . . . . . . 22

4.3 FastFlow CookBook Structure. . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Time (min) for FastFlow CPU based virtual machine in VirtualBox. . . 27

5.2 Time (min) for FastFlow CPU based virtual machine in AWS. . . . . . 27

5.3 Time (s) for running the benchmark application in a CPU based virtual

machine in VirtualBox and AWS with Automation Tool. . . . . . . . . . 28

5.4 Timeline for FastFlow GPU based virtual machine in AWS with Au-

tomation Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5 Time (s) for running the benchmark application in a GPU based virtual

machine in AWS with Automation Tool. . . . . . . . . . . . . . . . . . . 29

A.1 Chef Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.2 Chef Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.3 Chef Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.4 Chef-Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.5 Chef CookBooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.6 Chef Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.7 Chef Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



List of Tables

2.1 Resource allocation parameters . . . . . . . . . . . . . . . . . . . . . . . 8

viii



Chapter 1

Introduction

Structured parallel programming facilitates the design of parallel applications, through

the composition of pre-defined parallel patterns (algorithmic skeletons) which are ac-

cepted as a mechanism for simplifying the code and making it more understandable [26].

In this work, we have used FastFlow, a C/C++ structured parallel programming frame-

work designed to execute fine-grained parallel applications on multi-core CPU, GPU,

and loosely-coupled heterogenous distributed systems [2].

Distributed FastFlow applications have been previously tested on virtual machines run-

ning on multi-core clusters and public cloud infrastructure [7]. However, although there

is no need of additional programming efforts when running the FastFlow applications

on different parallel and distributed virtualised platforms, preparing any host environ-

ment for FastFlow application execution currently requires manual intervention. That

is to say, there exists the need to automate the instantiation/termination of FastFlow-

based virtual machines based on demand, in order to optimally scale pattern-based

applications by migrating the entire FastFlow framework and its underlying systems

software from local clusters to cloud platforms.

Furthermore, complex scientific applications typically face the time-consuming manual

staging and configuration of systems software in every new instance in new hardware

infrastructures. Such configuration assumes substantial expertise of end-users and the

application tuning and optimisation can produce minor system errors. In fact, the au-

tomatic instantiation of parallel scientific applications to comply with different cloud-

specific APIs has been regarded as an open problem for public cloud infrastructures [11].

This is because as we know each CSP has its own Application Programming Interface

(API) that allows customers to deploy and manage the cloud resources. However, users

1



who are accessing multiple CSPs will face the big challenge of interacting in a multi-

cloud environment due to the incompatibility between those APIs. In order, to use

different cloud platforms the business logic of the propreitery APIs have to be reim-

plemented. In this context, open-source projects (i.e. Apache LibCloud, DeltaCloud)

and proprietary APIs (i.e. RightScale, Enomaly) were implemented for managing the

cloud services across multi-clouds [16].

Thus, Cloud Computing is not still mature, although numerous efforts were realized

around this topic. Those efforts are reflected by the number of Cloud Service Providers

(CSP) and open-source cloud platforms, by the appearance of several management

interfaces for cloud services (i.e. open-source and proprietary), by the research work in

terms of advantages and challenges raised by this technology and by the emerging of the

cloud standardization bodies, non-profit groups and member-operated organizations.

In order to take the advantage of the characteristics of cloud computing, organizations

have to seriously consider the various issues of this new computing environment for

achieving highest financial profits. The major characteristic of cloud computing is

shared resources, thus resource allocation plays a critical role for optimal utilization.

Many challenges are being raised in the real time provisioning of resources to meet

user’s requirement at run time. For better performance of the cloud computing systems,

the resources will be provisioned to the users efficiently and effectively as requested.

Efficient resource provisioning is to allocate the resources to the users as they demand

at anytime and anywhere without disruption.

The resources are provided to the users by means of a standard compute instance known

as virtual machine. In order to provision the resources efficiently, different vendors have

to follow the standards by solving the vendor lock-in problem, which it is the major

issue halting the users from adopting the cloud technology [25].

In this sense and for providing on-demand infrastructure, Data Management Task Force

(DMTF) supports the Open Virtualization Format (OVF), which was extended as well

for cloud based systems in the new version (i.e. OVF 2.0). Nevertheless, the OVF

seems that it had not gain enough adoption in the last years among cloud providers.

Moreover, Amazon provides the AWS EC2’s VM Import/Export Tool for importing and

exporting instances from Amazon EC2 to VMware, but for the moment, the conversion

into OVF format implies only the Windows VMs. Furthermore, OVF format standard

is considered to be used in our solution with the purpose of achieving interoperability

across clouds and to exploit the full potential of cloud computing [16].

Thence, in terms of the issues that cloud computing community embraces [24], this

2



paper mainly focuses on the interoperability and portability challenges of complex sci-

entific environments—in this case, a parallel pattern-based one—in public cloud infras-

tructures. By automating the installation and configuration of the FastFlow framework,

it deals with the integration of OpenCL code into FastFlow [14], allowing the seam-

less porting and execution of FastFlow applications in distributed (cloud) CPU/GPU

environments.

This thesis addresses the following contributions:

1. The proposal of the heterogeneous migration of FastFlow-based virtual machines

across local resources and public cloud, considering the heterogeneity of the hy-

pervisors, the heterogeneity of the instances (i.e. CPU-based and GPU-based)

and the heterogeneity of the architectures (i.e. 32 bits and 64 bits) with different

flavours of Linux.

2. The implementation and evaluation of the solution

1.1 Thesis Structure

The structure of the thesis will be as follows:

Chapter 1: Provides the goal and motivation of this dissertation and discusses about the

issues that cloud computing is facing today

Chapter 2: Critically analyses the research work on the selected issues

Chapter 3: Gives a detailed explanation of the proposed automation tool

Chapter 4: Explains the environmental set up with different software installation and the

tool development

Chapter 5: Discusses about the analysis of the test run of the developed tool. The test is

carried with different applications.

Chapter 6: Draws the final conclusions about the thesis work.

3



Chapter 2

Literature Review

This chapter will focus on critically analysing the resource allocation methods which

resolves the issues for the cloud service providers and runs the business smoothly by

increasing the cloud adoption rate. This discussion is organized as follows, the issues

related to interoperability and portability is described in the subsection 2.1. Different

parameters to be considered in allocation of resources is described in the subsection

2.2. The methods followed to allocate the resources in different clouds and solutions are

described in the subsection 2.3. The organizational bodies working for standardization

of cloud computing are subjected in the subsection 2.4. The issues and solutions are

analysed and the research gap is provided in the subsection 2.5.

2.1 Interoperability and Portability issues

Cloud computing is a paradigm in which compute, storage and network are provided to

the users on demand. It enables hardware and software services to public and business

markets as Infrastructure as a Service (IaaS), Platform as a Service (PaaS) or Software

as a Service (SaaS) [4]. Instead of purchasing actual physical resources, users lease

these resources from a cloud provider as an outsourced service. As cloud computing

is based on novel sharing infrastructure, maintaining a huge pool of resources plays

a critical role in effective utilization of resources [6]. Cloud computing services have

improved the efficiency of resource discovery, resource matching, task scheduling and

execution. However, provisioning of resources to all the tasks in cloud computing is

the key concern [43]. As the performance of the system depends on how efficiently the

resources are being used. If the resources are provisioned and are in idle state for a long

time it degrades the performance of the system. A detailed, well-written and rigorous

4



account of research by Nathani et. al.[33] introduced the key things to be handled

to optimize resource utilization. The key things are ”Where to place newly created

virtual machine? When to dispatch newly created virtual machine to a particular

physical machine?” [33] as resources are provisioned to the users in the form of creating

virtual machines, the problem arises when the resources are not available to accept the

request of the user that is resource scarcity. Ye Hu et. al.[19] argue that the point of

assigning a newly created virtual machine to a physical machine completely depends

on the scheduler used to provision resources . Several attempts have been made for

effective provisioning of resources to meet the given quality of service and to provision

the needs as for the peak demands. The framework of Vazquez et. al. [46] provides

the areas where meeting a Service Level Agreement (SLA) and satisfying the quality of

service (QoS) when peak demands arises, which is challenging at certain times. This

explanation has a few weaknesses that other researcher have pointed out clearly. The

applications demand resources as in need, which cannot be predicted. This raises the

issue of having idle resources or lack of resources. In the case of lack of resources, the

resources should be provided from other virtualized platforms with same environment.

Sotomayor et. al.[42] related their research on provisioning of resources from the local

IT infrastructure that is a private cloud with the requests for more resources. This

local provisioning has very limited resources and cannot handle the requests more than

its capability; therefore the suggestion made by the author is to build a Hybrid cloud,

which allows to provision resources from the public cloud. In this way the resources can

be provided. The issue with hybrid cloud is the compatibility and interoperability of

the resources between the infrastructure of private and public cloud. But, the resource

contention that provides interoperability among infrastructures in the hybrid cloud

failed. The cooperation strategy of dynamic resource allocation by Dai et. al.[10] in

their research overcomes the resource contention problem. The beginning of this article

provides an informative overview on effectively utilizing the resources by using parallel

processing technique in cloud computing like MapReduce. However, this parallel pro-

cessing technique has no consideration of the status information of the local resources,

which leads to diminish the effectiveness of resource provisioning that is resource frag-

mentation. The users always raises a question, to adopt cloud computing ”Whether

the cloud workload can be migrated to other service provider without modifying the

system?” Dowell et. al. clearly presents the portability of the system by differentiating

the cloud artifacts. Portability is to move the image in the power off state from one

system to the other system and then to boot it in the destination machine. In order

to advance the cloud interoperability to mature state, the virtual machine images and

cloud application interfaces should be standardized [12].

5



Cloud Service Providers (CSPs) typically have their own Application Programming

Interfaces (APIs) that allow customers to deploy and manage their cloud resources.

However, users accessing multiple CSPs face the challenge of adapting their applica-

tions to a multiplicity of cloud environments with mostly incompatible APIs. Besides

this drive, the multi-cloud migration is necessary for backup purposes when a CSP be-

comes unavailable at a certain point [36]. Moreover, the financial argument is another

motivation for approaching the portability challenge as it enables seamless switching

between CSPs when economic factors change [16, 17].

Specifically, APIs are built for specific cloud infrastructure, which leads to a problem

of vendor lock-in. Furthermore, cloud-based templates and application deployment

compound the challenge cloud platform. Ergo, true cloud interoperability and vendor

lock-in are currently perceived as a drawback of adopting the cloud services [25].

It has become clear that there exists a emerging need to increase standardisation in the

field to allow the elastic execution of applications [31]. Hence, in order to automatically

increase or decrease the resources on different cloud platforms depending on the load

of the system, several researchers have provided solutions based on distinct brokering

systems using federated clouds. Such brokering systems mediate the services between

the cloud consumer and cloud provider. The federated cloud for scalable provisioning of

resources and services by Buyya et. al. [5], delivers an architecture for federated cloud

environments. This architecture defines different components called cloud coordinator

services, cloud exchange, and client brokering. The consumer states the cloud broker

all the services needed and all the services of the cloud coordinator are published in

the federated environment.

All the service providers and clients are contracted by means of cloud exchange. The

different communications between the components follows the SLA message schema.

Similarly, the Contrail project uses a Virtual Execution Platform (VEP) [18] to pro-

vides the virtual distribution of the resources and deploy the users applications inde-

pendently. But, each CSP should have VEP running on their IaaS layer to federate

with the CONTRAIL project and automate the deployment, requiring a significant

level of installation and configuration to interact with different nodes.

The EU-funded SLA@SOI [44] provides a framework where different Cloud providers

can form their SLAs with the consumers based on their needs with the support of ser-

vice providers. In this approach, Marco et. al. [8] keep resource utilisation logs between

the consumer, service provider and the cloud infrastructure provider to enable meter-

ing. Similarly, the EU RESERVOIR [35] project has worked on building a brokerage

system for the cloud providers, focusing on the Small and Medium Enterprises for their

6



migration into Cloud systems. Its CLAUDIA toolkit [36] provides a medium to deploy

services in different cloud platforms through a plug-in mechanism for federated clouds.

This approach maximises the benefits by optimising the services between the federated

Clouds. CSPs use the RESERVOIR sites and make the contracts with the federated

cloud providers. By combining the benefits of the SLA@SOI and RESERVOIR project,

Metsch et. al. [27] have delivered a framework with OCCI. This framework provides

the interface for interoperating between the clouds. The consumer needs the services,

which can be deployed on the RESERVOIR [35] sites, which can be managed using

SLA@SOI framework [44].

2.2 Parameterized Resource allocation

A study of the research of Sindelar et. al.[41] determines the initial mapping of resources

to the virtual machines into two levels, that is at the cluster and the node. This research

has structured the provisioning of the huge pool of resources to the requests of the users.

This study can be used in division of the virtual machine types. Mishra et. al. [30]

pointed out the problem with traditional bin-packing which many researchers used to

determine the virtual machine types by summarizing different parameters of the virtual

machines like CPU usage, memory usage and network usage. This division of virtual

machine types can be much useful for mapping the virtual machines without over-

provisioning and under-provisioning problem. The idea of dividing the virtual machine

types fails when, there is a request from the user for a virtual machine which is not

categorized in the virtual machine type. So, along with the virtual machine parameter

summarization, the attributes of the users, providers are to be considered to categorize

the virtual machine types.

The above mentioned virtual machine placement method work well only in the specific

conditions. In order, to efficiently provision the resources and improve the performance

of the cloud computing system the decision of selecting the most optimal method is

most important. As discussed, each method requires different parameters to process

and make the optimal utilization. So, the performance of the method depends on

whether the parameters are specified properly or not. Nevertheless, to efficiently pro-

vision the resources some parameters has to be considered that are related to resource

allocation in cloud computing. The table 2.1 shows the different parameters and their

dependent variables examined during the allocation of resources with advantages and

disadvantages.

7



Parameter Dependent Advantages and Disadvantages

Market based Resource utilization -No over provisioning of resources
-Cost consideration is beneficial

Auction based Pricing schema -Provides efficient cost factor
-Sudden changes in the cost may ef-
fect

SLA based Contract between stakeholders -Known services and downtime
-Efficient services with promised re-
sources

Scheduler based Resource schedule algorithm -Depends on resource availability

Rules based Task and Constraints -Based on the priority of the tasks
-Few tasks may get into deadlock
state

Scalable computing based Reserved schema -May get over provisioned
-Guaranteed resources provisioned

Congestion control based Compression technique -Unpredictive change in the require-
ment may effect

Table 2.1: Resource allocation parameters

2.2.1 Market based resource allocation

Resource allocation based on market is proposed by Salehi, et. al. [37]. To advance

the resource utilization from large pool of resources of the cloud providers with high

degree of Quality of Service to cloud users different schedulers are used. According to

different constraints of the user, the design and allocation strategy are reconstructed.

The proposed method allocates resources to different users according to their resource

necessities. This efficiently improves the provisioning as the consumption is advanced.

This improves the profits of users and the provider.

2.2.2 Resource allocation based on auctions

For eficient resource provisioning in the cloud environment several auction based tech-

niques have been proposed. Li, et. al. [23] proposed a second-level auction method

with the assistance of pricing and truth telling methods. In the research, a negotiation-

based approach for heterogeneous computing like cloud was proposed, it presented a

protocol using market based system in between the resource manager and scheduler. A

knowledge based continuous auction trade model was proposed in [39] which achieved

higher efficiency and provided stability in pricing transaction. Though these auction

based model has improved the efficiency these are based on single-item.

8



2.2.3 Resource allocation based on Service Level Agreements (SLA)

Service Level Agreements are used to deliver services to the consumers. As allocating

resources in a scalable on demand approach is an indispensable characteristic. In order

to avoid the penalties, SLA has to be maintained and the resources are reserved to the

users according to the SLA [48]. Prodan, et. al. [34] has proposed 3 types of resource

scheduling layers in cloud:

1. Infrastructure as a Service (Iaas)

2. Platform as a Service (PaaS)

3. Software as a Service (SaaS)

Efficiently provisioning and scheduling resources at these layers is significant at different

constraints and necessities of the users. The resources are provisioned to the virtual

machines based on the SLA phrases. With this method, the resource provisioning is

optimized and the potential of SLA violation is condensed. As the SLA satisfies it

clearly points that the request rejection rates for the resource provisioning is low.

2.2.4 Resource allocation based on schedulers

Different schedulers are used to provision resources to the users like immediate, best

effort, advance reservation [33]. An optimized scheduling algorithm is selected based on

the research on Infrastructure as a service cloud systems. Using these schedulers, the

virtual machines (VMs) are incorporated with the resources as from their availability.

A scheme of Dividend policy [38] is used to select a finest allocation strategy for the

users demand. As the scheduler allocates the resources efficiently to the customers

demand, optimal utilization of the resources increases.

2.2.5 Resource allocation based on Rules

Rules allow different components to safely access the resources. In cloud computing,

services are provided to the users based on customer’s constraints [33]. So, efficient

allocation of the requested resources by the customers is a challenge. For this rule

based resource allocation, resources are allocated based on the task priority. This

system follows queuing policy, where the criticality of the requests is calculated and

resources are allocated [22]. This system overcomes the problem of under utilization

and over utilization of the resources which enables the efficient utilisation of provisioned

resources.

9



2.2.6 Resource allocation by scalable computing

The cloud IaaS service, of providing the users with the resources by leasing over the

internet. The user selects and utilises these resources based on their necessity. But,

the real time tasks which has to be completed before the deadline approaches. At a

particular point of time the users may require additional resources, which are provi-

sioned as required and charged for the usage period that is scalable computing [34].

The users request for the additional resources and is fixed only for the rental period.

Special schedulers are used to allocate resources for real time tasks and reserved schema

of resources has to be maintained for such requests by the providers to decrease the

rejection rates of the requests.

2.2.7 Resource allocation for congestion control

To efficiently provision the resources, congestion has to be controlled. As multiple

resources are provisioned to the users as a service by the providers, congestion might

occur. Jianfeng, et. al. [49] described a congestion control technique which decreases

the size of the resources in the situation of congestion. This technique can be vastly

used to optimize the utilization of resources as the size of resources are reduced the idle

part of the resources can be used for request of other users. This congestion control

methods can be much optimised to maintain the Quality of service [45]. Congestion

control mainly deals with the efficiency of the resource provisioning.

2.3 Resource Allocation System (RAS)

In general, Cloud allocates resources to the users’ requests according to the defined

resource allocation policies. Most of the cloud providers like Amazon, Eucalyptus, etc

rely on simple resource allocation policies like immediate and best effort. In immediate

resource allocation policy provider allocates resources as for user’s request and rejects

the request if the resources are not available that leads to high request rejection rate. In

best effort, the requests are placed in the FIFO queue when resources are not available.

Nathani et. al.[33] proposed a detailed well-written and rigorous account of resource

lease manager Haizea. It is used as a scheduler for OpenNebula. The Haizea provides

advance reservation of capacity by using the methods like swapping and backfilling. It

is used to address the issue of resource scarcity by providing the resources for requested

duration at required start time. Though Haizea provides resources, it is noted that the

10



users has to reserve the resources in advance for duration. This results in effective pro-

visioning of resources to users when needed. Nevertheless, the resource interoperability

carries out when resources of different infrastructure are used.

The interoperability of the resources from different infrastructure providers can be

solved from the research of Vazquez et. al. [46] which provided different adapters to act

as interface. This adapter enables the access to different infrastructure resources. The

component monitors the resources availability and when the load of the system exceeds

a defined threshold, it grows the resources by contracting with different cloud providers

using specific adapters. The rejection rates of the system are decreased as the required

resources are provisioned from the other cloud providers, which satisfies the Quality of

Service (QoS), and to qualify the Service Level Agreement (SLA). However, the users

might be over-provisioned. Keeping track of the resources provisioned accurately is the

key concern. Therefore, the suggestion made by the author is difficult to support

Sotomayor et. al. [42] discusses this over-provisioning of the resources. The researchers

have set up a monitoring manager called Virtual Infrastructure manager (VI). The VI

management is an automation tool that manages the dynamic allocation of resources

from the pool of available resources. The VI management uses Haizea [33] as a schedul-

ing backend tool, which has different schedulers to provision the resources like Immedi-

ate, Best effort, Advance Reservation. If the users reserve the resources in advance and

when a new user demands for the resource the status of the reserved resource should be

monitored. By using the methods of Nathani et. al.[33] like backfilling and swapping

the status of the reserved resources can be tracked. For effective and efficient process,

Parallel processing technique is used. The dynamic resource allocation using parallel

processing which distributes the tasks overall the computing nodes and balances the

capabilities of the computing nodes. Sotomayor et. al. briefly described the advantage

of parallel processing. In parallel processing, no resources are left idle as the tasks are

distributed among all the computing nodes [42]. This processing technique efficiently

utilizes the resources and releases all the resources as the tasks are completed which

makes the request rejection rate minimum by provisioning the resources to the requests

of the new user new user but the issue is all the resources are in processing state though

there is a chance of running the process on few resources. Consolidation of resources is

required for better performance with effective resource provisioning.

In [47] a new reverse auction based allocation mechanism has been proposed named

Reverse batch Matching Auction for effective resource allocation in cloud computing

systems. This mechanism mainly follows batch matching for better performance and

efficiency is improved by twice punishment method.

11



In order to provision the resources intelligent capacity planning system has to be im-

plemented. This system should have the capability to estimate the computing instance,

operating system and bandwidth with different pricing models according to the users

utilization[40]. If the capacity planning system works well, most of the issues with the

resource provisioning can be solved with an improvement in the resource utilization.

Though these systems provides the efficiency in allocating the resources many other

issues arises with this. In order to overcome the issues, different organizational bodies

are working to build a common standard to all the CSPs to make the work easier.

The following section provides the information of different bodies that are working for

standardization.

2.4 Cloud Computing Standards

As the growth in the Cloud computing technology increased, the issues related to

cloud are getting much concerned as discussed. Many groups and organizations are

working to solve these issues by standardizing the cloud industry. Some of the active

groups working for cloud standardization are Data Management Task Force (DMTF),

Open Grid Forum and Storage Networking Industry Association. The Open cloud

standardizing working groups for the cloud computing in the market are presented in

this section.

2.4.1 Data Management Task Force CIMI and OVF

Developed by the Distributed Management Task Force, the Cloud Infrastructure Man-

agement Interface (CIMI) provides full support to the Open Virtualization Format

(OVF) with different RESTful APIs for JSON and XML formats. The objective of

OVF is to provide the description for the virtual appliances in an XML format and

vendor-free standard. It provides all the features of the virtual machines like hardware

description, software description, network and start up order. The OVF 2.0 also pro-

vides the package encryption capabilities. Notwithstanding, the OVF has not gained

enough adoption in the last years among the cloud providers [9].

2.4.2 Open Grid Forum WS-Agreement and OCCI

Web Services-Agreement provides a standard for Service Level agreement between the

providers and the users. XML format is used for template and agreement specification.

12



WS-Agreement has major 3 parts, first describes the agreement, second the schema of

the agreement description and third life cycle management operation description[3].

The Open Cloud Computing Interface (OCCI) [13] initiative endeavours to circum-

vent the vendor locks-in problem in the area of cloud computing by engaging with a

wide range of industrial stakeholders such as mOSAIC [32], SLA@SOI [44], OpenNeb-

ula [29], and OpenStack [20]. The OCCI aims to standardise the RESTful APIs for

task management. The standardisation was started by OCCI-working group at the

beginning for the IaaS clouds and now the standards are extensible with the SaaS and

PasS services. However, OCCI fails to exhibit common platform for cloud vendor APIs

to define virtual machine and their operations [28].

2.4.3 Storage Network Industry Association CDMI

To perform the operations and to retrieve the cloud data,Cloud Data Management

Interface(CDMI) has developed a RESTful interface for the users and applications. This

standard interface enables the administrators to handle the metadata, and managing

the credentials of cloud user accounts[21].

2.5 Research Gap

The aforementioned approaches do not necessarily take into account the structure of

a given application when elastically expanding or contracting resources in a widely

distributed environment such as public or hybrid clouds.

Pattern-based parallel programs are expressed by interweaving parameterised algo-

rithmic skeletons analogously to the way in which sequential structured programs are

constructed, fostering portability by focusing on the description of the algorithmic

structure rather than on its detailed implementation [15]. This provides a clear and

consistent behaviour across platforms, with the underlying structure depending on the

particular implementation.

However, scant research has been devoted to take advantage of the computational na-

ture of structured parallelism applications in cloud environments, and more importantly

on the automatic deployment of pattern-based programming frameworks on clouds.

From this perspective, the distributed version of FastFlow [1] can enable users to build

a common API in order to enable pattern-based parallel applications to interact with

different cloud platforms by using the standards such as OVF without depending on

any brokering or third party system.

13



In this project, an automation tool for heterogeneous pattern-based applications with

different hardware architecture requirements (CPU or GPU). Such tool has got no pre-

requisites (installation, configuration, or other) to burst into a public cloud with no

federation rules. The feature of the proposed automation tool provides enhanced capa-

bility than the VEP [18], which configure the set up of the application deployment in

the VEP tool interface. This requires changes in the VEP tool, when new dependency

or configurations are added to the application during the new release. Though, VEP

provides partial deployment of the application, while the proposed automation tool

provides the full deployment of the application using the Chef recipes and the stan-

dardized data export format Open Virtualization Format (OVF), presented in Section.

Hence, the technique of programming the VEP tool by remote login into the system

for application deployment is not flexible for automation purpose. In this sense, there

exist automation tool used for automating the deployment of application framework

in the systems(i.e. Chef, Puppet Labs and CFEngine), where Chef is an open source

automation tool and Puppet Labs and CFEngine are the commercial tools which also

provide this automation techniques.

14



Chapter 3

Specification

This chapter provides the design goal of developing a tool to overcome the issue of

vendor lock-in and migrate the virtual machines between the clouds from local resources

to the other cloud platforms automatically. This automation tool follows the parameters

like market based and pricing schema to migrate the virtual machines.

The proposed methodology is to automate the migration of virtual machines running

FastFlow applications from the local resources to the public cloud platforms. The

portability of FastFlow applications will be realized using the Automation Tool, which

configures both the hardware and software requirements of the virtual machine on

different IaaS platforms. While the Open Virtualization Format (OVF) standard is

used to configure the hardware, Chef is used to automatically install and configure the

FastFlow framework into the new virtual machine.

Thus, based on OVF, this work is proposing to create a specific deployment template

based on the IaaS provider by deconstructing the complete description regarding the

instance running in a standardized form. This deployment template is forwarded to

instantiate the pre-configured FastFlow-based virtual machines in the specific IaaS

platform. Moreover, the automated installation of FastFlow applications into the de-

ployment template will be realized through the usage of Chef, where FastFlow cookbook

will be created.

The proposed Automation Tool consists of two modules (Fig. 3.1): Automation Module

and Monitoring Module.

Vagrant is used to automate the instance creation on the local virtualised environment

and it is configured to use the Chef Server, which provides the cookbook for the Fast-

Flow installation during the instance creation. Once, the automation tool is started

15



Figure 3.1: FastFlow Automation Tool.

with the number of virtual machines required with the FastFlow platform and applica-

tions deployed. It calls the vagrant and automatically creates the instance in the local

virtualized environment and installs all the dependencies and the applications using

the FastFlow cookbook deployed in the Chef Server.

The monitoring module (Fig. 3.2) continuously monitors the utilisation of the local

resources and in case of more resources required, the automation tool automatically

bursts into the public clouds to get more resources. The monitoring module is used to

optimise the resource utilisation, the time for migration and the cost reduction. This

module maintains the complete log of the instance related to the specific project and

provides the efficiency in resource utilization.

These instances are notified to the monitoring module. The monitoring module decides

whether to burst to public clouds or not. For the case when the decision is to burst

the resources across public clouds, a cloud specific deployment template should be

created. This is because the public cloud platforms has specific requirement to start

instances. In order to get this specific requirement, a OVF file will be generated using

the OVF tool. This OVF file is obtained from the running virtual machine in the

local virtualized environment and it is deconstructed based on the nodes like operating

systems, memory, hard disk, RAM size and product name. These deconstructed nodes

are used to create a cloud specific deployment template. From the product section of

the OVF, the name of the platform and the application running on it is gathered and

those specific cookbooks from the chef server are called. Using the cookbooks, all the

dependencies are installed into the newly created virtual machines of the public cloud

platforms.

16



Figure 3.2: Monitoring Module.

The monitoring module logs all the instances information like the type of the instance,

operating systems, status of the instance and software installed. While bursting into the

public cloud platform, this module checks whether any instance with same configuration

is in stopped state. If it finds such instance, it starts that instance instead of creating

the new virtual machine and installing all the dependencies.

As a proof of concept, the monitoring tool decides whether to use CPU based instance

or GPU based instance based on the resource utilization of the local environment.

Depending on this decision, the appropriate FastFlow CPU or GPU cookbook recipes

from the Chef-server are used to deploy the application.

As the local resources are free, the monitoring module stops the instances in the public

cloud and restarts the instances in the local virtualized environment. This saves the

cost of running instances in the public cloud.

17



Chapter 4

Implementation

This chapter provides the implementation and the set up of the environment for mi-

grating the virtual machines between different cloud providers. The implementation of

the automation tool with the code snippets are presented in subsection 4.1 The set up

of Chef-workstation is detailed in subsection 4.2 and the vagrant for automation in the

local environment is explained in subsection 4.3.

4.1 Automation Tool

The goal of automatically bursting from local environment to cloud is achieved by

developing the automation tool on Java platform; OVF tool version 1.0 is used to

generate the OVF file; the virtualized environment is built using the Oracle VirtualBox

version 2.2 and Chef. The migration of workload is based on the CPU utilization of the

local system. The Cloud automation tool continuously monitors the CPU utilization

and checks whether the average utilization of the CPU exceeds the maximum threshold

value, like it is presented in the code below:

1 class CpuCalculation {

2 static String cmdTop = "uptime";

3 private StreamWrapper getAvgCpuUtilization(InputStream is, String type){

4 return new StreamWrapper(is, type);

5 }

6 private cpuMonitor(cpuUtilizationValue){

7 }

8 }

If the CPU utilization exceeds the average threshold, then the OVF is generated for

one of the instance in the local system using OVF tool. The complete configuration of

18



the instance including the application running is parsed from the OVF file. Then, the

cloud specific template is created in order to instantiate an instance in the cloud with

same configuration and all the dependencies required to start the application will be

installled into the new instance using the Chef cookbook that was created for FastFlow

applications (i.e. CPU or GPU based).

1 private File createOvf(Instance){

2 return new runVbox(command);

3 }

4 private getConfigOfInstance(File){

5 }

The cloud specific template creates an instance in the public cloud with the same con-

figuration and using the Chef cookbook recipes created for the FastFlow platform and

applications. The FastFlow CPU or GPU based framework is installed and configured

to run the applications in the newly created instance in the cloud.

1 private Reservation CreateInstance(configuration){

2 return new runInstance();

3 }

4 private installApplication(configuration){

5 node aws = instance.getInstancePublicDnsName();

6 runKnifeFastflow(aws);

7 }

Finally, the instance automatically starts running the application that was recently

running in the local virtualized system. The instances created in the public cloud are

stopped as soon as the local resources get free and the utilization falls to minimum

threshold value. This process runs in the background and continuously monitors the

utilization when the instances in the local virtualized system or in the cloud are running.

To automatically deploy and configure the application on the virtual machines, Chef

platform has been built on the Amazon public cloud.

4.2 Chef Platform

Chef is an automation tool, which provides a means to transform infrastructure as a

code. The definitions and dependencies are defined in the cookbooks and recipes used

in the chef environment. The workstation and nodes use the knife and chef-client API’s

to talk with the chef-server (Fig. 4.1).

The different parts in Chef architecture are:

19



Figure 4.1: Chef Architecture.

• Chef-Server: The chef-server is the centralized store of infrastructure config-

uration. The FastFlow CPU or GPU based cookbooks, policies, data bags etc

are placed in the chef-server. It handles all the nodes registered. The figures in

the appendix A are the screen shots of the Chef-Server deployed in the Amazon

Public Cloud.

• Chef-Nodes: The systems managed and configured by chef-server. Chef-client

runs on the node retrieving configuration information from the chef-server. It

installs all the dependencies and configures the system to run FastFlow applica-

tions.

• Chef-Workstation: The system with the local chef-repository and knife config-

ured to talk with the chef-server.

A private chef-server is running in Amazon public cloud. A FastFlow cookbook for CPU

and GPU based application was developed on this chef-server with all the dependencies

and configuration recipes required to install on the Linux machines (Fig. A.5). The

chef-client API talks to the chef-server for the specific recipe and runs the recipe on

the node.

20



4.2.1 Setting Chef Environment

On Linux Machines:

• Installing Virtual Box and Vagrant

1 $ sudo apt-get install vagrant

This will install VirtualBox and Vagrant on your system

• Installing omnibus installer, This will install Chef and Ruby on your system

1 $ curl -L https://www.opscode.com/chef/install.sh | sudo bash

On Windows System

• Download and install Virtual Box and Vagrant

1 VirtualBox: https://www.virtualbox.org/wiki/Downloads

2 Vagrant: http://downloads.vagrantup.com/

• Download and run the git installer with all the default options

1 Git Installer: http://git-scm.com/

• Download and run the Windows Chef installer with all the default options

1 Chef installer: http://opscode.com/chef/install.msi

P.S: Run the Chef commands in the git bash only for windows system

• Before, configuring the Chef-Workstation get the Chef-Validator.pem and

client.pem keys from the Chef-Server. This keys are used to register the user

with the chef-server and validate the authorized use of cookbooks

• Once the required keys are collected, place it in a particular directory or folder

and run the command to configure the workstation.

1 $ knife configure --initial

This command will prompt for the path to store the knife.rb, the address of

the chef-server (https://54.217.223.76) and the paths of chef-validator.pem and

client.pem.,place the appropriate path and set the password. The figure 4.2 below

gives the description

• The above command will create a knife.rb file and the user.pem with all the

configuration set

21



Figure 4.2: Initializing the knife configuration.

• Run the command to test the chef-workstation setup

1 knife client list

This command will list out all the clients in the chef-server.

An example of knife.rb file generated as part of this implementation is

1 log_level :info

2 log_location STDOUT

3 node_name ’admin’

4 client_key ’/root/.chef/admin.pem’

5 validation_client_name ’chef-validator’

6 validation_key ’/root/.chef/chef-validator.pem’

7 chef_server_url ’https://54.217.223.76’

8 syntax_check_cache_path ’/root/.chef/syntax_check_cache’

The recipes of FastFlow applications for CPU and GPU environments gather all the de-

pendencies like: C compiler, ZeroMQ version 2.2.0 and configures the paths to compile

the applications. Where as for FastFlow application with OpenCl code, the NVIDIA

drivers are required to be downloaded and installed. The GPU based recipe of Fast-

Flow handles all the required dependencies and installs the applications to keep them

running on GPU clusters. The decision of running a CPU or GPU based instance with

pre-configured FastFlow framework is based on resource utilization. Thus, if the uti-

lization is greater than 60%, then a GPU based instance is created in the AWS public

cloud and the GPU recipes of FastFlow are used to deploy and configure the new in-

stance. Otherwise, a CPU based instance will be created. In Fig. 4.3 the structure of

Chef-Cookbook for the FastFlow platform is presented.

22



Figure 4.3: FastFlow CookBook Structure.

1 ark node[’application’][’fastflow’] do

2 version "2.0.0"

3 url node[’fastflow’][’git’]

4 checksum template[’key’][’valueff’]

5 action :put

6 end

7

8 ark node[’zeromq’][’fastflow’] do

9 version "2.0.0"

10 url node[’zeromq’][’git’]

11 checksum template[’key’][’valuezmq’]

12 action :put

13 end

14 %w[

15 make && make install

16 ].each do |pkg|

17 package pkg

18 end

This automation tool is designed to work with different open source and commercial

IaaS cloud platforms. In the initial effort, the support to AWS cloud is provided. Later

23



on, the work for Microsoft Azure, Eucalyptus, Open Nebula etc., will be developed.

The pre-requisites to use this automation tool are Vagrant, VirtualBox version 2.2.0,

AWS public cloud credentials and access to the Chef-server.

4.3 Vagrant

Vagrant is an open source automation tool used to build the development environment

by maximizing the flexibility and productivity of the work environments. By using

Vagrant, creation of virtual machines on top of VirtualBox can be automated. Config-

uring the Vagrant with Chef the required framework can be installed automatically in

the local virtualized environment built with VirtualBox.

The Vagrant file is scripted to use the Chef cookbooks in order to create a virtual

machine on top of the VirtualBox with the FastFlow framework.

Setting Vagrant

• Create a new directory and run

1 $ vagrant init

This command will create a Vagrantfile in the newly created directory.

• Open the Vagrantfile and copy this setting in the Vagrant file in order to use the

Chef Server and to install the FastFlow framework

1 config.vm.provision :chef_client do |chef|

2 chef.chef_server_url = "IP address of the Chef Server"

3 chef.validation_key_path = "Path of the Validation key"

4 chef.node_name = "Name of the Node "

5 chef.provisioning_path = "Path where to provision"

6 chef.add_role("Role Name")

7 end

• Now, run the following command

1 $ vagrant up

For the first time it will take few minutes in order to download the ubuntu box

(Operating System).Now, the instance is ready with the application installed with

all the dependencies configured.

24



• SSH into the instance

1 $ vagrant ssh

The vagrantfile in the automation tool for the FastFlow framework with Ubuntu vagrant

box is

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3 time = Time.new

4 name = time.min

5 Vagrant::Config.run do |config|

6 config.vm.define :name do |config|

7 config.vm.box = "opscode-ubuntu-12.04-chef11"

8 config.vm.box_url = "https://opscode-vm.s3.amazonaws.com/vagrant/opscode_ubuntu ←↩
-12.04_chef-11.2.0.box"

9 config.vm.network :bridged

10 config.vm.provision :chef_client do |chef|

11

12 chef.chef_server_url = "https://54.217.223.76"

13 chef.validation_key_path = "/root/.chef/chef-validator.pem"

14 chef.node_name = "FastFlow-#{name}"

15 chef.provisioning_path = "/etc/chef/"

16 chef.add_role("FastFlow") //For CPU based virtual Machines

17 end

18 end

19 end

25



Chapter 5

Evaluation

The main aim of this automation tool is to reduce the time of migration from local

virtualized resources to the cloud environment with minimal manual efforts. It also

provides solution for vendor lock-in problem as this is a cloud-agnostic and hypervisor-

agnostic solution. In general, to migrate an application from one platform to another

cloud platform requires large number of manual steps to be followed. These steps may

cause minor errors while installing the application. In case of installing the FastFlow

framework within the local virtualized environment by a FastFlow experienced user, it

takes 30 minutes (approx) for creating the virtual machine, booting up the operating

system, installing and configuring the application.

In case of bursting into the public clouds, it will take longer because of the multitude

of steps required: getting access to the public cloud, selecting the image, creating the

security group, assigning the protocol rules, launching the instance, together with the

installation steps of the FastFlow application within that specific instance. Further-

more, each public cloud has their own API for creating the instance and connecting to

it, and a new cloud user has to learn how to use the cloud specific API to get access

to a particular cloud. Hence, automating all this process of moving the FastFlow ap-

plication from local virtualized environment into the cloud with the application ready

to use, it is useful in the real-time research projects by reducing the time of setting up

the systems.

Moreover, if a new version of FastFlow is released, it is a hectic process to reinstall the

new version by installing all the dependencies required. The proposed solution provides

the easy way of updating the application with all the required dependencies installed

with no steps or process.

26



The below figures (i.e. Fig. 5.1 and 5.2) present: the timeline to build the environ-

ment with FastFlow platform installed manually by the experienced user on the local

virtualized environment with Ubuntu 12.04 basic ISO image readily available and the

timeline for migrating to the AWS public cloud for more resources.

Figure 5.1: Time (min) for FastFlow CPU based virtual machine in VirtualBox.

Figure 5.2: Time (min) for FastFlow CPU based virtual machine in AWS.

The timelines with the automation tool on the same platforms are discussed in Fig. 5.1

and 5.2.

From the above figures (i.e. Fig. 5.1, 5.2) it can be noticed that the average time

for manually setting up the environment is much greater than using the proposed

27



automation tool. This automation tool also monitors the local virtualized environment

and self triggers to migrate to the cloud depending on the threshold values. It is

also used to reduce the cost of using the instances in the public cloud when the local

resources are freely available to use.

Furthermore, we used a simple benchmark application running on CPU-based virtual

machines in VirtualBox and AWS using the proposed automation tool. The application

that we selected for our tests is a 3-stage FastFlow distributed pipeline benchmark. The

first stage called Unpacker is generating a stream of data. Further, the second stage is

based on the task-farm pattern and it is internally parallel implemented. In this way,

each worker thread is computing a numerical function (F) on the input data. The last

stage called the Packer is collecting the results received from the middle stage(s). This

application was executed with all stages mapped in a single virtual machine (i.e. first,

the virtual machine created by the automation tool in VirtualBox and then the virtual

machine created by the automation tool in AWS) and we consider 2 middle stages for

the second stage of the application with 2 internal parallelism degree (i.e. 2 workers).

The results of running the application are presented below in Fig. 5.3, where the length

of the stream is varying from 128 to 1024.

Figure 5.3: Time (s) for running the benchmark application in a CPU based virtual
machine in VirtualBox and AWS with Automation Tool.

We have run for the GPU based virtual machine (Fig. 5.4 and 5.5) the same kind

of experiments like the one we reported in Fig. 5.3 (i.e. the execution time for the

28



benchmark application within the AWS CPU-based instance), and in this case we run

the same benchmark application but in a mixed CPU/GPU system.

Figure 5.4: Timeline for FastFlow GPU based virtual machine in AWS with Automation
Tool.

Figure 5.5: Time (s) for running the benchmark application in a GPU based virtual
machine in AWS with Automation Tool.

29



Chapter 6

Conclusion

This thesis proposed a cloud automation tool for automatically deploying the FastFlow

framework for both CPU or GPU based virtual machines, which are automatically

migrated from local environment to cloud platform. This automation tool continuously

monitors the resource utilization and based on the threshold it realizes the migration

of the customized virtual machines between local and public cloud environment.

The evaluation chapter described different experiments, that have been tested using the

proposed automation tool on both the CPU and GPU based instances. In this sense,

different applications of FastFlow platform were successfully executed in the instances

created using the Automation Tool.

Thus, the proposed Automation Tool has the following advantages: it solves the vendor

lock-in issues and the problems faced by the federation clouds, it does not need pre-

requisites to use it and it is a very straightforward and quick tool, which registered less

time than the usual manual migration and customization process of virtual machines.

Though, this Automation Tool was tested for FastFlow applications, different appli-

cations other than FastFlow could be automatically installed and configured, if the

required Chef recipes for them will be developed. This is possible because the Automa-

tion Tool follows all the standardized tools and formats.

The initial development of this automation tool focused on migration from the local vir-

tualized environment to the Amazon public cloud. The further work with other different

public clouds like Microsoft Azure will be supported with the cost dependent param-

eter providing a Graphical User Interface. Another future task will be to automate

the tasks allocation of FastFlow applications across heterogeneous cloud environments.

Furthermore, different parameters as discussed in this paper will also be considered in

30



the future work to allocate the resources for the virtual machines automatically.

31



Bibliography

[1] Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati. Tar-

geting distributed systems in FastFlow. In Euro-Par 2012 Workshops, volume 7640 of LNCS,

pages 47–56, Rhodes Islands, August 2012. Springer.

[2] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano Meneghin, and Massimo

Torquati. Accelerating code on multi-cores with FastFlow. In Euro-Par, volume 6853 of LNCS,

pages 170–181, Bordeaux, August 2011. Springer.

[3] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig, Toshiyuki Nakata,

Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web services agreement specification

(ws-agreement). In Global Grid Forum, volume 2, 2004.

[4] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz, Andy Konwin-

ski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A view of cloud computing.

Communications of the ACM, 53(4):50–58, 2010.

[5] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. Intercloud: Utility-oriented federation

of cloud computing environments for scaling of application services. In Algorithms and architectures

for parallel processing, pages 13–31. Springer, 2010.

[6] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic. Cloud

computing and emerging it platforms: Vision, hype, and reality for delivering computing as the

5th utility. Future Generation computer systems, 25(6):599–616, 2009.

[7] Sonia Campa, Marco Danelutto, Horacio González-Vélez, Alina Mădălina Popescu, and Massimo

Torquati. Towards the deployment of fastflow on distributed virtual architectures. In Proc. of

ECMS 2013, pages 518–524, 2013.

[8] Marco Comuzzi, Constantinos Kotsokalis, Christoph Rathfelder, Wolfgang Theilmann, Ulrich

Winkler, and Gabriele Zacco. A framework for multi-level sla management. In Service-Oriented

Computing. ICSOC/ServiceWave 2009 Workshops, pages 187–196. Springer, 2010.

[9] Simon Crosby, Ron Doyle, Mike Gering, Michael Gionfriddo, Steffen Grarup, Steve Hand, Mark

Hapner, Daniel Hiltgen, Michael Johanssen, Lawrence J Lamers, et al. Open virtualization format

specification (ovf). Technical report, Technical Report DSP0243, Distributed Management Task

Force, Inc, 2009.

[10] Jiangpeng Dai, Bin Hu, Lipeng Zhu, Haiyun Han, and Jianbo Liu. Research on dynamic resource

allocation with cooperation strategy in cloud computing. In System Science, Engineering Design

and Manufacturing Informatization (ICSEM), 2012 3rd International Conference on, volume 1,

pages 193–196. IEEE, 2012.

[11] M.D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali. Cloud computing: Distributed

internet computing for IT and scientific research. IEEE Internet Computing, 13(5):10–13, 2009.

32



[12] Scott Dowell, Albert Barreto, James Bret Michael, and Man-Tak Shing. Cloud to cloud interop-

erability. In System of Systems Engineering (SoSE), 2011 6th International Conference on, pages

258–263. IEEE, 2011.

[13] Andy Edmonds, Thijs Metsch, Alexander Papaspyrou, and Alexis Richardson. Toward an open

cloud standard. IEEE Internet Computing, 16(4):15–25, 2012.

[14] Mehdi Goli and Horacio González-Vélez. Heterogeneous algorithmic skeletons for FastFlow with

seamless coordination over hybrid architectures. In PDP 2013, pages 148–156, Belfast, February

2013. IEEE Computer Society.

[15] Horacio González-Vélez and Mario Leyton. A survey of algorithmic skeleton frameworks: high-level

structured parallel programming enablers. Software: Practice and Experience, 40(12):1135–1160,

2010.

[16] Greek Interoperability Center. Deliverable d6.1 interoperability guide. Technical Report 6, 2012.

[17] Nikolay Grozev and Rajkumar Buyya. Inter-cloud architectures and application brokering: tax-

onomy and survey. Software: Practice and Experience, pages 1–22, 2012.

[18] Piyush Harsh, Yvon Jegou, Roberto G Cascella, and Christine Morin. Contrail virtual execution

platform challenges in being part of a cloud federation. In Towards a Service-Based Internet, pages

50–61. Springer, 2011.

[19] Ye Hu, Johnny Wong, Gabriel Iszlai, and Marin Litoiu. Resource provisioning for cloud comput-

ing. In Proceedings of the 2009 Conference of the Center for Advanced Studies on Collaborative

Research, pages 101–111. ACM, 2009.

[20] Kevin Jackson. OpenStack Cloud Computing Cookbook. Packt Publishing, 2012.

[21] V Kowalski, H Shah, J Crandall, M Waschke, N Joy, S Neely, J Wheeler, S Pardikar, et al. Open

virtualization format specification. vol. DSP0243, 2.

[22] Karthik Kumar, Jing Feng, Yamini Nimmagadda, and Yung-Hsiang Lu. Resource allocation for

real-time tasks using cloud computing. In Computer Communications and Networks (ICCCN),

2011 Proceedings of 20th International Conference on, pages 1–7. IEEE, 2011.

[23] Wei-Yu Lin, Guan-Yu Lin, and Hung-Yu Wei. Dynamic auction mechanism for cloud resource

allocation. In Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International

Conference on, pages 591–592. IEEE, 2010.

[24] Alina Mădălina Lonea, Daniela Elena Popescu, and Octavian Prostean. The overall process taken

by enterprises to manage the iaas cloud services. In Proc. of ECIME 2012, pages 168–177. Uni-

versity College Cork, 2012.

[25] N. Loutas, E. Kamateri, F. Bosi, and K. Tarabanis. Cloud computing interoperability: The state of

play. In 2011 IEEE CloudCom, pages 752–757, Athens, November 2011. IEEE Computer Society.

[26] Michael McCool, Arch D. Robison, and James Reinders. Structured Parallel Programming: Pat-

terns for Efficient Computation. Morgan Kaufmann, Boston, 2012.

[27] Thijs Metsch, Andy Edmonds, and Victor Bayon. Using cloud standards for interoperability of

cloud frameworks. A technical RESERVOIR report, 2010.

[28] Thijs Metsch, Andy Edmonds, R Nyrén, and A Papaspyrou. Open cloud computing

interface–core. In Open Grid Forum, OCCI-WG, Specification Document. Available at:

http://www.ogf.org/documents/GFD.183.pdf, 2010.

[29] Dejan S. Milojicic, Ignacio Mart́ın Llorente, and Rubén S. Montero. Opennebula: A cloud man-

agement tool. IEEE Internet Computing, 15(2):11–14, 2011.

33



[30] Mayank Mishra and Anirudha Sahoo. On theory of vm placement: Anomalies in existing method-

ologies and their mitigation using a novel vector based approach. In Cloud Computing (CLOUD),

2011 IEEE International Conference on, pages 275–282. IEEE, 2011.

[31] R. Moreno-Vozmediano, R.S. Montero, and I.M. Llorente. Key challenges in cloud computing:

Enabling the future internet of services. Internet Computing, IEEE, 17(4):18–25, 2013.

[32] mOSAIC FP7 project. Mosaic open source api and platform for multiple clouds. http://www.

mosaic-cloud.eu/.

[33] Amit Nathani, Sanjay Chaudhary, and Gaurav Somani. Policy based resource allocation in iaas

cloud. Future Generation Computer Systems, 28(1):94–103, 2012.

[34] Radu Prodan and Simon Ostermann. A survey and taxonomy of infrastructure as a service and

web hosting cloud providers. In Grid Computing, 2009 10th IEEE/ACM International Conference

on, pages 17–25. IEEE, 2009.

[35] RESERVOIR FP7 project. Resources and services virtualization without barriers. http://www.

reservoir-fp7.eu/.

[36] Luis Rodero-Merino, Luis M. Vaquero, Victor Gil, Fermı́n Galán, Javier Fontán, Rubén S. Mon-

tero, and Ignacio M. Llorente. From infrastructure delivery to service management in clouds.

Future Generation Computer Systems, 26(8):1226 – 1240, 2010.

[37] Mohsen Amini Salehi and Rajkumar Buyya. Adapting market-oriented scheduling policies for

cloud computing. In Algorithms and Architectures for Parallel Processing, pages 351–362. Springer,

2010.

[38] Tino Schlegel, Ryszard Kowalczyk, and Quoc Bao Vo. Decentralized co-allocation of interrelated

resources in dynamic environments. In Web Intelligence and Intelligent Agent Technology, 2008.

WI-IAT’08. IEEE/WIC/ACM International Conference on, volume 2, pages 104–108. IEEE, 2008.

[39] Shifeng Shang, Jinlei Jiang, Yongwei Wu, Zhenchun Huang, Guangwen Yang, and Weimin Zheng.

Dabgpm: A double auction bayesian game-based pricing model in cloud market. In Network and

Parallel Computing, pages 155–164. Springer, 2010.

[40] Shifeng Shang, Yongwei Wu, Jinlei Jiang, and W Zheng. An intelligent capacity planning model

for cloud market. Journal of Internet Services and Information Security, 1(1):37–45, 2011.

[41] Michael Sindelar, Ramesh K Sitaraman, and Prashant Shenoy. Sharing-aware algorithms for vir-

tual machine colocation. In Proceedings of the 23rd ACM symposium on Parallelism in algorithms

and architectures, pages 367–378. ACM, 2011.

[42] Borja Sotomayor, Rubén S Montero, Ignacio M Llorente, and Ian Foster. Virtual infrastructure

management in private and hybrid clouds. Internet Computing, IEEE, 13(5):14–22, 2009.

[43] Jianzhe Tai, Juemin Zhang, Jun Li, Waleed Meleis, and Ningfang Mi. Ara: Adaptive resource

allocation for cloud computing environments under bursty workloads. In Performance Computing

and Communications Conference (IPCCC), 2011 IEEE 30th International, pages 1–8. IEEE, 2011.

[44] Andy Edmonds Thijs Metsch and Victor Bayon. Using cloud standards for interoperability of

cloud frameworks. Technical report, 2010.

[45] Takuro Tomita and Shin-ichi Kuribayashi. Congestion control method with fair resource alloca-

tion for cloud computing environments. In Communications, Computers and Signal Processing

(PacRim), 2011 IEEE Pacific Rim Conference on, pages 1–6. IEEE, 2011.

[46] Constantino Vázquez, Eduardo Huedo, Rubén S Montero, and Ignacio M Llorente. On the use of

clouds for grid resource provisioning. Future Generation Computer Systems, 27(5):600–605, 2011.

34

http://www.mosaic-cloud.eu/
http://www.mosaic-cloud.eu/
http://www.reservoir-fp7.eu/
http://www.reservoir-fp7.eu/


[47] Xingwei Wang, Jiajia Sun, Hongxing Li, Chuan Wu, and Min Huang. A reverse auction based

allocation mechanism in the cloud computing environment. Appl. Math, 7(1L):75–84, 2013.

[48] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. Sla-based resource allocation for soft-

ware as a service provider (saas) in cloud computing environments. In Cluster, Cloud and Grid

Computing (CCGrid), 2011 11th IEEE/ACM International Symposium on, pages 195–204. IEEE,

2011.

[49] Jianfeng Yan and Wen-Syan Li. Calibrating resource allocation for parallel processing of analytic

tasks. In e-Business Engineering, 2009. ICEBE’09. IEEE International Conference on, pages

327–332. IEEE, 2009.

35



Appendix A

Chef Server

Figure A.1: Chef Environments

Figure A.2: Chef Roles

36



Figure A.3: Chef Status

Figure A.4: Chef-Nodes

Figure A.5: Chef CookBooks

37



Figure A.6: Chef Clients

Figure A.7: Chef Users

38


	Abstract
	Acknowledgements
	Declaration
	Introduction
	Thesis Structure

	Literature Review
	Interoperability and Portability issues
	Parameterized Resource allocation
	Market based resource allocation
	Resource allocation based on auctions
	Resource allocation based on Service Level Agreements (SLA)
	Resource allocation based on schedulers
	Resource allocation based on Rules
	Resource allocation by scalable computing
	Resource allocation for congestion control

	Resource Allocation System (RAS)
	Cloud Computing Standards
	Data Management Task Force CIMI and OVF
	Open Grid Forum WS-Agreement and OCCI
	Storage Network Industry Association CDMI

	Research Gap

	Specification
	Implementation
	Automation Tool
	Chef Platform
	Setting Chef Environment

	Vagrant

	Evaluation
	Conclusion
	Bibliography
	Chef Server

