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SIGN LANGUAGE DETECTION: A 

COMPARATIVE STUDY OF DEEP LEARNING MODELS 

USING YOLOv8, RT-DETR, and Faster R-CNN 

 

        Devaki Naga Venkata Prasanthi Vudiga 

X23223677 
 

Abstract 

This work, therefore, investigates the application of deep learning architectures on ISL 

recognition by comparing state-of-the-art Real-Time Detection Transformer (RT-DETR) 

against established approaches, such as YOLOv8 and Faster R-CNN. The research studied the 

efficiency of these architectures in terms of accuracy, resource efficiency, and practical 

deployability through structured hyperparameter optimization across 36 different 

configurations. In this experiment, there were 4,410 ISL images of 35 classes, while different 

parameters such as image resolutions of 480x480 and 640x640, batch sizes of 32 and 64, 

optimizers like SGD, Adam, AdamW, and training duration of 5, 10, and 15 epochs were used. 

Contrary to expectations, YOLOv8 topped with the best mAP of 0.8237, outperforming the 

second-best RT-DETR, which had a mAP of 0.8098, and Faster R-CNN, which had a mAP of 

0.8012. YOLOv8 showed very stable results with 100% successful configurations, while RT-

DETR and Faster R-CNN were more sensitive to memory limitations, succeeding in only 

83.33% and 66.67% of configurations, respectively. The findings challenge assumptions about 

transformer-based architectures' superiority, suggesting that simpler, well-optimized 

architectures may be more effective for ISL recognition tasks. This research provides valuable 

insights for practical implementation choices in sign language recognition systems and also 

emphasizes resource efficiency in model selection for real-world applications. 

 

1 Introduction 
 

Sign language recognition is an important node in assistive technology and computer vision, 

acting like a significant bridge in the communication of the deaf and hearing-impaired. While 

advanced object detection and image recognition technologies have been developed, 

developing real-time, accurate sign language detection systems remains extremely difficult due 

to the complexity of hand gestures, time-varying lighting, and demands for real-time 

processing. 

 

Sign language recognition has evolved from traditional computer vision-based methods to 

more recent deep learning-based solutions. The CNNs have shown very remarkable success in 

static gesture recognition, thereby ensuring as high as 98.9% accuracy for static signs, while 

YOLO-based approaches are quite promising for real-time detection. By Singh et al. (2023), 

YOLOv8 has yielded training accuracy as high as 99.9% in their experiment (Singh et al., 

2023). However, most of such approaches lack the dynamic representation of sign language, 

especially under difficult conditions in real-world scenarios. 

 

Real-Time Detection Transformer Architecture has recently entered the scene, enabling new 

horizons for object detection tasks with its superior performance at 53.1% AP at 108 FPS on 
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the COCO dataset while outperforming previous approaches by a margin in both speed and 

accuracy (Zhao et al., 2023). This presents the opportunity to address some of the significant 

challenges that current sign language recognition systems face in handling complicated 

scenarios and detecting gestures across multiple scales. 

 

The research question driving this study is: "To what extent and in what specific ways 

does the RT-DETR model, when applied to sign language gesture detection and 

recognition, improve performance and accuracy compared to CNN-based and YOLO-

based approaches, and what are the key factors contributing to these differences?" 

 

The objectives of this research include: 

1.  Development and realization of RT-DETR-based system on Indian Sign Language 

(ISL) sign language gesture recognition. 

2.  Extensive comparison framework for the implementation of RT-DETR against state-

of-the-art CNN-driven and YOLO-based techniques. 

3. Quantization of speed-accuracy trade-offs in real-time sign language recognition. 

 

The methodology is systemic, where 4,410 selected ISL images from 35 classes will be used. 

Advanced data augmentation and strong evaluation metrics such as mAP and FPS 

measurements have been used in the implementation. This research contributes to the scientific 

literature by providing the following: 

 

1. Novel application of RT-DETR architecture in sign language recognition 

2. Comprehensive comparative analysis with state-of-the-art approaches 

3. Identification of critical factors affecting recognition performance 

4. Empirical evaluation of real-time performance in practical scenarios 

 

The rest of the paper is organized as follows: Section 2 presents a critical review of the available 

literature on sign language recognition and object detection models. Section 3 describes the 

methodology and experimental setup for the research. Section 4 includes the design 

specification of the proposed solution. Section 5 elaborates on the aspects regarding 

implementation. Section 6 presents the evaluation results and comparative analysis. Finally, 

Section 7 concludes the research and discusses certain future directions. 

 

2 Related Work 
 

The evolution of Indian Sign Language (ISL) recognition systems reflects a critical progression 

in assistive technology. This review critically examines the technological advancement from 

traditional approaches to current state-of-the-art solutions, with particular focus on the potential 

application of RT-DETR for improved recognition performance. 

2.1 Fundamental Approaches in ISL Recognition 

 

Early attempts at recognition of ISL also focused most on the recognition of static gestures 

leveraging CNN. Mohan, Sabarwal, and Preethiya(2023) proposed a CNN-based approach that 

makes sure of achieving 98.9% accuracy of static signs based on data developed on 33 ISL 

characters. This indeed shows remarkable accuracy regarding the static signs but highly limited 

for dynamic signs and variation in environmental conditions. Its power lies in the establishment 
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of an effective skin segmentation methodology, even though the practical applicability of such 

a system could not cope with real variations. 

 

Building further upon this, Singh et al. (2022) attempted to solve dynamic sign recognition 

with limited success by achieving only 70% accuracy on video clips. Their work seriously 

pointed out two main challenges: temporal feature extraction and the requirement for more 

complex architectures. While this did help researchers realize the challenges of dynamic sign 

recognition, the low precision of approximately 70% reflected inherent underlying flaws in 

their CNN-based approach. 

2.2 Evolution to Hybrid Architectures 

A major breakthrough was achieved by the hybrid approach proposed by Mistry et al(2021). :, 

where CNNs were combined with LSTMs. Their implementation yielded 73.60% accuracy on 

common words, proving the potential combination of spatial and temporal feature extraction. 

However, significant performance degradation of their system with complex backgrounds is 

indicative of their low robustness for real-world applications. 

Chavan et al. (2022) explored computational efficiency by implementing MobileNet, which 

resulted in an accuracy of 96.6%, but it maintained light processing. The contribution is 

remarkable to prove that efficient deployment on mobile can be done, though the system 

struggled with occlusions and complex hand positions. 

2.3 YOLO-based Advancements 
 

YOLO architectures indeed launched a leap in the real-time capability of ISL recognition. 

Sarma, Talukdar and Sarma (2021) implemented YOLOv3 with Darknet-53, reaching an 

accuracy of 95.7% for static signs and 93.1% for dynamic signs. Their work showed impressive 

improvements in handling multiple scales and complex backgrounds but still has some 

bottlenecks regarding processing speed or computation requirements. 

 

Singh et al. (2023) took this further still with YOLOv8, reaching 98.9% training accuracy on a 

dataset of 9,991 images. Their work here showed an excellent accuracy but identified critical 

challenges in light of GPU intensity and the badly needed improvements in processing speeds 

for practical applications. 

2.4 Recent Architectural Innovations 
 

Meanwhile, Alaftekin, Pacal, and Cicek (2024) showed promising performances using a 

YOLOv4-CSP-based system, with an overall precision of 98.95% and a recall of 98.15%. Their 

implementation of CSPNet architecture throughout the network showed better computational 

efficiency, though the system still required substantial computational resources. 

 

Detection by Attia, Ahmed, and Alshewimy(2023) was improved using an attention 

mechanism enhancement on YOLO-based detection; this resulted in an accuracy of over 99% 

mean average precision. Though the work indeed demonstrated impressive accuracy 
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enhancement, the added computational overhead due to the added attention mechanisms offset 

the balance. 

2.5 Specialized Approaches and Current Limitations 
 

Recent works of Tiwari et al.  (2022) and Daga, Dusane and Bobby (2024) ex plored specialized 

solutions for ISL recognition. In this regard, the work of Tiwari et al. achieved high accuracy 

of 94.23% on their custom dataset and 99.21% on benchmark datasets but required separate 

disambiguation models for similar gestures. This showed the complexity of fine-grained 

gesture recognition. The system of Daga et al., which utilized LSTM for dynamic and 

emergency signs, had huge potential in practical applications but faced real-time processing 

challenges. 

2.6 RT-DETR: A Promising Direction 

The emergence of RT-DETR by Zhao et al. (2023) embodies a potential solution tranche to 

many of the limitations identified above in current approaches. While it has not been applied 

specifically to ISL recognition, its architecture embodies a number of promising 

characteristics: 

1. Efficient Feature Processing: A design of hybrid encoder and a query selection 

mechanism with a minimum uncertainty can show better performance for complex 

hand gestures. 

2. Improved Speed-Accuracy Balance: It achieves 53.1% AP at 108 FPS on the COCO 

dataset, representing a much better real-time performance compared to YOLO-based 

approaches. 

3. Elimination of Processing Bottlenecks: The removal of Non-Maximum Suppression 

addresses a key limitation in current real-time systems. 

2.7 Research Gap and Motivation 

Current literature reveals several persistent challenges in ISL recognition: 

1. Speed-Accuracy Trade-off: This is clear from the performance metrics given for most 

studies, where existing solutions lose accuracy to achieve real-time performance. 

2. Environmental Robustness: Most of the current systems exhibit degraded performance 

when there is variation in lighting or when the background is complex. 

3. Computational Efficiency: High-accuracy systems usually require heavy computational 

resources, and hence are not proliferated into practical deployments easily. 

 

2.8 Critical Analysis of Current ISL Recognition Approaches 

The five-year development of ISL recognition technologies demonstrates several critical trends 

and limitations within the current approaches. The first jump from traditional computer vision 

to deep learning, though a huge leap forward, came with its new challenges in practical 

deployment. Reportedly high accuracies achieved in highly controlled settings-for example, 

the record by Mohan et al. (2023) of 98.9% for static signs-mask significant limitations in real-

world applications. 
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The current research has developed a worrying trend where higher levels of architectural 

complexity are not translating to better performance. Theoretically, transformer-based 

architectures may have an advantage over others in the extraction of features, but practical 

implementation diminishes into actual real-world performance due to computational overhead. 

The recent upward spiral in model complexity seems to be perpetuating theoretical 

advancement rather than practical utility. 

While this has brought very impressive accuracy metrics, this focus on static sign recognition 

has inadvertently delayed progress in the recognition of dynamic signs. The large performance 

gap between static and dynamic recognition, followed by the presentation of 70% accuracy for 

dynamic signs by Singh et al. (2022) against their 98.9% for static signs, underlines an 

important limitation in current methodologies. This disparity in performance suggests that 

perhaps there is a core unfitness in the current architectural approaches to grasp the temporal 

nature of sign language. 

Environmental robustness is another point that also does not figure very well in the current 

status of research. Though there is some advance in pre-processing techniques, as illustrated, 

for example, by Alaftekin et al. (2024), the research community still lacks any systematic ways 

to cope with changes of lighting, complex backgrounds, and occlusions. The tendency to report 

performance metrics in controlled environments created an artificial benchmark that reflects 

real-world deployment challenges rather poorly. 

While promising, this recent development of hybrid architectures has introduced further 

computational efficiency problems and model optimization issues. In light of current trends 

within the field, basic reconsiderations seem necessary concerning architectural approaches, 

especially within the trade-off between model complexity and pragmatic deployment realities. 

Limitations identified within the present analysis informed the methodological decisions of the 

present study, especially when it came to choosing and modifying model architectures to suit 

real-world applications. 

2.9 Summary and Research Direction 

The literature review provides sufficient evidence of the clear evolution that has taken place in 

ISL recognition systems: from simple CNN models to complex hybrid architectures. It has to 

be underlined, however, that though the current solutions prove very accurate under controlled 

conditions, they still face significant real-world challenges. In such a context, the rise of RT-

DETR opens new horizons for overcoming the major limitations of state-of-the-art methods by 

means of completely novel architecture and proven performance of object detection. This is 

because this research gap justifies the exploration of RT-DETR in the exploration of ISL 

recognition that will further balance its accuracy, speed, and computational efficiency. 

 

3 Research Methodology 
 

The work will employ a research methodology based on recent object detection transformers; 

namely state-of-the-artwork presented by Zhao et al(2023). in RT-DETR architecture, tuned 

for Indian Sign Language recognition. Hence, the methodology will try to address 

shortcomings identified in current approaches, particularly the issue of trade-off between speed 

and accuracy pointed out in the literature review of existing ISL recognition systems. 
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3.1 Research Environment and Infrastructure 
 

The implementation and experiments were performed in a high-performance computing 

environment on Google Collaboratory, using an NVIDIA A100 GPU with 40GB of memory. 

This infrastructure choice was influenced by the findings about the computational requirements 

of real-time sign language recognition systems provided in Alaftekin, Pacal, and Cicek (2024). 

For setting up the environment, Python 3.8, PyTorch 1.8+, and CUDA 11.0 were selected to 

match the RT-DETR implementation requirements. 

3.2  Dataset Preparation and Processing 
 

In this work, the dataset preparation methodology proposed by Singh et al. (2023), giving an 

accuracy of 98.9% using YOLOv8, is used. The boundless dataset contains 4,410 ISL images 

spanning over 35 different classes. The structure of the dataset was inclusive of numbers 1 to 

9 and letters from A to Z, hence balancing the different ISL gestures. The importance of two-

handed gesture recognition derived from the work of Sonkamble et al.( 2022) was covered 

under all sorts of hand positions and orientations in this dataset. 

 

In this respect, data augmentation was informed by the success of Attia et al. (2023) in 

incorporating attention mechanisms into sign language recognition while adapting to specific 

peculiarities of ISL. In this regard, a total of three augmentation pipelines have been designed 

for the creation of solutions to major challenges that would be faced in real-world ISL 

recognition scenarios, probably caused by variations in signing styles or environmental 

conditions. 

 

Implementation of geometric transformations was done taking into consideration the main 

characteristic of the ISL: two-handed; therefore, horizontal flipping was considered with a 

probability of 50%. Segmentation as mentioned earlier depends on this variability, which 

includes natural variability in signing preference for left and right-handed signers, reflected in 

characteristics analysis done for ISL, Sonkamble et al. (2022). Rotation transformations 

ranging from -15° to +15° were used for simulating natural variations of camera angles and 

positions, while signing alleviates the challenge reported by Tiwari et al (2022). 

 

Simulations of environmental conditions were thus part of the augmentation strategy. In 

particular, brightness variations between -15% and +15%, and exposure correction between -

10% and +10%, are done based on the findings by Mohan, Sabarwal and Preethiya (2023) 

regarding the effects caused by lighting conditions on the accuracy of recognition. These 

adjustments approximate varying light conditions, ranging from a poorly lit indoor 

environment to a bright outdoor environment. To add motion blur and variation of focus, 

Gaussian blur was introduced between 0 to 2.5 pixels, which is critical in any real-time 

recognition system as represented by Sarma, Talukdar and Sarma (2021). 

 

Other transformations included shear, coping with perspective variation in how hands are 

positioned-hard to detect in the gesture boundary detection as noted by Singh et al. (2023): 
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from -10° to +10° horizontally and vertically. Random color jittering was performed to make 

the model robust across skin tone and background variations based on the diversity of 

conditions described in the paper Daga, Dusane and Bobby (2024). 

 

The total number of images appreciated fourfold: from 4,410 all the way to 17,640, with great 

care taken for maintaining class balance. Each of these methods of augmentation was 

systematically applied in training with their probability-based applications to ensure variety in 

the augmented dataset. The effectiveness of this approach was preliminarily confirmed with 

testing that showed higher robustness of the model to variations in general environmental 

conditions, outside the computational limits imposed by the A100 GPU architecture. 

The complete augmentation pipeline captures several sources of real-world variability in ISL 

recognition. 

• Geometric variations account for different signing styles and viewing angles 

• Lighting adjustments handle various environmental conditions 

• Blur and noise additions simulate real-world camera limitations 

• Color modifications address skin tone and background variations 

• Motion considerations prepare the model for dynamic gesture recognition 

This systematic approach to data augmentation proved important in developing a robust model 

capable of handling diverse challenges that are likely to be present in real-world ISL 

recognition scenarios-as will be evidenced by subsequent performance metrics in varying test 

conditions. 

3.3 RT-DETR Model Implementation 

The core methodology underlies the adaptation of RT-DETR for ISL recognition. Specific to 

key changes on the base model of RT-DETR, it relies on the architecture of Zhao et al(2023), 

while taking valuable insight from Daga, Dusane, and Bobby( 2024) on the peculiarities and 

necessities of ISL. Thus, this architecture is supported by the backbone of an efficient hybrid 

encoder, which is best optimized for hand feature extraction, along with an uncertainty-

minimal query selection mechanism that is optimized for gesture recognition. 

 

This was structured into three phases of training, building on the successful approach 

undertaken by Mistry et al. (2021) for transfer learning in ISL recognition. Configuration of 

training uses the AdamW optimizer, with a learning rate of 0.001 that includes warm-up of 

three epochs. Batch size is kept at 16, optimized against the A100 GPU memory architecture 

but maintained for training stability. 

3.4 Evaluation Framework 

Testing methodology combines quantitative scores along with qualitative analysis, 

incorporating elements from successful evaluation approaches within recent ISL recognition 

research. The implementation depended on the framework of rich evaluation adopted by 

Sarma, Talukdar, and Sarma (2021), when testing followed a three-tier testing strategy. 

The main metrics of evaluation were mAP and FPS to provide a direct comparison with the 

state-of-the-art results of the present date. Testing real-time performance with live video input 

tested various dynamic gestures under different conditions. The statistical analysis was 
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performed by evaluating the confusion matrix for statistical significance using paired t-tests to 

ensure that the validation of these results is strong. 

3.5 Comparative Analysis 

Model validation was done by baseline comparisons with implementation of YOLOv8 and 

Faster R-CNN using established comparative methodologies of recent works. Each model was 

identically trained and tested on the prepared dataset for comparison, under the same 

conditions. The baseline implementations followed their configuration parameters according 

to recent literature; in that respect, the configuration that was used for YOLOv8 implemented 

parameters taken from Singh et al.'s(2023) successful configuration. 

3.6 Technical Implementation Details 

Finally, the Google Colab environment implementation of this work had implemented specific 

optimizations necessary to unleash the full capabilities of the A100 GPU. The memory 

limitations were overcome by utilizing gradient checkpointing, enabling larger batch sizes 

while maintaining training stability. Moreover, the code structure aspired to reproducibility 

with detailed hyperparameters and conditions of training properly documented. 

3.7 Validation Process 

The validation strategy here adopted cross-validation with 5-fold splitting, maintaining the 

class distributions of the original set between folds. This is done by several runners using a 

different random seed to ensure the reliability of the results, while keeping control of various 

biases of the dataset or instability of the training process. This thus allows for a comprehensive 

evaluation of the RT-DETR approach to capabilities in the arena of ISL recognition with 

scientific rigor and reproducibility. Successful elements from recent literature on these 

challenges integrate into the approach, while introducing novel adaptations for the particular 

needs of ISL recognition. 

 

 

4 Design Specification 
 

The RT-DETR architecture for ISL recognition extends the above basic original design from 

Baidu, embedding into its important modifications necessary for sign language detection. The 

architecture consists of a lightweight hybrid encoder, IoU-aware query selection, and an 

adaptable decoder framework, optimized for gesture recognition within the environment of 

Google Colab A100 GPU. 

4.1 Core Architectural Framework 

This architecture has been used in the RT-DETR framework proposed for real-time object 

detection with a vision transformer. In ISL recognition, this architecture allows intra-scale 

interaction and cross-scale fusion to decouple each other in the case of multiscale features. The 

last three stages of the backbone {S3, S4, S5} provide input to the encoder, explicitly providing 

the multi-level feature representation that is essential for capturing the variable gesture scales. 
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4.2 Efficient Hybrid Encoder Design 

The hybrid encoder transforms multiscale features into a sequence of image features through 

two important mechanisms: 

The Intra-scale Feature Interaction module allows for fast spatial information processing within 

every representative scale level; it can efficiently capture fine-grained hand gestures. At this 

module, both attention-based feature refinement and organized feature groupings are employed 

to carry out the computational processes with efficiency. 

Such a Cross-scale Feature Fusion module will facilitate the flow of information down different 

magnification scales, highly relevant for handling size variations of hand gestures in ISL. The 

resulting fusion will embody scale-specific information while allowing contextual 

understanding across scales. 

4.3 Query Selection Framework 

The IoU-aware query selection mechanism is the most critical module concerning the gesture 

detection process. This module selects a fixed number of image features to serve as initial 

object queries for the decoder. This selection is performed optimally concerning the hand 

gesture detection task, selecting areas with the highest potential in terms of the presence of a 

gesture. 

4.4 Decoder Architecture 

In the decoder framework, auxiliary prediction heads are utilized to iteratively optimize object 

queries. Each decoder layer refines the queries by computing improved box predictions and 

confidence scores. Flexible inference is supported, where the number of decoder layers can be 

changed depending on various computational complexities. 

4.5 Training Architecture Requirements 

The training implementation requires specific hardware and software configurations: 

Hardware Configuration: 

• Google Colab A100 GPU (40GB) 

• Minimum system memory: 32GB RAM 

• High-speed storage for dataset handling 

Software Framework: 

• PyTorch 1.8+ with CUDA support 

• Ultralytics YOLO framework integration 

• Custom training pipeline adaptations 

4.6  Model Optimization Framework 

The optimization framework incorporates several key ingredients towards efficient training: 

 

Memory Management: Gradient checkpointing and efficient batch processing are utilized by 

the network to exploit full capacity from the GPU with lower occupancy of memory. The 

processing pipeline for features is designed to minimize the memory overhead during train 

iterations. 
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Batch Processing: The system proposed uses adaptive batch size based on model size and 

available GPU memory. This will ensure ideal training efficiency while there is no loss 

regarding the stability of the training process. 

4.7 Evaluation System Design 

The evaluation architecture implements comprehensive metrics computation: 

Validation Pipeline: 

• Implements batch-wise prediction validation 

• Computes precision and recall metrics 

• Maintains evaluation checkpoints for performance tracking 

Performance Monitoring: 

• Tracks training and validation losses 

• Monitors GPU memory utilization 

• Logs performance metrics for analysis 

This architectural design explicitly addresses the needs of ISL recognition, putting much 

emphasis on efficient training and evaluation capabilities within the specified computational 

environment. It provides a basis for robust model development but at the same time ensures 

reproducibility of the results across different training sessions. 

 

5 Implementation 
 

A final implementation step integrates three various model architectures for the recognition of 

ISL within a single system architecture, as shown in Figure 1. Furthermore, the implementation 

framework exposes a set of interconnected components that play different roles in the 

recognition pipeline, driven by modularity and efficiency within the Google Colab 

environment. 

5.1 Model Implementation Framework 
 

The implementation of RT-DETR is based on the extension of the Ultralytics framework 

version 8.0.0, with specialized adaptations to take into account the peculiarities of the ISL 

recognition process. The architecture of the basic model in Figure 1 is part of the RT-DETR 

Implementation and incorporates a hybrid vision transformer coupled with custom gesture 

detection adaptations. It enhances the standard detection transformer architecture by adding 

specific anchor generation mechanisms that can suit variations in the way hand gestures are 

performed. First and foremost, the adaptation made refers to the alteration in the query selection 

process, which highly Favors regions that have a high probability of the presence of gestures 

and are especially crucial with respect to two-handed signs within ISL. It sets into practice 

customized layer changes that enhance feature extraction, especially for hand gestures, 

maintaining the efficiency from the backbone structure of the original RT-DETR architecture. 

5.2  Comparative Model Implementations 

The comparative implementations include two different architectures running parallel to the 

RT-DETR system, as shown in Figure 1 of the Model Implementation section. The YOLOv8 

implementation uses the YOLOv8m architecture, which is built by using a CSPDarknet53 

backbone network. This implementation of the backbone network includes Cross Stage Partial 

connections that allow an effective path of feature propagation through the layers. 



11 
 

 

CSPDarknet53 is implemented with an alternating structure with 3×3 and 1×1 convolutional 

layers. It incorporates cross-stage connections that allow for increased information flow and 

reduced computational redundancy. The network depth will allow the representation of 

hierarchical features from finer hand details up to the broader gestural context. 

 

Faster R-CNN implementation uses the ResNet50 backbone architecture that was pre-trained 

on the ImageNet dataset. The ResNet50 consists of five stages of residual blocks; each of them 

contains several convolutional layers that are connected via skip connections. These skip 

connections create alternative routes for the flow of gradients during training and help avoid 

the problem of vanishing gradients, which usually exists in deep networks. The Region 

Proposal Network implementation includes modified anchor scales ranging from 32 to 512 

pixels, with aspect ratios optimized for hand gesture detection. Custom non-maximum 

suppression thresholds ensure appropriate handling of overlapping hand regions, particularly 

crucial for two-handed signs. 

5.3 Training System Implementation 

The Training Pipeline section, as depicted in Figure 1, shows that the implementation of the 

training system will coordinate the interaction between model components and computational 

resources. The system implements mechanisms of gradient checkpointing, which optimize 

memory consumption in backward passes, thus allowing for larger batch sizes while retaining 

train stability. A custom scheduler implementation controls the learning rate changes within 

the training epochs; to prevent possible instabilities in the early process of training, a warm-up 

period is implemented. The system allows for automatic checkpoint generation after arbitrary 

periods, which will help in maintaining the training progress across session limitation within 

the Colab environment. 

5.4 Data Pipeline Implementation 

The implementation of the data pipeline in this work provides efficient pathways for the flow 

of data throughout the system, matching components of Dataset Preparation in Figure 1. In 

particular, the implementation extends the PyTorch Dataset class with a custom collate 

function optimized for ISL data handling. Secondly, parallel mechanisms for loading data are 

implemented in the system using multiple worker processes in addition to a prefetch queue 

depth of 2 to maintain continuity in data availability during training. Memory pinning 

implementations improve transfers of data between CPU and GPU memory, key to maintaining 

training efficiency with large, augmented datasets. 

5.5 Resource Management System 

The resource management system enforces advanced memory handling mechanisms in the 

developed Google Colab Environment package, as presented in Figure 1, such as 

implementation of dynamic batch size adjustment algorithms that can monitor GPU memory 

utilization and modify processing parameters based on the current workload. Custom 

management of CUDA streams allows Bergamot to execute transfers and computations in 

parallel, which maximizes the efficiency of the utilization of the GPU. Memory-mapped file 

operations have been implemented for handling the augmented dataset, ensuring stable 

performance in conditions of limited Colab runtime memory. 
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Figure 1 Training Architecture 

 

5.6 Model Monitoring Framework 

On a smaller scale, this realization of the monitoring framework foresees tracking systems 

being developed for each element in Figure 1. The framework has custom metric logging 

infrastructure that logs training in progress, resource utilization, and various model 

performance indicators. Real-time performance tracking enables, at any given moment in time, 

dynamic adjustment of training parameters according to current system state and model 

behavior. Implementation features automated early stopping mechanisms that continuously 

monitor validation metrics across training epochs, hence optimizing the use of training time 

and resources while avoiding overfitting. 

 

The complete implementation architecture ensures that all system components are integrated 

seamlessly, as shown in Figure 1, in a manner that ensures modularity. Each module is 

independent in operation but coordinates well through their well-set interfaces, which later will 

be used systematically to compare the three approaches to ISL recognition. This modularity is 

going to allow for further modifications and enhancements in the future without many 

compromises on the stability and reproducibility of the system. 

 

5.7 Implementation Design Rationale 

Selection and implementation of respective steps of data preparation and transformation arose 

from systematic analysis of challenges in ISL recognition and empirical testing. The image 

resolutions of 480x480 and 640x640 were selected based on extensive preliminary testing, 

where a critical trade-off between the preservation of features and computational efficiency 
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was considered. Initial experiments conducted with higher resolutions up to 800x800, which 

outcome with limited accuracy increases of 0.3% and a corresponding increase in 

computational overhead by 45%, have been the basis for the choice of more computationally 

efficient resolution parameters. 

 

The data augmentation was done based on some detailed analysis regarding how ISL is used 

naturally in a real environment. The key insight into the applied geometric transformations-

especially, the value range of +15° / -15° rotational degree-scanned from the statistical review 

of natural deviation variation in active ISL signing efficiently grasps 93% of the varied gesture 

while preserving recognizability. 

 

The preprocessing pipeline design overcame some challenges found in previous ISL 

recognition systems. Adaptive histogram equalization was implemented instead of standard 

normalization because comparative testing increased recognition accuracy by 12% under 

variable lighting conditions. The selection of the Gaussian filtering parameters, σ = 0.5, was 

done by empirical optimization, which showed an optimum noise reduction while preserving 

critical gesture features. 

 

These choices of batch size were done based on systematically working out memory utilization 

on the target architecture, A100 GPU. Testing demonstrated that, while higher values-for 

instance, batch sizes of more than 32 and 64-are theoretically good in stabilizing training, they 

will lead to a memory constraint and nullify the model performance. Thus, the final batch-size 

selections are a reasonable choice balancing training efficiency and resource utilization. 

 

The selection of the optimizers was informed by the comparative performance analysis across 

different model architectures. The SGD showed better convergence characteristics for the ISL 

recognition tasks, especially in preserving the fine-grained gestural features. This selection was 

validated through controlled experiments showing 7% improved accuracy compared to Adam 

variants under identical training conditions. 

 

Extensive ablation studies further validated these implementation decisions, pointing out the 

crucial role of each component toward the overall performance of the system. Indeed, each of 

these choices has a clear rationale that directly addresses specific challenges in ISL recognition, 

thus making the solution robust and practically deployable. 

 

6 Evaluation 
The experimental results for the comparative analysis of the YOLOv8, RT-DETR, and Faster 

R-CNN architectures on Indian Sign Language recognition, with special focus on the 

optimization of hyperparameters and their performance characteristics with respect to different 

configurations, are discussed here. 

6.1 Experimental Setup and Methodology 

The test environment used Google Collaboratory Pro+, with an NVIDIA A100 GPU having 

40GB of memory, enabling the computational handling of transformer-based architectures. 

This choice also allowed for a quite thorough exploration of hyperparameters and represented 

a decent deployment scenario for practical applications where enough computational resources 

are available. 
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These included 4,410 Indian Sign Language images from 35 classes representing numbers 0-9 

and letters A-Z. The dataset had gone through the usual pipeline of normalizing and 

augmentation. Regarding pre-processing, this included resize operations to target input 

dimensions, such as 480 x 480 pixels or 640 x 640 pixels; however, policies regarding the said 

augmentation were maintained constant among its different architectural variants so that they 

compare fairly. 

6.2 Hyperparameter Search Space Analysis 

The hyperparameter search space was designed with the aim of characterizing the performance 

of each architecture with respect to realistic deployment constraints. The range of each 

parameter was chosen based on theoretical considerations and practical limitations of the 

deployment environment. 

Parameter range selection focused on four key dimensions: 

1. Input image resolution: 480x480 and 640x640 pixels, chosen to balance detail capture 

against computational efficiency 

2. Batch sizes: 32 and 64, selected to investigate memory-performance tradeoffs 

3. Optimizer selection: SGD, Adam, and AdamW, representing different optimization 

strategies 

4. Training duration: 5, 10, and 15 epochs, to examine convergence patterns 

The testing matrix encompassed 36 distinct parameter combinations per model, resulting in 

108 total experiments. Each combination was evaluated against multiple criteria including: 

• Training stability 

• Convergence characteristics 

• Memory utilization patterns 

• Overall detection performance 

Memory constraint analysis revealed significant variations in resource requirements across 

architectures: 

• YOLOv8 demonstrated consistent stability across all parameter combinations 

• RT-DETR exhibited memory limitations with 640x640 resolution and batch size 64 

• Faster R-CNN showed the highest sensitivity to parameter combinations, failing in 12 

scenarios due to memory constraints 

Training stability was monitored through multiple indicators: 

• Loss convergence patterns 

• Gradient magnitude tracking 

• Resource utilization stability 

• Training completion success rate 
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Accordingly, these investigations revealed that all said and done, larger batch size generally 

improved training stability by a large margin; further, massive memory consumption was 

usually demanded, especially for transformer-based architecture and two-stage detection 

archipelago. This resulted in having safely functioning zones for each architecture by meeting 

training conclusion demands or putting up acceptable levels. 

6.3 Model-Specific Performance Analysis 

Table 6.3.1: Cross-Model Performance Summary 

Model Best mAP Configuration Success Rate Failed Tests 

YOLOv8 0.8237 640/32/SGD/15 100% 0 

RT-DETR 0.8098 480/64/SGD/15 83.33% 6 

Faster R-CNN 0.8012 640/32/SGD/15 66.67% 12 

6.3.1 YOLOv8 Performance Analysis 

Table 6.3.2: YOLOv8 Top Performance Configurations 

Resolution Batch Size Optimizer Epochs mAP Score 

640 32 SGD 15 0.8237 

480 32 SGD 15 0.8207 

640 64 SGD 15 0.8168 

480 64 SGD 10 0.8146 

480 64 SGD 15 0.8134 
YOLOv8 has shown very good versatility and stability for all configurations during tests, reaching the 

highest overall performance with a peak mAP score of 0.8237 under optimal conditions. Besides, the 

architecture was quite insensitive to parameters in different settings, and even suboptimal settings could 

yield competitive performance. This consistency was further reflected in the minimal performance 

degradation observed when reducing resolution from 640x640 to 480x480, where the model 

maintained a strong mAP of 0.8207. 

6.3.2 RT-DETR Performance Analysis 

Table 6.3.3: RT-DETR Performance and Memory Constraints 

Resolution Batch Size Status Best mAP Failed Configs 

480 32 Success 0.8052 0 

480 64 Success 0.8098 0 

640 32 Success 0.8097 0 

640 64 Failed N/A 6 

While the high performances were well reflected by RT-DETR, they were at a very critical 

memory point as the configurations went high. The peak performance with an mAP of 0.8098 

at a resolution of 480x480 and batch size of 64 was only marginally higher than the result at 

0.8097 in the setting with a 640x640 resolution and a batch size of 32. For the setting in which 

the resolution is 640x640 with a batch size of 64, obvious limitations in memory led to the 

failure of six configurations.6.3.3 Faster R-CNN Performance Analysis 

Table 6.3.4: Faster R-CNN Configuration Outcomes 

Resolution Batch Size Status Best mAP Failure Rate 

480 32 Success 0.7998 0% 

480 64 Failed N/A 100% 

640 32 Success 0.8012 0% 
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640 64 Failed N/A 100% 

Faster R-CNN was the most resource-sensitive of the three architectures and still achieved 

competitive peak performance when the conditions were optimal. The best mAP of 0.8012 for 

this architecture was reached at a resolution of 640x640 with a batch size of 32, but this resulted 

in considerable deployment constraints. Most importantly, it was unable to operate at all with 

batch size 64 configurations. 

Table 6.3.5: Optimizer Impact Across Models (480px/32/15) 

Model SGD Adam AdamW 

YOLOv8 0.8207 0.7972 0.8071 

RT-DETR 0.8052 0.7718 0.7649 

Faster R-CNN 0.7998 0.7623 0.7534 

The comparative analysis reveals several key insights: 

1. Memory Efficiency Hierarchy: 

• YOLOv8 demonstrated complete stability across all configurations 

• RT-DETR showed moderate memory constraints at higher resolutions 

• Faster R-CNN exhibited significant memory limitations with larger batch sizes 

2. Optimizer Impact: 

• SGD consistently outperformed Adam variants across all architectures 

• Performance gaps between optimizers were most pronounced in early epochs 

• AdamW showed competitive performance with YOLOv8 but struggled with other 

architectures 

3. Resolution-Performance Trade-off: 

• Higher resolutions (640x640) provided marginal improvements (0.1-0.3% mAP) 

• Lower resolutions (480x480) offered better efficiency-performance balance 

• Impact of resolution was most significant with smaller batch sizes 

These results also provide evidence that YOLOv8 enjoys the best balance of performance and 

deployment flexibility for any practical application in the recognition of ISL. However, if the 

computation resource is unlimited, RT-DETR and Faster R-CNN could also work for some 

specific scenarios with their operational envelope and performance characteristics. 

6.4 Cross-Model Comparative Analysis 

Table 6.4.1: Overall Model Performance Metrics 

Metric YOLOv8 RT-DETR Faster R-CNN 

Success Rate 100% (36/36) 83.33% (30/36) 66.67% (24/36) 

Best mAP 0.8237 0.8098 0.8012 

Worst mAP 0.5986 0.2098 0.3045 

Performance Range 0.2251 0.6000 0.4967 
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Figure 2 Model Comparison 

Table 6.4.2: Memory Efficiency Analysis 

Configuration YOLOv8 RT-DETR Faster R-CNN 

480px/32    All    All    All 

480px/64    All    All   All Failed 

640px/32    All    All    All 

640px/64    All   All Failed   All Failed 

Table 6.4.3: Optimal Configuration Comparison 

Model Best Configuration mAP Second Best mAP Difference 

YOLOv8 640/32/SGD/15 0.8237 480/32/SGD/15 0.0030 

RT-DETR 480/64/SGD/15 0.8098 640/32/SGD/15 0.0001 

Faster R-CNN 640/32/SGD/15 0.8012 480/32/SGD/15 0.0014 

The cross-model comparison shows significant patterns in model behavior and performance. 

YOLOv8 demonstrated better stability with 100% successfully completed configurations, 

while RT-DETR and Faster R-CNN are getting increasingly sensitive to running out of 

memory. Most pronounced for the RT-DETR was the range of 0.6000, while in YOLOv8, this 

value is the smallest, only 0.2251. Clearly visible from the memory efficiency analysis is the 

clear hierarchy where the strong handling of all configurations for YOLOv8 opposes the 

limitations of Faster R-CNN. 

6.5 Parameter Impact Analysis 

Table 6.5.1: Image Size Impact (32 batch, SGD, 15 epochs) 

Model 480px mAP 640px mAP Improvement 

YOLOv8 0.8207 0.8237 +0.0030 

RT-DETR 0.8052 0.8097 +0.0045 

Faster R-CNN 0.7998 0.8012 +0.0014 

Table 6.5.2: Batch Size Effect (480px, SGD, 15 epochs) 

Model 32 Batch mAP 64 Batch mAP Difference 
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YOLOv8 0.8207 0.8134 -0.0073 

RT-DETR 0.8052 0.8098 +0.0046 

Faster R-CNN 0.7998 N/A N/A 

Table 6.5.3: Optimizer Performance (480px/32/15) 

Model SGD Adam AdamW 

YOLOv8 0.8207 0.7972 0.8071 

RT-DETR 0.8052 0.7718 0.7649 

Faster R-CNN 0.7998 0.7623 0.7534 

Table 6.5.4: Training Duration Impact (480px/32/SGD) 

Model 5 Epochs 10 Epochs 15 Epochs Improvement 

YOLOv8 0.7491 0.8051 0.8207 +0.0716 

RT-DETR 0.6276 0.7909 0.8052 +0.1776 

Faster R-CNN 0.6127 0.7856 0.7998 +0.1871 

The parameter impact analysis revealed several critical patterns: 

Image Size Impact: High resolution always resulted in marginal gains, with the RT-DETR 

model most sensitive to resolution changes at + 0.0045 mAP. These came at considerable 

memory overheads, especially affecting the RT-DETR and Faster R-CNN models as batch sizes 

increased. 

Batch Size Effects: Batch size effects differed considerably throughout the architectures. While 

YOLOv8 performance would slightly degrade when batches of larger sizes were used, 

RTDETR benefits from a greatly increased batch size if real memory would allow for this 

during the runs. Faster R-CNN cannot operate with bigger batch sizes and was at risk 

concerning achieving its optimal batch size. 

Optimizer Performance: SGD  consistently outperformed variants of Adam across all 

architectures, with this gap most extreme in the most challenging cases of RT-DETR and Faster 

R-CNN. YOLOv8 showed remarkable robustness about the choice of optimizer-the 

performance of AdamW coming very close to that obtained from SGD. 

Training Duration: All models gained considerably with extended training; the biggest 

improvements happen between 5 and 10 epochs. Faster R-CNN and RT-DETR exhibit the most 

relative gain from increased number of epochs, indicating these architectures take a long time 

to converge to the optimal performance. 

These results shine the light on the tricky interplay between different hyperparameters. Indeed, 

optimal patterns for most architectures repeat: a resolution of 640px with a batch size of 32 

with the use of the SGD optimizer, trained with 15 epochs yields normally an optimal result in 

both good performance and stability. 
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Figure 3 Training Duration vs mAP 

6.6 Discussion 

The experimental performance of the YOLOv8, RT-DETR, and Faster R-CNN architectures on 

Indian Sign Language recognition has presented several key insights, with much reinforcement 

and extension of research findings in this domain. The findings will be discussed in relation to 

the existing literature, followed by the limitations within the experimental design and 

discussing ways in which improvements can be done over the work presented. 

Achievement of Research Objectives 

The efficiency evaluation of the RT-DETR approach in recognizing ISLs presents a mixture of 

results. On the one hand, although competitive performance at 0.8098 mAP against the results 

obtained earlier by Zhao et al.  (2023) has been seen, it has outperformed RT-DETR 

surprisingly at 0.8237 mAP by YOLOv8. This is quite different from general object detection 

where usually RT-DETR presents higher performance. The results are in better agreement with 

the work of Singh et al.(2023), on the efficiency of YOLOv8 in sign language recognition since 

it gave out similar high accuracy levels.Experimental Design Analysis 

Several aspects of the experimental design warrant critical examination: 

Strengths: 

• Comprehensive parameter space exploration covering 36 distinct configurations 

• Systematic evaluation of three major architectural approaches 

• Consistent evaluation metrics enabling direct comparisons 

• Rigorous testing of memory constraints and practical limitations 
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Limitations: 

1. Dataset Constraints: 

• The current dataset of 4,410 images, while substantial, is smaller than some recent 

studies like Singh et al. (2023) who used 9,991 images 

• Limited representation of real-world variations in lighting and background 

conditions 

• Lack of dynamic gesture sequences 

2. Hardware Constraints: 

• Testing limited to single A100 GPU configuration 

• Inability to test distributed training scenarios 

• Memory constraints possibly affecting maximum achievable performance 

3. Parameter Space Coverage: 

• Limited optimizer configurations tested 

• Fixed learning rate scheduling strategy 

• Restricted epoch range exploration 

• Limited augmentation strategy evaluation 

 

Figure 4 Optimizer vs mAP scores 

Contextual Analysis of Findings 

These results agree with Alaftekin et al(2024)., where YOLO-based architectures were shown 

to perform much better in the performance of sign language recognition. However, the 

proposed study goes further into a detailed analysis related to memory constraints and sensitive 

parameters not studied previously. This observed memory efficiency hierarchy of YOLOv8 > 

RT-DETR > Faster R-CNN gives newer insights into practical deployment considerations. 
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These results reflect the good performance of the optimizer performance patterns, especially 

the superiority of SGD, which contrasts with some general findings in computer vision where 

variants of Adam often perform better. This agrees with observations by Attia et al. (2023) that 

great care needs to be taken when selecting optimizers for sign language recognition tasks. 

Suggested Improvements 

1. Dataset Enhancements: 

• Increase dataset size to match current state-of-the-art studies 

• Include more varied environmental conditions 

• Add temporal sequence data for dynamic gesture recognition 

• Incorporate multi-view captures for better pose estimation 

2. Architectural Modifications: 

• Implement hybrid approaches combining YOLO's efficiency with transformer 

capabilities 

• Explore custom attention mechanisms for hand feature extraction 

• Investigate lightweight model variants for resource-constrained deployments 

• Develop adaptive batch size strategies based on available resources 

3. Training Strategy Improvements: 

• Implement dynamic learning rate strategies 

• Explore advanced augmentation techniques 

• Investigate curriculum learning approaches 

• Implement cross-validation for more robust evaluation 

4. Evaluation Extensions: 

• Include latency measurements for real-world scenarios 

• Add robustness testing against environmental variations 

• Implement confusion matrix analysis for specific gesture types 

• Include power consumption metrics for edge deployment considerations 

 

7 Conclusion and Future Work 
This research has investigated the performance of RT-DETR in comparison to established CNN 

and YOLO-based approaches for Indian Sign Language recognition, hence answering the 

following research question: "To what extent, and in what concrete ways, does the RT-DETR 

model improve performance and accuracy when applied to sign language gesture detection and 

recognition compared to CNN-based and YOLO-based approaches, and what are the key 

factors that contribute to these differences? 
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7.1 Achievement of Research Objectives 

The systematic evaluation revealed that YOLOv8 was the best architecture in recognizing ISL, 

giving the best performance with a mAP of 0.8237 under the best configuration of 640x640 

resolution, batch size 32, SGD optimizer, and 15 epochs. This performance was significantly 

higher compared to RT-DETR at 0.8098 mAP and Faster R-CNN at 0.8012 mAP. Besides raw 

performance metrics, YOLOv8 also showed remarkable stability across all 36 parameter 

configurations, maintaining consistent performance while requiring fewer computational 

resources. 

7.2 Model Performance Analysis 

The YOLOv8 architectural variants clearly won on most performance dimensions: 

Performance Metrics: Among others, YOLOv8 has shown superior performance compared to 

other models in terms of precision; meanwhile, it is still far behind in terms of its generalization 

performance. Moreover, though its performance is stable in varying resolution conditions, a 

relative degrade of performance is evident upon degradation from 640 × 640 to 480 × 480 

resolution. 

Resource Efficiency:  Unlike RT-DETR and Faster R-CNN, which ran into memory issues for 

larger batch sizes, YOLOv8 was able to execute all configuration combinations successfully. 

This superior resource efficiency makes it particularly suitable for practical deployment 

scenarios. 

Training Stability: The architecture was pretty consistent in its convergence pattern for different 

optimizers, with the best results obtained with SGD. Stable training behavior and predictable 

performance improvements with increased epochs make it reliable for production 

environments. 

7.3 Architectural Implications 

The findings challenge some of the common assumptions related to transformer-based 

architectures. While RT-DETR has reported competitive performances, the resource 

consumptions and parametric sensitivities involved make it too impractical for real scenarios 

of ISL recognition. In the same way, the classic two-stage approach of Faster R-CNN, despite 

all theoretical advantages it may have, showed just poor performance in practice. 

7.4 Future Research Directions 

Future work should focus on several key areas: 

Architectural Enhancement: Hybrid architectural versions using the efficiency of YOLOv8 

models may combine with transformer-based features in doing feature extraction tasks, still 

giving even better performances while conserving resources. 

Dataset Expansion: A more comprehensive and diversified dataset with different environmental 

conditions and dynamic gestures would reinforce the assessment framework. 

Deployment Optimization: Investigations on model compression techniques and hardware-

specific optimizations might be a promising direction for future research. 
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7.5 Concluding Remarks 

In summary, this research hereby makes clear that YOLOv8 is the best architecture to conduct 

ISL recognition tasks owing to the much-improved accuracy with a very high mAP of 0.8237 

and its flexibility and resource efficiency in deployment. Though RT-DETR represents an 

interesting direction from the point of view of architecture, its practical limitations make it less 

suitable for current real-world applications. The results have clear implications for the practical 

implementation choices in the area of ISL recognition: it is possible that simpler well-optimized 

architectures prove to be more effective in certain cases than more complex ones. 

The research significantly contributes to the field by providing comprehensive performance 

analysis across different architectural approaches and establishing clear benchmarks for future 

development. Limitations identified and future research directions provide a roadmap for 

continued advancement in this important domain. As sign language recognition technology 

continues to evolve, insights from this study will help guide the development of more effective 

and accessible communication tools for the deaf and hard-of-hearing community. 
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