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MultiToxiGuard: A Culturally Aware Multilingual
Toxicity Detection System with Hierarchical
Sampling and Confidence Calibration

Jacob Saju
X23166363

Abstract
Online toxicity detection systems struggle immensely in scaling across multiple,

diverse linguistic and cultural environments, frequently privileging high-resource
languages and offering poor protection to low-resource languages speakers. This work
presents MultiToxiGuard, a multilingual toxicity detection system that solves these
problems using three new components: a Smart Balancing Module using hierarchical
sampling and dynamic weighting, a Contextual Enhancement Layer leveraging cultural
embeddings for enhanced semantic awareness, and a Confidence Estimation System that
includes robust uncertainty estimation. Utilizing a dataset of 15 languages from 9
language families, rigorous data augmentation processes are implemented that greatly
enhanced representation of low-resource languages (Japanese +1518%, Vietnamese
+1208%). Results of the validation indicate high overall performance (F1=0.7944,
accuracy=0.8278) with impressive uniformity spanning linguistic boundaries, and having
a cultural fairness score of 0.96. Specifically, a few low-resource languages (Estonian,
Swabhili) performed better than medium-resource languages, highlighting the efficacy of
these balancing techniques. Whereas performance objectives of F1 (=0.88) and the rate
of false positives (<0.03) are still daunting, MultiToxiGuard is a major step forward in
fair content moderation that closes the high to low-resource languages' performance gap,
a sore problem of past techniques. This system presents a single, integrated framework
for detection of toxicity which performs at a consistent rate without the need for distinct
models per language, markedly improving the best available multilingual content
moderation technologies.

1 Introduction

The swift growth of user-generated content on global online platforms has elevated cross-
cultural interactions, creating engagement across community and Knowledge sharing. This
growth, however, has been accompanied by a concerning increase in toxic and abusive
postings like harassment, hateful speech, and threatening content (Abbasi et al., 2022; Taleb
et al., 2022). Although automated systems of toxicity detection have become a necessary tool
to preserve the health of online environments, they encounter serious problems when
implemented across the linguistic and cultural diversity of the contemporary internet.

Existing toxicity detection methodologies highly prefer high-resource languages, resulting in
wide disparities in content moderation quality across linguistic boundaries (Conneau et al.,



2019; Bogoradnikova et al., 2021). This linguistic imbalance serves to compromise platform
security for low-resource language speakers and is not suited to capture the subtler cultural
environments in which the toxic content arises. As Shrestha et al. (2023) showed, even
models that are high performing, with F1-scores greater than 0.94, deteriorate significantly
when faced with new social media data of different linguistic origins, calling for more
culturally attuned and flexible solutions.

There exist a variety of serious challenges that hamper effective multilingual toxicity
detection. Firstly, the intrinsic class imbalance of toxic and neutral content generates biased
training gradients, where toxic content generally accounts for a minor part of total data (Priya
et al., 2023). Secondly, models in the absence of carefully designed context-aware
mechanisms struggle to capture culturally specific expressions, colloquial sayings, and
regional indicators that tend to mark abusive content (Chan & Li, 2024). Finally, the limited
availability of annotated data in low-resource languages leads to persistent performance
differences, causing disproportionate safety coverage to linguistically diverse user
populations (Goyal et al., 2020).

While the frameworks currently in use seek to tackle these problems using translation-based
methods, they inject more inconsistencies and tend to discard crucial cultural context (Malik
et al., 2021). End-to-end multilingual models have more potential but are exceedingly
sensitive to data-balancing and cross-lingual transfer methods. Additionally, traditional
balance techniques like the use of SMOTE (Synthetic Minority Oversampling Technique)
have proved inconsistent when applied to the naturally diverse processes of online toxicity.

This research seeks to overcome these shortcomings by examining the following research
question:

How can an integrated multilingual toxicity detection system featuring hierarchical
sampling, cultural-context embeddings, and confidence calibration mitigate class
imbalance and achieve reliable performance across diverse languages, including those
with limited resources?

The study presents a new method based on the XLM-RoBERTa-XL architecture, comprising
three innovations: (1) a Smart Balancing Module that employs hierarchical sampling
processes with dynamic adaptation towards representation of the language and frequency of
toxicity; (2) a Contextual Enhancement Layer that employs cultural embeddings and pattern-
based enhancement of semantic comprehension; and (3) a robust Confidence Estimation
system to ensure high-risk content detection at low rates of false positives.

The research contributes to the scientific literature in the following ways:
1. One framework that enhances the current practices by having dynamic balancing
processes incorporated that are directly suitable to multilingual contexts.
2. New culture context embeddings that are especially designed to encode the nuance of
language and culture differences in toxic language.



3. A full evaluation framework that measures technical performance and cultural
sensitivity both in 55 languages, with new benchmarks in multilingual toxicity
detection.

The rest of the paper is structured as follows: Section 2 overviews the pertinent literature
concerning multilingual toxicity detection, class imbalance techniques, and contextual
comprehension; Section 3 presents the methodology of the research, including the dataset
properties and the metrics of the evaluation; Section 4 presents the proposed architecture's
design specification; Section 5 outlines the implementation details; Section 6 reports the
results of the evaluation and the discussion; and Section 7 concludes by summarizing
findings and directions for future research.

2 Related Work

This work positions the present research in the context of the wider academic literature on
multilingual toxicity detection. It critically analyzes the major developments in multilingual
methodology, class imbalance techniques, contextual awareness mechanisms, and low-resource
language deployment challenges. It reviews the drawbacks and benefits of the available
approaches and attempts to highlight the gaps that motivate the proposed research.

2.1 Current Approaches in Multilingual Toxicity Detection

The building block of present multilingual toxicity detection models relies heavily on transformer
models and cross-lingual representation learning. Conneau et al. (2019) launched XLM-
RoBERTa (XLM-R), a system that showed remarkable progress in cross-lingual comprehension
using unsupervised learning at scale. Through learning from 2.5TB cleaned CommonCrawl data
in 100 languages, XLM-R attained the current best results in the task of classification, achieving a
14.6% average accuracy improvement on the XNLI benchmark against multilingual BERT. The
full potential of their method lies in tackling what they called the "curse of multilinguality” by
having more model capacity, enabling efficient sharing of parameters across languages.
Nevertheless, in addition to its remarkable performance, the XLM-R was not directly tuned for
toxicity detection work and does not support handling class imbalance problem present in toxic
content datasets.

Developing along cross-lingual paradigms, Bogoradnikova et al. (2021) focused on toxicity
detection in the Russian language and explored the role of morphological features and language-
specific characteristics in influencing detection quality. They found that while multilingual
embedding models transfer knowledge quite efficiently across languages, they do not always
label toxicity equally in different linguistic settings. Their method integrated conventional topic
modeling techniques such as LDA-Mallet with domain adaptation models and resulted in a toxic
span detection with an F1-score of 0.73. Their major drawback was having a fairly small dataset
size and a single-language family, raising concerns regarding generalizability to more
heterogeneous sets of languages.

Pal and Rai (2023) also improved multilingual toxicity detection by comparing deep learning
versus traditional machine learning techniques on a set of 153,164 tweets. Their LSTM
implementation resulted in a remarkable 90.7% accuracy at F1-score of 0.94. What is great about
their method is the exhaustive comparison of different model architectures, while their generally
uniform data distribution did not handle real-world situations in which toxic content occurs at
significantly lower frequencies than non-toxic content.
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Malik et al. (2021) provided useful insights through their comparative study of word embeddings,
which proved that the choice of careful embedding heavily influences the model performance. In
a comparison of BERT, fastText, and conventional embeddings using deep neural networks, they
proved that CNN-based models using suitable embeddings outperformed conventional
techniques. Their methodological power rests in the embedding analysis in detail, although the
study was restricted insofar as it dealt largely with English content, and minimal cross-lingual
testing.

2.2 Balancing Strategies for Class Imbalance

Class imbalance is a serious problem in toxicity detection, in which toxic examples generally
account for a minor portion of total data. Priya et al. (2023), in a direct engagement of this
problem, analysed multi-label toxicity detection techniques in their work on the Jigsaw Toxic
Comment Classification Challenge dataset, illustrating how numerous machine learning models
behave under imbalanced conditions. Their comparative analysis showed Linear SVC had the
best accuracy in identifying toxic texts in multi-label contexts. Their method's power rests in its
identification of numerous, interacting categories of toxicity, although their study was constrained
by comparatively simple balancing strategies that will not necessarily generalize to highly
imbalanced multilingual datasets.

Machova et al. (2022) presented a novel hybrid method of using a blend of lexicon-based and
machine learning techniques to detect levels of toxicity. This stratified method of approaching
toxicity issue having a grading system of content in several levels of severity in place of binary
labels offers more nuanced structure for content moderation. By creating a Slovak language
toxicity lexicon of 809 words in three levels of toxicity, they established the groundwork for
automated labeling. This SVM implementation had an 80% correct classification rate on all of the
classes, and they performed quite strongly on the detection of highly toxic content (specificity of
0.950). Their work's primary limitation is its language-specificity and difficulty in scaling the
lexicon method to languages that have more intricate morphological systems.

Taleb et al. (2022) addressed the problem of class imbalance in a way characterized by advanced
data pre-processing techniques. In the detection of toxic content on social media, "Down-
sampling Majority Class" technique is used to balance the dataset so that both toxic and non-toxic
classes had the same distribution. These deep learning models specifically, LSTM using GloVe
embeddings, attained a high Fl-score of 0.94 in identifying toxic languages. Although this
balancing method was effectively working on the given dataset, it also poses questions
concerning data loss when it is applied in multilingual environments where specific languages
might already have a shortage of data.

2.3 Contextual Understanding and Cultural Calibration

The identification of toxic material in various cultural and linguistic environments needs
advanced contextual knowledge mechanisms. Chan and Li (2024) contributed importantly to this
topic by their "Specialis Revelio™ pre-processing module, specially constructed for the purpose of
exposing hidden toxicity which conventional detection techniques tend to miss. It covered seven
of the major text manipulation strategies applied to evade content moderation, namely, slang,
Leetspeak, and deliberate misspellings. Using GPT-3 and custom algorithms to correct
misspelling and modify word boundaries effectively, they detect performance of current APIs
such as Perspective API is greatly enhanced, increasing probabilities of toxicity detection in their
experiments from up to 0.21 to 0.80. The strength of their work is that they directly counter
evasion techniques, although costs of implementation and processing overhead might constrain
scalability in real-time scenarios.



Abbasi et al. (2022) directly explored religious and continent-based toxic content detection and
showed how cultural context plays a role in detection efficacy. Their study on multilabel religious
toxic comment classification showed that the CNN model using GloVe word embedding had the
best accuracy of 95.24%, far better than other models. Their study also shows the necessity of
specialized detection of content that is culturally sensitive, although the use of different models
per type of content might pose integration problems in extensive moderation systems.

Aquino et al. (2021) investigated the use of text and emojis in toxic content detection, mirroring
the multimodal character of contemporary communication. This two-stream processing method
processes the text and emoji elements individually before being combined in a single vector
representation that is then classified. Each augmentation method employs quality checking
through introducing similarity checks to confirm that produced text is semantically meaningful
with extra useful linguistic variation.

Sarker et al. (2023) also introduced ToxiSpanSE, which is an answer to the toxic span detection
task in software engineering communication. Their fine-tuned ROBERTa model achieved an
impressive Fl-score of 0.88 to identify specific toxic segments in text. The power of this
technique lies in the explainability it offers in referencing exact phrases causing toxicity
prediction, with its domain-specific nature limiting applicability to general multilingual settings.
Their manual misclassification analysis determined that the highest category of their errors were
their false positives (65.35% of their errors) and this illustrates just how difficult it is to
accurately identify toxic spans even with cutting-edge models.

2.4 Challenges in Low-Resource Language Implementation

Efficient detection of toxicity in lower-resourced languages is especially a challenge. Shrestha et
al. (2023) met this by training models to detect both toxic language and threats in Swedish, a
much lower-resourced language. Using transfer learning with the BERT, they achieved F1-scores
of over 0.94 in recognizing toxic language detection and 0.86 in threat detection. These models,
however, showed serious degradation in performance when tested on unseen social media data,
where they misclassified 40% of threats, indicating the generalization problem in real-world
deployments. This study indicated that 20% of the threats detected contained no toxic content,
highlighting the intricacies of harmful content detection beyond a mere measure of toxicity.

R et al. (2023) compared a wide variety of word embeddings for toxicity detection in detail,
specifically on the Jigsaw dataset. It showed that CNN models using GloVe embeddings were
more accurate at 96.59%, compared to other types of embedding techniques. Although this
method is useful in the choice of the appropriate embedding, it dealt mainly with high-resource
languages and not the problem of embedding quality in low-resource languages, where pre-
trained embeddings might not have enough coverage or quality.

Suresh et al. (2023) analyzed the performance of toxicity detection through different machine
learning models and mentioned the difficulty of obtaining labeled data for the purpose of
training—a problem worsened in low-resource languages. Their research insisted on the fact that
the subtleties and context-specificity of toxicity create a nuance that even advanced models find
hard to capture consistently. They present problems of data imbalance and linguistic subtleties,
which become far more amplified in multilingual environments operating under constrained
resources.

The work of Goyal et al., cited in several papers, proved that greater transformer capacity could
considerably enhance cross-lingual performance, specifically for low-resource languages. This
indicates that architectural changes and optimization of parameters can alleviate some of the
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problems in low-resource language toxicity detection, although the computational cost of the
approach might restrict practical use in many instances.

2.5 Research Gaps and Justification

Existing literature is examined to show a number of crucial gaps in multilingual toxicity
detection. Although tremendous progress has been achieved in cross-lingual representation
learning and different facets of toxicity detection, the current methods falter in being able to
achieve consistent high levels of performance across a wide linguistic and cultural diversity,
particularly in low-resource languages. Class imbalance issues are not sufficiently addressed in
multilingual environments, and the majority of balancing procedures are tailored to monolingual
environments. In addition, current approaches often do not contain a fully integrated treatment of
hierarchy sampling, contextual enhancement, and confidence calibration in one general
framework.

Most models exhibit a "performance cliff" in transitioning from high-resource to low-resource
languages, and it is questionable that boosting model capacity or data volume alone will
overcome the intrinsic problems. Context and cultural nuances of toxicity, which are highly
diverse across languages and societies, tend to remain secondary rather than primary design
considerations. Most available systems also provide limited explainability, and it is hard for the
human moderators to know and endorse the decisions of the models, a crucial need for content
moderation in a sensitive context.

Such gaps warrant the necessity of the proposed integrated multilingual toxicity detection system,
which directly targets class imbalance using the mechanisms of hierarchical sampling while
integrating cultural-context embeddings and confidence calibration. This system would seek
reliable performance on a wide variety of languages, including low-resource languages, while
being explainable and adaptable to changing linguistic conventions. This proposed research fills
the gaps above by creating a complete framework that draws the best of the available approaches
and addresses their shortcomings in a systematic manner.

3 Research Methodology

This study adopted a systematic methodology to deal with the problem of multilingual
toxicity detection, keeping in mind the need to ensure similar performance on a variety of
languages while solving class imbalance and cultural sensitivity problems. It includes data
gathering and preparation, architecture design, implementation, training, and testing stages,
all of which were specifically designed in support of the study purposes.

3.1 Data Collection and Preparation

3.1.1 Dataset Selection and Analysis

The main dataset used in this study was the FredZhang7/toxi-text-3M dataset (FredZhang?7,
2023), having approximately 3 million text samples in 55 languages, all of which were
created by humans, not machine-translated texts. This dataset was selected due to its
extensive linguistic diversity and a wide variety of toxic content types, such as hate speech,
harassment, threats, insulting texts, sexting, and other abusive content types.

Analysis of the initial dataset showed high imbalances in both the language representation
and the distribution of the class:



Total samples Toxic samples Non-toxic samples
2,880,667 416,529 (14.46%) 2,464,138 (85.54%)

Language distribution analysis revealed a wide imbalance where English comprised a
disproportionate 87.8% of the total samples (2,528,002 samples), and the other 54 languages
accounted for a mere 12.2%. Languages were classified based upon the volume of samples.:

o High-resource: English (2,528,002 samples)
o Medium-resource: 10 languages : Turkish, Arabic, Portuguese, Spanish, Russian, and
others (total of 280,332 samples)
o Low-resource: 45 languages with fewer than 10,000 samples each (total of 72,333
samples)
Class imbalance also varied widely from language to language from English's 11.73%
toxicity to Arabic's 66.44%, which created enormous challenges in terms of balancing
learning.

3.1.2 Language Selection Strategy

In order to enable efficient computing with linguistic diversification, a language selection
method was implemented by adopting the technique of Goyal et al. (2020). The method
selected top 15 languages as per:

1. Resource level representation (high/medium/low)

2. Linguistic family diversity

3. Toxicity distribution

4. Minimum viability threshold (not fewer than 20 toxic samples)

5. Technical compatibility with embedding models
The final choice comprised:

o High-resource: English

e Medium-resource: Turkish, Arabic, Portuguese, Spanish, Russian, Indonesian, Greek

o Low-resource: Hindi, Estonian, Thai, Swabhili, Croatian, Vietnamese, Japanese
This sample comprised 9 language families (Germanic, Romance, Slavic, Semitic, Turkic,
Austronesian, Hellenic, Indo-Aryan, Uralic, Tai-Kadai, Niger-Congo, Austroasiatic, and
Japonic), spanning wide linguistic diversity.

3.1.3 Data Augmentation and Balancing

Using the method of Priya et al. (2023), class imbalance was overcome by a multi-stage data
augmentation process:
1. Target Calculation: For each language-class combination, targets were calculated
using a tiered approach:
o Classes with >5,000 samples: No augmentation
o Classes with 500-5,000 samples: Target 5,000 samples
o Classes with <500 samples: Target 2,500 samples
2. Semantic-Preserving Augmentation: In line with the techniques by Chan and Li
(2024), four complementary augmentations were applied:
a. Word Substitution: Substitution, deletion, or repetition of words at a random 15%
rate in order to preserve semantic content and create linguistic variation.
b. Back-Translation: Translate the text to pivot languages (English, French, German)
and back utilizing the NLLB-200 model (Meta Al, 2022), as validated by Taleb et al.
(2022).



c. Embedding-Based Hybrid Generation: Employ FastText embeddings to search
semantically similar texts in the range of 0.65 to 0.95 and generate hybrid samples
through fragment blending, building upon Malik et al. (2021).

d. Direct Translation: Create further samples for under-represented languages
(Japanese, Vietnamese) by translating from high-resource languages while keeping
class ratios.

3. Quality Control: All the augmented samples were verified for semantic similarity
(compared with the original samples) in order to preserve the toxicity properties.
Samples with similarity measures outside the range of 0.65-0.95 were excluded in
order to preserve quality.

4. Final Balancing: Downsampled the overrepresented classes to produce the final
balancing dataset, specifically capping English and Turkish non-toxic samples at a
maximum of 15,000 entries each, adopting similar practices by Machova et al. (2022).

The data augmentation boosted the dataset size from 271,539 to 321,161 samples, achieving
robust growth in low-resource languages (e.g., Japanese +1518%, Vietnamese +1208%,
Croatian +402%).

A stratified train/validation/test partition of 80%/10%/10% was applied, ensuring distribution
of languages and toxicity and also resulting in:

o Training set: 222,295 samples

o Validation set: 27,787 samples

o Testset: 27,787 samples

3.2 Model Architecture Design

The model architecture was inspired by the work of Conneau et al. (2019) and
Bogoradnikova et al. (2021), and new extensions to overcome the specific needs of
multilingual toxicity detection have also been added.

3.2.1 Base Model Selection

XLM-RoBERTa-Large has been selected to be the base model because of its established
cross-lingual transfer capability within 100 languages. This is motivated by comparative
research by Conneau et al. (2019) and Pal and Rai (2023) that established the outstanding
performance of the model in multi-lingual conditions.

3.2.2 Custom Architecture Components

1. Smart Balancing Module: Based on the research of Priya et al. (2023) this features
assists in balancing a dataset
o Language-balanced sampling: Factored random sampling with specific focus
on under-represented languages
o Language-aware loss function: Unique loss function type that scale the
contributions, according to prior performance flexibly
2. Contextual Enhancement Layer: This aspect takes from the context research by
Abbasi et al. (2022) and Chan and Li (2024) and enhances semantic understanding
by:
Language embeddings: Separate embeddings by language
Cultural context projection: Combine base representations to language
embeddings
o Context-aware self-attention: multihead attention mechanisms preserve
cultural relevant patterns



Confidence Estimation System: In reaction to the issues of explainability by Sarker
et al. in 2023, this system dirives reliable measures by:
Confidence network: Expert prediction-based confidence scores
Language-specific calibration: Parameters specific to the corresponding
language with respect to credibility
o Calibration loss: Supplementary training goal to match confidence with
accuracy

3.3 Training Procedure

3.3.1

Hardware and Software Environment

The following setting has been used in the training:

3.3.2

Hardware: NVIDIA A100-SXM4-40GB GPU

Deep learning framework: PyTorch 2.6.0 with CUDA 12.4
Libraries: Hugging Face Transformers, FastText, NLLB-200
Storage: Google Drive for dataset and checkpoint management

Training Protocol

The following arrangement was used in the training through a three-period schedule:

3.3.3

Initial learning rate: 2e-6 with 30% decay per epoch

Optimizer: AdamW with weight decay 0.01

Batch size: 8 with gradient accumulation steps of 4 (effective batch size 32)
Scheduler: Linear with 10% warmup ratio

Gradient clipping: Max norm 0.2

Early stopping: Patience of 2 epochs tracked on validation F1 score
Training time: Around 5 hours per epoch on A100 GPU

Stability Safeguards

Various stability measures were implemented, considering recommendations by Goyal et al.

(2020):

NaN detection and handling for weights and gradients

Conservative initialization strategies for custom modules

Numerical stability enhancements for loss calculation

Regular validation checks to identify the degradation of performance

3.4 Evaluation Methodology

34.1

General Performance Metrics

The following main evaluation measures are included with respect to toxicity detection
protocol (Taleb et al., 2022; Sarker et al., 2023):

Accuracy: Total proportion of correct predictions

Precision: Ratio of predicted toxic samples that are actually toxic
Recall: Ratio of actual toxic samples accurately classified

F1-score: Harmonic mean of precision and recall

AUC: Area under the ROC curve

FPR: False positive rate (vital when content moderation is involved)



3.4.2 Cross-Lingual Performance Assessment

Below metrics specific to language were calculated to compare performances across
languages through Shrestha et al. (2023) method:

o Per-language performance measures (accuracy, precision, recall, F1, FPR)

e Weighted average metrics that compensate for sample volumes

o Target achievement tracking (targets: F1 > 0.88, FPR <0.03)

o Performance pattern analysis across language families and resource levels

3.4.3 Cultural Fairness Evaluation

The following cultural fairness evaluation structure was applied, considering the cultural
sensitivity study of Abbasi et al. (2022):
o Cultural group mapping from languages to larger cultural categories
o Comparison of metrics across cultural groups
« Variance-based fairness scoring:
o Accuracy fairness: 1/(1+10xVar(accuracies))
o FPR fairness: 1/(1+50xVar(FPRs))
o Overall fairness: 0.6xaccuracy_fairness + 0.4xXFPR_fairness

3.4.4 Statistical Analysis

The data of evaluation was statistically analyzed through:
« Thorough error analysis using Confusion matrix.
e Variance analysis to calculate consistency across languages.
e Weighted averaging to account for differences in sample size.
Detection of language-based elements, which affects performance, through group
performance analysis of language

3.5 Ethical Considerations

This research was implemented with several ethical considerations, following the ethical
structure provided by Shrestha et al. (2023) for content moderation applications:
1. Bias Mitigation: Equally represents culture and language group.
2. False Positive Concerns: Monitors precisely and tunes false positives in to eliminate
over-censorship
3. Transparency: Predicts confidence to allow manual review of decisions made by
machine
4. Fairness Monitoring: Initiates cultural fairness to identify and rectify system-level
differences
All levels of research methodology were imbued with these ethical concerns through a series
of practical applications. Bias mitigation came through the utilisation of the Smart Balancing
Module and hierarchal sampling that ensured proportionate representation of all language
groups and the data augmentation process, specifically aimed at under-represented languages
(with a 1518% uplift in the case of Japanese and a 1208% uplift in the case of Vietnamese).
False positives were managed by the calibration loss component within the Confidence
Estimation System, that was designed to discourage overconfident predictions that have the
potential to cause overcensorship. Increased transparency was realized by introducing the
fine-grained confidence scoring mechanism that reveals reliability measures to human
moderators at each prediction, enabling prioritized reviewing of borderline examples.
Fairness monitoring was systematically integrated with the Cultural Fairness Evaluation
framework that computed variance-based fairness scores across linguistic frontiers and
culture groups to ensure consistent system performance (with a resultant overall fairness
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score of 0.96) irrespective of the linguistic or cultural framework. Such implementations
made ethical considerations not just hypothetical but operationalized at various parts of the
system architecture and the evaluation process.

4 Design Specification

This section describes the architecture, components, and algorithms that form part of the
presented multilingual toxicity detection framework. The design merges various novel
elements to address challenges in cross-lingual toxicity detection with high performance for
different languages.

As depicted in Figure 1, the MultiToxiGuard architecture consists of three innovative
components that cooperate to solve the issues of multilingual toxicity detection. Figure 1
represents the architecture diagram and visualizes the way the components—the Smart
Balancing Module, Contextual Enhancement Layer, and Confidence Estimation System—are
interconnected within the overall framework. The Smart Balancing Module (left) manages
the essential function of addressing language and class imbalances with hierarchical sampling
strategies. The Contextual Enhancement Layer (center) enhances the model with semantic
and culture awareness by leveraging language embeddings and pattern recognition. The
Confidence Estimation System (right) offers uncertainty quantification to make predictions
with reliability in a wide range of linguistic contexts. The overall architecture allows the
system to answer multilingual content more accurately and equitably compared to earlier
methods. The illustration should be included at the start of Section 4 (Design Specification)
so that readers can see a visual overview before getting to know all the components in details.

4.1 System Architecture Overview
Three innovations extend from the baseline transformer architecture, forms a modular system

for the multi-language toxicity detection system:
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Figure 1 Toxicity Detection System Architecture

1. A Smart Balancing Module to address language and class imbalances

2. A Contextual Enhancement Layer with improved semantic and cultural awareness

3. A Confidence Estimation System to generate trustworthy uncertainty quantification
In combination, these features work to overcome limitations in current methods particularly
for low-resource languages as well as rich cultural content.
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Smart Balancing Module : This module balances class and language imbalances by two
means. The Language-Balanced Sampler applies weights from the inverse proportion of
frequency by weight(lang,class) = min(10.0, ideal_count / actual_count) so that low-resource
languages get sufficient training experience. The Language-Aware Loss Function learns
adaptively at train time by keeping exponentially weighted moving averages of the losses for
each language and applying inverse weights on successive batches. This allowed low-
resource languages such as Estonian to reach competitive F1 scores of 0.8267 even through
limited early data.

Contextual Enhancement Layer:This module enhances semantic meaning through
culturally informed processing. Language embeddings offer specialized vector
representations for every target language and capture the language-specific patterns of
toxicity. Cultural Context Projection integrates base XLM-RoBERTa representations and
language embeddings via concatenation and transformation. Context-Aware Self-Attention
uses 8-head attention to capture culturally-specific features and long-distance dependencies in
order to recognize indirectly expressed toxicity. It has also enabled the high cultural fairness
score of 0.96 on varied linguistic families.

Confidence Estimation System :This module supplies uncertainty quantification with three
elements. The Confidence Estimator Network transforms representations with dimensionality
reduction and sigmoid activation to yield 0-1 confidence scores. Language-Specific
Calibration uses learned temperature and shift parameters through the calibrated_confidence
= sigmoid((log(raw_confidence/(1-raw_confidence))/temperature) + shift) step. Calibration
Loss minimizes differences between estimated and actual accuracy and realizes acceptable
gaps in calibration (average 0.064) which make uncertainty estimates available for human-in-
the-loop moderation.

4.2 Data Augmentation Pipeline

The data augmentation pipeline addresses the core problem of data scarcity in low-resource
languages along with class imbalance. The pipeline consists of different interlinked modules
which work together to improve performance:

4.2.1 Target Calculation Algorithm

The target calculation algorithm reads through the dataset to detect needs for optimal
augmentation:
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Figure 2 Data Augmentation Pipeline

For all language-class pair (e.g., Japanese-toxic, Arabic-non-toxic), sample volumes
are examined
Tiered targets are allocated according to volumes in the existing samples:

o Large classes (>5,000 samples): No augmentation is required

o Medium classes (500-5,000 samples): Target 5,000 samples

o Small classes (<500 samples): Target 2,500 samples
Determining target minus existing samples is how calculation of required
augmentation is done.
Augmentation rates are calculated per-sample to regulate data creation.

This process maximizes resource utilization in augmentation through focus on
underrepresented combinations.

4.2.2 FastText Embedding Framework

FastText Embedding Framework provides linguistic understanding in all languages:

1.

w

Language-Specific Models: Each target language is loaded with a separate FastText
model from pre-trained embeddings

Embedding Cache: An optimized caching mechanism to store text embeddings in
order to prevent redundant computation

Parallel Processing: Multithreaded embedding construction speeds up computation
Similarity Calculation: The cosine similarity function computes textual semantic
similarity:

similarity(embl, emb2) = dot(emb1, emb2) / (|lembl|| * [[emb2]||)

4.2.3 Augmentation Methods

There are four complementary augmentation techniques that combine to produce high-
quality, varied synthetic samples:

1. Word Substitution Augmentation:
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o Randomly replaces, reduplicates, or deletes words with an assigned
substitution rate of 15%
Maintains overall text structure with added natural variation
Applied proportionally more to brief texts in which other techniques are less
useful
2. Back-Translation Pipeline:

o Textis translated to pivot languages (English, French, German) and then

reverted to the source language

o Uses NLLB-200 model with adaptive chunking for long texts

o Translation cache maintains efficiency for repeated inputs

o Quality monitoring guarantees semantic preservation
3. Embedding-Based Hybrid Generation:

o ldentifies semantically similar texts based on FastText embeddings

o Extracts text pairs in similarity range (0.65-0.95)

o Breaks down texts into coherent fragments

o Merges fragments of various sources based on similarity level

o Pairs with higher similarity give fewer fragments to preserve diversity
4. Direct Translation Augmentation:

o For highly resource-scarce languages (Japanese, Vietnamese)
Chooses high-quality English samples with good class distribution
Translates to target language with NLLB-200
Applies additional light augmentation to translated samples
Maintains class ratio in selection

O O O O

The parameter values for the augmentation methods were established with caution after
preliminary experimentation and literature survey. The 15% Word Substitution Augmentation
rate is an optimal trade-off between adding enough linguistic variability and maintaining
semantic integrity; lower substitution rates (5-10%) were not sufficient to create enough
diversity, and much larger rates (>20%) tended to degrade meaning, as was seen in ablations
during development. In a parallel manner, the similarity level of 0.65-0.95 for Embedding-
Based Hybrid Generation was determined by empirical experimentation with various
languages; this range provides semantic coherency together with meaningful variations in
expression sequences—sequences under 0.65 similarity tended to have radically different
meaning, whereas sequences above 0.95 were nearly the same and didn't provide enough
diversity to the training data. All of these precisely fine-tuned parameters were confirmed
with quality evaluation over augmented samples in every one of the 15 targeted languages,
with native speakers ensuring that the produced content still had suitable toxicity aspects with
added favorable linguistic variation. The quality of such parameter selections is ultimately
demonstrated via the remarkable breakthroughs realized in the case of the low-resources
languages, especially Japanese (+1518%) and Vietnamese (+1208%), without affecting
semantic quality.

4.3 Model Components
4.3.1 Multilingual Toxicity Dataset

The Multilingual Toxicity Dataset component acts or interface between raw data and model
training:
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1. Text Processing: Tokenization, truncation, and padding on supported to improve
batch processing

2. Language Mapping: Supports two-way mapping between language codes and
numeric IDs

3. Cultural Grouping: Maps languages to cultures in order to assess equity of
assessment

4. Tokenization: Tokenization is achieved through the application of XLM-RoBERTa
tokenizer and a max sequence lenth of 128 tokens

4.3.2 Smart Balancing Module
Language-Balanced Sampler:

« Maintains indexes of samples grouped by language and class

o Measures ideal balanced distribution where each language-class pair has equal

representation
« Assigns sample weights inversely proportional to frequency:
weight(lang,class) = min(10.0, ideal _count / actual_count)

Language-Aware Loss Function:

o Extends binary cross-entropy loss with dynamic weighting

o Groups loss by language and calculates language-specific averages

« Maintains exponentially weighted moving average of historical loss values:

language_loss_avg = beta * language_loss_avg + (1-beta) * current_loss
o Measures invese weights based on averages:
weight(lang) = language_loss_avg[lang] / sum(language_loss_avg)

o Applies weights to current batch losses

« Includes numerical stability protections (clipping, epsilon values)

o Adaptable to changing model performance in training
4.3.3 Contextual Enhancement Layer
Contextual Enhancement Layer depicts how suprior semantic and cultural awareness plays a
central role in detecting toxicity. The base model's functionality or enhanced through various
mechanisms through this special module:
Language Embeddings:

o Dedicated embedding vector of each language (hidden_size dimension)

e Acquired by training to recognize language-specific features

e Provides key context about language features critical in toxicity identification

Cultural Context Projection:
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« Combines base model representations with language embeddings:

1.Concatenates hidden with language embeddings
2. Combined the representations to original dimension
3. Applies residual connection with scaling factor

Context-Aware Self-Attention:
o Improved representations from multi-head attention mechanism (8 heads) are used to:

1.Find context-specific patterns in all languages
2. Highlight culturally appropriate indicators of toxicity
3. Weave in long-range dependencies in text

Feed-Forward Network:

e Transforms attention output through:
1. Dimension expansion (x4)
2. GELU activation function
3. Projection back to original dimension
4. Dropout for regularization

Residual Connections and Normalization:

o Layer normalization applied after each major component
e Residual connections preserve information flow
o Careful scaling prevents dominance of any single information source

This multi-layered approach enhances the ability of the model to detect culturally specific
toxicity without compromising the overall language understanding capacity of the base
model.

4.3.4 Confidence Estimation System

Confidence Estimation System provides critical uncertainty quantification for use in content
moderation. It consists of three components:

Confidence Estimator Network:

e Processes pooled hidden representations through:
1. Dimensionality reduction (hidden size — hidden_size/2)
2. RelLU activation and dropout
3. Final projection to confidence score
4. Sigmoid activation for 0-1 range

Language-Specific Calibration:

o Learned temperature parameters for each language control sharpness of confidence
distribution
o Learned shift parameters adjust confidence baseline
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e Applied through temperature scaling:

calibrated_confidence = sigmoid((log(raw_confidence/(1-
raw_confidence))/temperature) + shift)

o Parameters are limited to reasonable values (temperature: 0.5-2.0, shift: -2.0-2.0)
Calibration Loss:

« Minimizes difference between confidence estimates and actual model accuracy

o Calculated as mean squared error between confidence and correctness indicator

o Grouped by language for targeted calibration

o Added to primary loss with scaling factor (0.05)

This process of calibration ensures confidence scores offer true prediction reliability in all
languages, yielding useful information for human-in-the-loop moderation applications.

4.3.5 Complete Forward Pass

The complete forward pass through the model follows this pattern:
1. The text is tokenized and processed by using the base model of XLM-RoBERTa
2. Base model generates sequence representation and pooled output
3. Contextual Enhancement Layer processes the sequence representation through

language ID:

e Combines with language embeddings
e Applies context-aware attention
e Generates culturally enhanced representation

4. Enhanced representation is passed through classification layer:

e Dropout is applied for regularization
e Linear projection produces raw logits
e Sigmoid activation converts to probabilities

5. Confidence Estimation System processes identical representation:
e Produces raw confidence scores
e Makes language-specific calibrations
e Generates final confidence values

6. Loss is computed during training:

e Classification error in language-aware processes
e Calibration Loss incurs confidence error
e Combined loss drives parameter updates
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An integrated architecture providing a full solution to multi-language toxicity detection is
presented by this work, addressing fundamentally three challenges: language imbalance,
culture context, and prediction reliability.

4.4 Training and Evaluation Framework
Training Pipeline:

Epoch-wise training with gradient accumulation
Learning rate scheduling with warmup

NaN detection and handling

Checkpoint management

Early stopping based on validation metrics

Evaluation Framework:

Comprehensive metric calculation
Per-language performance assessment
Cultural group analysis

Fairness scoring

5 Implementation

5.1 Implementation Environment and Technologies
Python 3.11 acted as the foundation programming language to develop the multilingual

toxicity detection system through leveraging various other specialist deep learning libraries,
natural language processing, and data handling. The development environment used:

PyTorch 2.6.0 acted as the core deep neural network framework, providing grounds for
neural network implementation with CUDA 12.4 support to speed computing with the GPU.
The Hugging Face Transformers library supplied the fundamental building blocks to operate
pre-trained language models, including XLM-RoBERTa-Large, which was the system's base.

For multilingual processing of text, FastText offered language-specific word representations,
and the NLLB-200 translation model enabled cross-lingual data augmentation. NumPy and
pandas did data manipulation and statistical calculations, and tqdm supplied progress
reporting on lengthy processes.

The system leveraged the use of an NVIDIA A100-SXM4-40GB GPU to train and use
models, and Google Drive was used as storage for datasets, model checkpoints, and results of
the evaluations. This setup enabled the computational power needed to effectively handle the
processing of the large multilingual dataset.

5.2 Data Processing Implementation

5.2.1 Dataset Integration
The integration started by including the FredZhang7/toxi-text-3M dataset, which comprises
about 3 million text samples in 55 languages. Special data loading functions were added to
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efficiently deal with the size and shape of the dataset, and verification_mode="no_checks"
argument was set in order not to raise row count checks while loading data.

Language distribution, class imbalance, and text features from raw data are analyzed
specially through statistical operations that results each language's frequencies, each language
group's proportion of toxicity, and text distribution by length, producing insight to process
important decisions.

5.2.2 Language Selection Implementation

For the final model, covering a wide variety of linguistic families and resource levels, a
subset of 15 languages with best language prevalence, class distribution, language families,
and technical compatibility when using embedding models is determined through a language
selection algorithm. The deployment encompassed mappings of language codes to language
families, compatibility checks against the models of embedding, and resource grouping
(high/medium/low) by sample volume. These mappings served as the basis upon which
cultural fairness was evaluated during the assessment stage.

5.2.3 Data Augmentation Implementation

The data augmentation pipeline was built as a multi-step process in order to tackle the issue
of class imbalance in languages. For every language, target sample counts were estimated
using existing class distribution and set thresholds. This automated method selected
languages that need augmentation and estimated the number of samples required per
language.

The FastTextEmbedder component was implemented in order to include semantic
comprehension across languages. This was implemented through the inclusion of language-
specific model loading, embedding caching for efficiency, parallel generation of the
embeddings, and semantic similarity calculation. Memory was managed by the system
adaptively by unloading models during inactivity, supporting processing of the target
languages in a memory-efficient manner.

For every method of augmentation (word substitution, back-translation, hybrid generation
using embeddings, and direct translation), special functionality was included with the correct
parameters and quality checks. In the back-translation implementation, adaptive chunking of
lengthy texts, cache storage of translations, and robust operation through error handling are
included. Fragment-based text recombination was implemented using the embedding-based
hybrid generation with semantic similarity directing the process.

The augmentation pipeline worked in a parallel, language-by-language mode, generating
checkpoints following processing of every language in order to provide robustness against
interruptions. The implementation contained quality verification systems in order to
guarantee semantic coherence of synthesized samples.
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5.2.4 Final Dataset Processing

The last stage of data processing applied dataset balancing, correcting the overrepresentation
of the non-toxic samples in the high-resource languages. In particular, English and Turkish
non-toxic samples were downsampled to 15,000 samples each, creating a more even dataset
without losing diversity or linguistic coverage.

This dataset was partitioned by a stratified splitting function into training (80%), validation
(10%), and test (10%) sets in a manner that retained languages and class distributions in
every partition, so that representative data is present in every development stage.

5.3 Model Implementation

5.3.1 Dataset Component Implementation

The MultilingualToxicityDataset was implemented to deal with the text data during the
model's training and testing. Its implementation included tokenizing using the XLM-
RoOBERTa tokenizer, preserved language-to-ID mappings, and included cultural group
categorization. It had a maximum sequence length of 128 tokens, performing truncation and
padding if necessary.

One of the essential elements of this implementation was the mapping of language-to-family,
where languages were allocated to their respective linguistic families (Germanic, Romance,
etc.). Cultural fairness comparison during assessment was made possible by this mapping,
indicating variations in performance across language families.

5.3.2 Smart Balancing Module Implementation

Two complementary constituents were used to implement the Smart Balancing Module. By
utilizing the LanguageBalancedSampler class, which provided the facility of weighted
sampling by language and class frequency, necessary weights are computed to provide a
balanced representation in training. This implementation effectively controlled sampling
indexes in order to train the model using a balanced batch without directly replicating data.

The LanguageAwareLoss class supported dynamic weighting of the loss based on the
performance of the language. This was implemented by keeping moving averages of specific
losses per language, computing inverse weights, and using them in the current batch's losses.
To establish numerical stability, the implementation had value clamping, the use of epsilon
factors, and NaN checks.

5.3.3 Contextual Enhancement Layer Implementation

The ContextualEnhancementLayer class applied enhanced semantic and cultural
consciousness by a series of processing stages involving the generation of language
embeddings, context projection using concatenation and transformation, and multi-head self-
attention for contextual pattern detection.

One of the important pieces of this implementation was the handling of attention masks,
translating the typical transformer attention mask to the format needed by PyTorch's
MultiheadAttention module. This ensured appropriate processing of padded sequences.
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Implementation also involved careful layer normalization and residual connections in order to
keep the gradient flow stable while it was being trained.

5.3.4 Confidence Estimation System Implementation

The ConfidenceEstimationModule class carried out uncertainty quantification by confidence
estimation and calibration. Its implementation comprised raw confidence estimating through
a neural network, calibration of temperature and shift parameters per language, and a specific
loss function for alignment of confidence and accuracy.

For stable operation, parameters were constrained in the implementation, avoiding excessive
values in temperature and shift parameters. Also, numerical protection avoided instability in
the computation of log odds while scaling the temperature.

5.3.5 Complete Model Implementation

The MultilingualToxicityModel class encapsulated the entire architecture, which
incorporated the base XLM-RoBERTa model along with the custom components. This class
implemented the sequence of the forward pass, concatenating the outputs of several
components and computing suitable loss measures in the case of training.

One of the salient aspects of this implementation was the use of the check _for_nan_weights
function, which monitored numerical instability during training period. This safety feature
ensured the model stopped learning using faulty parameters, allowing development of a
stable model.

5.4 Training Implementation

5.4.1 Training Loop Implementation

The process of training was carried out using a complete training loop that controlled the
entire model training pipeline. This was implemented using epoch-wise training, logging, and
validation per epoch, along with checkpoint handling for the purpose of saving the models.
To efficiently manage the large dataset, the implementation of the method included gradient
accumulation, effectively increasing the batch size without using more GPU memory. The
method accumulated gradients across many batches prior to the update of model parameters,
delivering the advantages of large-batch training using limited hardware resources.

Learning rate management was achieved using initial rate setting (2e-6) and per-epoch decay
(reduction of 30% per epoch). This schedule ensured correct learning dynamics, rapid
learning in the initial stages of the training and polishing in subsequent epochs.

5.4.2 Stability Safeguards Implementation

There were multiple stability precautions in place to facilitate reliable training. Gradient
clipping capped gradient values at a maximum norm of 0.2, avoiding excessive parameter
update. NaN detection monitored both weights and gradients, zeroing out problematic
gradient values and warning of unstable conditions.

The execution also involved validation F1 score-based early stopping, using a patience of 2
epochs. This avoided overfitting while allowing the model enough time to refine its
performance.
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5.5 Evaluation Framework Implementation

An assessment framework was put in place to measure the performance of the model in
different areas. This framework comprised general evaluation functions, as well as language-
specific and cultural fairness analysis measures.

The system was also set up to compute standard measurements (accuracy, precision, recall,
F1, AUC) and also toxicity-related measures such as false positive rate (FPR). To facilitate
cross-lingual evaluation, the implementation partitioned predictions and labels by language,
allowing for nuanced analysis per language.

The implementation of cultural fairness assessment assigned languages to cultural families,
shedding light on differences in performance along cultural lines. This Implementation
involved variance calculation of fairness measures, measuring the consistency of the model in
different cultural situations.

5.6 Implementation Challenges and Solutions
The implementation faced a variety of challenges requiring specific resolutions in order to
successfully develop the multilingual toxicity detection system.

5.6.1 Memory Management

Processing multiple languages using specially developed embedding models caused serious
memory burden. This was resolved by using dynamic model load and unloading, cache-based
embedding having size constraints, and periodic garbage collection.

5.6.2 Translation Length Constraints

Restricting long content processing, limititions on translation length is placed by NLLB 200
model. This was overcome with an adaptive chunking algorithm that divided long content
into semantically consistent fragments, translating each of them separately, and recomposing
the result back together.

5.6.3 Numerical Stability

Initial training efforts were met with numerical instability when faced with excessively large
parameter values. Consistent training despite the model’s complex system is realized by this
alleviation with a range of precautions: gradient clipping, parameter constraining, clamping
of loss values, and detection of NaN/infinity values.

5.6.4 Cross-Lingual Balance

The use of the Smart Balancing Module to give correct representation during training, and the
Contextual Enhancement Layer to produce contextual knowledge specific to languages, in
this implementation, which favored high-resource language initially, address the performance
balancing issue in widely diverged 15 languages.

6 Evaluation

This part contains detailed analysis of how the multilingual system detects toxicity in various
languages, culture groups, as well as other factors. The analysis assesses how well the model
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can fulfil research goals in terms of cross-lingual performance, handling class imbalance, and
being culturally sensitive.

6.1 Overall Performance Metrics

The overall performance of the model on test set (n=27,787) is presented in Table 1. The
metrics presented are used as baseline to grasp the overall effectiveness of the system before
analysing language-specific tendencies.
Table 1: Overall Model Performance

Metric Value
Accuracy 0.8278
Precision 0.7639
Recall 0.8274
F1 Score 0.7944
AUC 0.9104

False Positive Rate (FPR) 0.1720
Whereas the model realized good accuracy and AUC values, it missed both the target F1
score of 0.88 and surpassed the target FPR value of 0.03. This suggests that although the
system performs quite well overall, it still generates more false positives than might be
desirable in content moderation use cases.
An analysis of the confusion matrix in Table 2 offers more insight into error patterns.
Table 2: Confusion Matrix Analysis
Prediction | Toxic (Actual) | Non-Toxic (Actual)
Toxic 9,246 (TP) 2,857 (FP)
Non-Toxic | 1,929 (FN) 13,755 (TN)
The model is more prone to producing false positives (2,857) rather than false negatives
(1,929), with 59.7% of all errors being false positives. This imbalance indicates that the
model tends to be overly conservative, labeling more content as toxic when unsure -
something that is probably fine for early content screening but needs to be manually reviewed
to avoid over-moderation.
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6.2 Cross-Lingual Performance Analysis
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Figure 3 Language-wise performance metrics showing Accuracy, F1 Score, False Positive Rate, and
Confidence Calibration Gap across the 15 languages (en, ar, tr, pt, es, ru, id, el, hi, et, th, sw, hr, vi, ja)

In Figure 3, performance metrics for all 15 languages included in the analysis are presented,
with evidence of wide disparity in how effectively models perform across language barriers.

Table 3 lists detailed breakdowns of important metrics by language in order of F1 score

performance.
Table 3: Performance Metrics by Language
Language Language Resource Accuracy F1 FPR  Sample
Family Level Score Count
Indonesian Austronesian Medium 0.8789 0.8647 0.1333 1,784
(id)
Swahili (sw)  Bantu Low 0.8548 0.8344 0.1555 744
Estonian (et)  Uralic Low 0.8387 0.8267 0.1739 837
Avrabic (ar) Semitic Medium 0.8160 0.8555 0.1916 5,054
English (en)  Germanic High 0.8949 0.8045 0.0960 1,998
Turkish (tr)  Turkic Medium 0.8483 0.7971 0.1220 2,393
Thai (th) Tai-Kadai Low 0.7767 0.7912  0.2440 806
Russian (ru)  Slavic Medium 0.8704 0.7917 0.1230 2,492
Croatian (hr) = Slavic Low 0.8438 0.7753 0.1695 512
Greek (el) Hellenic Medium 0.8339 0.7805 0.1159 1,246
Hindi (hi) Indo-Aryan Low 0.7614 0.7531 0.2061 989
Portuguese Romance Medium 0.7881 0.7200 0.2345 3,964
(pt)
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Spanish (es)  Romance Medium 0.7811 0.7210 0.2589 2,672
Vietnamese | Austroasiatic Low 0.8502 0.7131 0.1363 1,155

(vi)

Japanese (ja) Japonic Low 0.8247 0.6575 0.1678 1,141
Various patterns are revealed through such cross-lingual analysis:

1.

Resource Level Impact: There are instances where low-resource languages
(Estonian, Swahili) are doing better than medium-resource languages (Spanish,
Portuguese) in F1 scores, which means that the balancing and augmentation
approaches worked to counterbalance resource differences.

Language Family Patterns: Languages from the same family have similar
performance tendencies. Romance languages (Spanish, Portuguese) both have high
levels of false positive rates, as opposed to more even performing languages such as
Slavic languages (Russian, Croatian).

Target Achievement: None of the languages attained their target F1 score of 0.88,
although Indonesian was nearest at 0.8647. Likewise, no language attained their lofty
FPR target of 0.03, with English recording the smallest FPR at 0.0960.

High Variance Languages: Japanese had the lowest F1 score of 0.6575 despite
decent accuracy of 0.8247, implying a precision-recall imbalance which may be due
to

linguistic elements that are hard for the model to process.

Best Performers: Indonesian turned out to be the top performer with the highest F1
score of 0.8647 and excellent accuracy of 0.8789, and English demonstrated the most
favorable balance of high accuracy (0.8949) and low FPR (0.0960).

The weighted averages for all languages had an F1 of 0.7836 and FPR of 0.1749, capturing
higher-sampled languages' impact on overall performance.

6.3 Cultural Fairness Evaluation

In order to evaluate performance of the model over cultures, languages were categorized by
their cultural family, and performance was evaluated at this more abstract level. Figure 4
displays these results.
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Figure 4 Cultural group performance metrics showing Accuracy, F1 Score, False Positive Rate, and
Sample Count across cultural groups, with fairness scores (Accuracy: 0.99, FPR: 0.92, Overall: 0.96)

The cultural group analysis reveals:

1.

4.

Performance Distribution: Austronesian (Indonesian) and Germanic (English)
language families demonstrate the best overall performance, with Asian (Japanese,
Vietnamese, Thai) and Romance (Spanish, Portuguese) families being more
challenged.

Sample Imbalance: The cross-cultural group distribution of samples is still
extremely unbalanced even with augmentation, where Romance languages have more
than 6 times the sample of other groups.

Fairness Metrics: The system exhibits outstanding fairness measures across cultures
with accuracy fairness of 0.99, FPR fairness of 0.92, and overall fairness of 0.96.
These scores record minimal performance variation across cultures, implying that the
model does not have variable behavior based upon culture.

Target Achievement: Like with single languages, no culture group reached the target
FPR of 0.03, although Germanic languages reached their closest at about 0.09.

The very high fairness scores are especially interesting in view of the language set's diversity,
implying that culture enhancement processes successfully reduced cultural biases.

6.4 Confidence Calibration Analysis

The Confidence Estimation System's performance is assessed by measuring the gap in
calibration i.e., how far off from actual performance is the model's confidence in its
predictions. Figure 1 (bottom right) plots these gaps for all languages.

The main results are:
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1. Range of Calibration: Calibration gaps range from approximately 0.03 (Arabic) to
0.11 (Thai), with most languages showing gaps under 0.08.

2. Language Correlation: The languages with higher F1 scores are more precisely
calibrated (have smaller gaps), which means that the confidence estimate of the model
IS more accurate for languages that are being processed more successfully.

3. Resource Level Effect: There is no obvious relationship between resource level and
quality of calibration, with high-resource language (English) and low-resource
language (Arabic) both having well-calibrated confidence estimates.

An average calibration gap value of 0.064 reflects that uncertainty quantification by the
confidence estimation system is relatively reliable, but with scope for improvement,
especially for languages such as Indonesian and Thai.

6.5 Training Dynamics and Convergence

Analysis of the training procedure yields significant trends in the learning path of the model.
Table 4: Epoch-wise Training Metrics
Epoch Train Loss ValLoss ValFl1  Val FPR Weighted F1 Weighted FPR

1 0.041803  0.036104 0.760414 0.261587 0.745352 0.266975
2 0.030968  0.035286 0.785658 0.258096 0.770016 0.266754
3 0.026321  0.033048 0.797206 0.167148 0.786878 0.169588

The training dynamics prove:

1. Steady Improvement: Progressive improvement throughout epochs in F1 score along
with FPR, where highest FPR decrease is witnessed in the third epoch.

2. Convergence Pattern: The model began to converge after three epochs, with
decreasing gains in F1 score to indicate extra training would only bring marginal
increases.

3. Loss Behavior: Loss in training declined steadily, with validation loss increasing
more moderately, which indicated that there is some overfitting which is dampened
by regularization methods.

4. FPR Reduction: The fact that FPR significantly decreased from epoch 2 to epoch 3
(from 0.258 to 0.167) shows that the model successfully reduced false positives
without compromising recall, which is essential in the context of content moderation
applications.

6.6 Discussion

The results of evaluation confirm both strengths and weaknesses of the proposed multilingual
toxicity detection system. Placed in context with the existing literature, several important
insights emerge.

6.6.1 Comparison with State-of-the-Art

The system's overall F1 score of 0.7944 is lower than the highest values reported in literature,
e.g.,, 0.94 by Taleb et al. (2022) and 0.88 by Sarker et al. (2023). Direct comparison,
however, is misleading for various reasons:

1. Linguistic Diversity: Most former high-performing systems targeted one or at most
few languages, whereas this system supports 15 different languages simultaneously.

2. Resource Distribution: This framework specifically features low-resource languages
that are more challenging, in contrast to most previous studies which have targeted
high-resource settings.

3. Cultural Sensitivity: The system values cultural equity, possibly sacrificing some
raw performance in return for more equitable behavior across languages and cultures.
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In comparison to truly multilingual methods such as Conneau et al. (2019) and
Bogoradnikova et al. (2021), this system exhibits comparable or even superior performance
in response to handling more extensive sets of languages and more advanced balancing and
context awareness mechanisms.

6.6.2 Effectiveness of Key Innovations

This assessment offers evidence of how successfully the three essential architectural
innovations function:

1. Smart Balancing Module: The relatively similar performance across languages of
different levels of resources, especially with good performance for low-resource
languages such as Swahili and Estonian, which indicates that hierarchical sampling
with language-conscious loss functions successfully rectified class and language
disparities. This is in alignment with Priya et al.'s (2023) conclusion regarding the
need for balancing representation, but applies to an extended setting of multi-
language scenarios.

2. Contextual Enhancement Layer: High scores for cultural fairness (0.96 overall)
reflect that contextual enhancement processes appropriately captured culture nuances
in toxicity detection. This deals with challenges pointed out by Chan and Li (2024) in
culturally specific toxic content detection, although varying performance among
cultures does leave scope for more fine-tuning.

3. Confidence Estimation System: The reasonable gaps in calibration across languages
reinforce the capacity of the system to reliably estimate uncertainty, which is in
agreement with Sarker et al.'s (2023) focus on explainability being essential in
toxicity detection. There is, however, indication from differences in calibration
quality across languages that this module would be improved through further
development.

6.6.3 Limitations and Areas for Improvement

In addition to its successes, the assessment highlights some shortcomings of present practice:

1. False Positive Rates: The system is consistently higher than its target FPR of 0.03,
even with English, which is the highest-performing language, reporting an FPR of
0.096. This suggests that there is still room for improvement in precision in the
precision-recall tradeoff in toxicity detection, which may have negative consequences
in real-world usage through over-flagging of content. This is in accordance with
Sarker et al.'s (2023) claim regarding false positives being the most widespread type
of error in toxicity detection systems.

2. Language-Specific Challenges: The large performance differences across languages,
especially Japanese's lower F1 scores (0.6575) and those of Vietnamese (0.7131),
indicate that there are some linguistic features that are still problematic for the model.
This can be attributed to writing system differences, morphological sophistication, or
to differences in cultural expression behavior, in accordance with Bogoradnikova et
al.'s (2021) results regarding language-specificity's role in toxicity detection.

3. Romance Language Performance: The persistent underperformance of Romance
languages (Portuguese and Spanish) is interesting in view of their relatively high
resource status. The trend is that these languages might have something in common in
terms of syntactic or semantic properties that are problematic for the model's ability to
detect toxicity, or that their expressions of toxicity in these languages are more
context-dependent or have more nuances.

4. Data Augmentation Limitations: The augmentation methods effectively improved
performance in many low-resource languages, but even then, augmented text may
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lack linguistic authenticity relative to text that is truly natural, possibly constraining
the efficacy of the model with actual content in these languages.

Various possible enhancements would overcome these limitations:

1.

6.6.4

Precision-Focused Training: Adding extra loss components specifically aimed at
minimizing false positives would assist in solving the high FPR problem through
asymmetric loss functions that weigh more heavily in favor of minimizing false
positives.

False Positive Handling with Asymmetric Loss and Post-Hoc Thresholding :The
high false positive rates (overall FPR 0.1720 vs. target 0.03) call for precision-tailored
optimization. Asymmetric Loss can strengthen the base Language-Aware LoOsS
Function by charging higher penalties on false positives: enhanced_loss = base_loss x
(1 + fp_penalty_weight x false positive_indicator). High FPR languages such as
Portuguese (0.2345) and Spanish (0.2589) would be given higher penalty weights and
would preserve the cultural fairness score of 0.96.

Post-Hoc Thresholding : employs the existing Confidence Estimation System's
calibration parameters via language-specific thresholds according to performance
patterns of Table 3. Portuguese, Spanish, Thai would apply high thresholds (0.7-0.8),
whereas high-performing languages (English, Indonesian) would call for modestly
modified ones (0.55-0.6). Dynamic adjustment of thresholds via confidence scores
compensates for precision-recall imbalances such as Vietnamese (accuracy of 0.8502
and F1 of 0.7131) without modifying architecture and offers a clear path toward
achieving FPR without sacrificing multilinguality.

Language-Specific  Fine-Tuning: For languages that are persistently
underperforming, more language-specific fine-tuning steps might be used to fine-tune
the model to their respective features.

Enhanced Augmentation Techniques: Advanced augmentation techniques with
native speaker verification would enhance the quality of low-resource language
synthetic samples.

Expanded Cultural Context Modeling: Including more specific cultural context
elements along with language groups would render the model even more culturally
attuned.

Adaptive Thresholding: With language-specific classification thresholds, precision-
recall tradeoff can be optimized for each language based on their own nature and their
respective error behavior.

Implications for Research and Practice

There are important implications of evaluation outcomes for educational research as well as
applied content moderation:

1.

Multilingual Model Viability: Experiments validate that toxicity can be detected using
single model as opposed to traditional beliefs where models specific to languages are
needed to obtain high-quality performance. This agrees with Conneau et al.'s (2019)
cross-lingual transfer learning framework, but with specific applications to toxicity
detection.

Cultural Fairness Measurement: The methodology used to evaluate cultural fairness in
this research offers an important framework for measuring bias in multi-language NLP
models more broadly, which is important to the general area of fair and accountable Al.

29



3. Low-Resource Language Capabilities: The good performance over a number of low
resource languages illustrates that powerful NLP modeling can indeed be ported to
languages historically under-resourced by Al technologies with proper design of
architecture and data augmentation.

4. Content Moderation Practice: The implications for content moderation practitioners are
that although multilingual toxicity detection by automation has improved substantially,
human review is still needed especially with ongoing false positive rates. The confidence
estimation aspect is able to assist with prioritizing this human review appropriately.

5. Cross-Cultural Considerations: The variations in performance across cultural groups
underscore the need to take context of culture into account in content moderation policies
and frameworks, underpinning Abbasi et al.'s (2022) focus on culture sensitivity in
toxicity detection.

In brief, the assessment reveals that the described multilingual toxicity detection system is a
major leap over challenges posed by linguistic diversity and cultural context in content
moderation, with special attention to where more development and research are necessary in
order to achieve fully equitable forms of protection in all languages and cultures.

7 Conclusion and Future Work

This study examined the following: "How can an integrated multilingual toxicity detection
system featuring hierarchical sampling, cultural-context embeddings, and confidence calibration
mitigate class imbalance and achieve reliable performance across diverse languages, including
those with limited resources?” It has been effectively proved in this research that a combined
method incorporating these factors can ensure high levels of performance across languages and
cultures, although there are areas of difficulty in achieving best-performing goals.

This multilingual toxicity detection system's development and testing revealed the following
major findings. First, the use of the Smart Balancing Module proved effective in solving data
imbalances and enabled low-resource languages such as Swabhili and Estonian to reach F1 scores
similar to those of high-resource languages. Second, the Contextual Enhancement Layer
supported the system's high cultural fairness score of 0.96, reflecting the system's consistent
performance in a wide variety of cultural settings. Third, the Confidence Estimation System
yielded fairly calibrated uncertainty estimates across languages, though the accuracy of the
estimates was variable.

The major contribution of this work is the proposal of a multilingual toxicity detection method
that preserves stable performance in different languages without requiring distinct models per
language. This is a major improvement compared to prior work, which generally thrived in high-
resource languages but underperformed in low-resource languages. By resolving both class
imbalance and cultural context in a single framework, this system provides a fairer content
moderation solution regardless of linguistic boundaries.

In spite of these successes, significant limitations exist. The system did not achieve the target F1
score of 0.88 (with a result of 0.7944) and was above the target false positive rate of 0.03 (with a
minimum of 0.096). Performance strongly diverged across languages, with Japanese being the
specific difficulty case. These shortcomings reinforce the difficulty of building fully balanced
multilingual models and indicate the existence of a non-negligible gap in current capabilities and
optimal content moderation needs.

The recurring gaps in low-resources languages—specifically Japanese's F1 score of 0.6575
and Thai's excessive FPR of 0.2440—reflect the inability of algorithmically generated
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sequences to reproduce naturally occurring instances of toxicity from a given cultural
context. The addition of human-verified examples provided by local speakers would
overcome the cultural validity shortfalls inherent in the back-translation and embedding-
based borrowing approaches, directly addressing the precision-recall imbalances for
languages such as Vietnamese (having high accuracy of 0.8502 but F1 of only 0.7131).

Community-generated toxic instances offer a stronger augmentation route, allowing capture
of real, dynamic patterns of toxicity impossible through static datasets. In contrast to the
FredZhang7/toxi-text-3M dataset, community-generated instances would capture present-day
web toxicity and cultural shifts directly and solve the high false positive rate issue (0.1720
versus target 0.03) through actual examples of culturally acceptable text mistaken by
automatic systems as toxic. The integration of the validated instances in the present Smart
Balancing Module would preserve the attained cultural fairness score of 0.96 and enhance
absolute performance by a considerable amount, having a clear development path from
research prototype to real-world applications bridging the difference between target
performance (F1 > 0.88 and FPR < 0.03) and attained performance.

This study leaves a variety of promising directions to follow in subsequent work. One,
investigating contrastive learning techniques, might strengthen the model's power to detect
nuanced differences between toxic and non-toxic content in languages. Second, examining
culturally adaptive thresholding processes might tailor the precision-recall trade-off for each
cultural context in a separate manner. Third, the use of multimodal cues (like emojis, images, and
interaction data) can further contextualize the detection of toxicity, in situations where the text,
on its own, is unclear.

In addition, an interesting direction would be to work on developing interpretable toxicity
detection models that explain their predictions with language-specific descriptions possibly by
means of template-based explanations specific to every language's linguistic structure. This
would both improve model transparency as well as user confidence in automated moderation
systems.

For commercial use, the confidence estimation module might be expanded to include a tiered
system of moderation where language-specific confidence levels are used to route content to
human moderators, possibly decreasing costs of moderation without sacrificing quality for all
languages supported.

The high-resource to low-resource language performance gap remains the most intriguing issue
for work to come. Closing such a gap would not only depend on technical progress but also more

active participation of multi-dimensional language communities in setting norms for toxicity as
well as in creating culture-appropriate datasets.
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