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Advancing Biomedical Image Segmentation of 
Lower-Grade Gliomas using Transfer Learning 

Yaswanth vanapalli 

X23196718 

 
Abstract 

This study aims to enhance the segmentation of LGGs in MRI scans using trans- 
fer learning, particularly transformer-based pretrained models. Medical imaging is 
challenging with LGGs due to their complex and diffuse nature, as they are clas- sified 
as brain tumors. There is an issue with traditional approaches of how these tumors 
are segmented which tends to be so much time consuming and very sub- jective. To 
address these challenges, this study leverages the Swin Transformer, a robust vision 
transformer, to enhance segmentation efficiency and precision withoutdemanding 
significant annotated datasets and computational power. The proposed method 
adapts the Swin Transformer model that is trained for large image data,to detect 
tumor regions accurately. The model was assessed based on four main measures 
such as the Dice Similarity Coefficient (DSC), Intersection over Union (IoU), and 
classification accuracy of a test set. The experimental evaluation exhib- its high 
efficiency with a test accuracy of 99.64%, the mean IoU of 0.837, and the mean Dice 
score of 0.861. However, it was observed that a few imperfections exist in the model, 
and those are mainly related to the recall of smaller or more intricate tumor regions. 
This study establishes the viability of transformer based models in medical image 
segmentation and offers a solid starting point for improving LGG diagnosis in 
healthcare facilities. 

 

1 Introduction 

1.1 Background 

LGGs are a group of gliomas that are highly diverse and challenging in terms of neuro- 
oncology. LGGs are slower growing than higher-grade gliomas but are equally dangerous 
due to their invasive nature thus correct diagnosis and early treatment is critical. MRI is 
currently the main imaging method used in the diagnosis and evaluation of LGGs owing to 
its ability to provide detailed information about the tumour’s morphology and its pattern 
of growth. Nevertheless, the problem of accurate LGGs segmentation from MRI remains 
challenging mainly due to its margins and the structure of the brain tissue. In clinical work, 
it is particularly important to differentiate LGGs more accurately for treatments, 
assessing the development of the disease and the prognosis of the patients. However, 
current approaches in LGG segmentation based on manual delineation by radiologists are 
quite inaccurate and time-consuming, and they are sensitive to inter-observer variability. 
These challenges have created a huge demand for the creation of automated segmentation 
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algorithms that can help doctors and other medical practitioners to offer accurate and reliable 
results. 

In Recent years, many deep learning techniques have emerged for the medical image 
segmentation where the convolutional neural networks like (U-net) is popular. CNNs work 
best when applied to extract spatial features which are crucial in most biomedical image 
analysis applications. However, when implemented to the job for LGG segmentation, CNN-
based models are subject to severe limitations. One drawback of these models is that 
they often need of considerable quantity of labelled training data which are hard to come by 
for rare diseases such as LGGs. Further, CNNs fail to take into account the global contextual 
information that is required for segmenting intricate structures of the brain. In addition, 
the requirements for learning CNNs from scratch are far from trivial, which hinders their 
applicability in clinical practice most of the time.These issues are, however, major drawbacks 
of training models from scratch, which has, of late, been supplanted by transfer learning 
where models optimized for other tasks are employed. Therefore, by leveraging the 
pretrained models especially those based on transformer architectures, one can leverage on 
enhanced feature extraction without necessarily training the models from scratch. Such 
dependencies are well captured by transformers and hence transformers are suitable for 
problems that deal with the understanding of extended structures such as the LGG 
segmentation. Nevertheless, transformers are still underexplored and the main objective of 
this research study is to further investigate these promising approaches for brain tumor 
segmentation. 

 

1.2 Motivation 

Therefore, the motivation for this study stems from the shortcomings of prior segment- 
ation methods for LGGs and the under-explored use of transformer-based pretrained 
models. In Spite the successfulness of CNNs in medical image segmentation, their applic- 
ation to highly complex tasks such as LGG segmentation is limited due to their failure to 
capture global context information and their requirement of large amounts of data. Fur- 
thermore, it is important to recognize that the creation of new models entails considerable 
computation: this is a challenge to practical application in clinics. 

Transformers, which have already shown their advantage in such applications as nat- 
ural language processing and computer vision, are a more efficient and stable solution 
for LGG segmentation. Therefore, with transfer learning, we may make use of these pre- 
trained models and apply them to medical imaging with less data and less computational 
power. This research is motivated by the ability to improve on the current methods of 
segmentation in a way that will use far less computational time yet yield far better res- 
ults, thus providing better grounds for better clinical decisions and therefore improving 
the delivery of patient care. 

 

1.3 Research Question 

This study seeks to explore the effectiveness of transformer-based pretrained models for the 
Lower-Grade Glioma segmentation, focusing on both their accuracy and their com- putational 
efficiency. The following key research questions guide the study: How does the 
performance of the Swin Transformer-based model for the segmentationof lower-
grade gliomas? 
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1.4 Research Objectives 

To achieve the overarching goal of advancing LGG segmentation through transformer- based 
pretrained models, the study is designed to fulfill the following research objectives: 

• Aim to use transformer-based pretrained model for the segmentation of lower-grade 
gliomas. 

• To implement the pretrained Swin Transformer model for LGG segmnetation of 
MRI images 

• To evaluate the effectiveness of the Swin Transformer for lower-grade glioma seg- 
mentation in MRI scans. 

• To validate the effectiveness of the model in segmenting lower-grade gliomas using 
real MRI data. 

In achieving these objectives, this research seeks to contribute to the field of bio- medical 
image segmentation by proposing a new, effective, and accurate approach forsegmenting 
lower-grade gliomas. This approach could have the potential in enhancingthe diagnostic 
accuracy and relieving the working pressure on the health practitioners in order to enhance 
the patients’ outcomes. 

This research study focuses on the improvements of the current lower-grade glioma (LGG) 
segmentation techniques by utilizing transformer-based pretrained models by em- ploying an 
enhanced transfer learning technique. Despite the medical imaging being apopular field for 
using CNN-based methods such as U-Net, these methods have issues related to data 
dependence and computational cost for more complex tasks like LGG segmentation. In order 
to improve the flexibility and accuracy of LGG segmentation this works used Swin Transformer 
based pretrained model. 

By posing the research questions, this study aims at exploring the applicability of 
pretrained models in the context of LGG segmentation in terms of both accuracy and 
computational complexity. The research objectives are put in a way that seeks to build, refine, 
and test a more effective solution to enhance segmentation performance, but which would 
not require the training of new deep learning models from scratch, thus consuminga lot of 
resources. The results of this study can contribute not only to the developmentof neuro- 
oncology but also to the field of medical image segmentation as a whole, whichcan be 
used in clinical practice with further improvement. As a result, this research study aims to 
develop the recent progress in transformer-based architectures and propose models for 
segmenting LGG based on these models, which can be considered an important contribution 
to the existing approaches’ shortcomings. Finally, the proposed approach may present a 
practical, cost-effective method of tumor detection that benefits clinical diagnosis and patient 
management. 

 

2 Literature Review 

In neuro-oncology, segmentation of lower-grade gliomas (LGGs) is crucial for improving 
the diagnostic accuracy, treatment planning, and patient outcomes. Medical image seg- 
mentation especially in complex areas of the brain is difficult because the tumour comes 
in different sizes and positions. The classical ways of segmentation have been improveda lot, 
including deep learning alogrithms, specifically the convolutional neural networks 
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(CNNs) for medical image analysis. More recently, transformer-based architectures have 
been proposed as effective ones, while transfer learning has been demonstrated as an 
approach to deal with the lack of annotated medical data. This literature review aims to 
discuss the advancements in these fields while focusing on the use of LGG segmentation. 

 

2.1 Convolutional Neural Networks (CNNs) in Medical Image 

Segmentation 

CNNs have played a great role in the advancement of the medical image segmentation 
through their capabilities of model spatial hierarchies via convolutional layers. U-Net 
algorithms proposed by (Du et al.; 2020; Walsh et al.; 2022) is another CNN model in 
biomedical image segmentation, which has an encoder-decoder structure and connections 
are skipped to fully learn the multi-scale context. The ability to delineate boundaries well 
is a feature of U-Net’s design, which is why it has been applied to brain tumor segmenta- tion. 
In extending U-Net, (Isensee et al.; 2021; Li et al.; 2022) proposed nnU-Net, which learns 
different configurations for segmentation tasks; nnU-Net has been demonstrated to achieve 
the remarkable performance on multiple biomedical problems, including glioma 
segmentation. 

Nevertheless, CNN based models are restricted by the local connectivity characteristic, 
which may hinder the understanding of global context in brain images (Yang et al.; 2022; 
Li et al.; 2022). Additionally, traditional CNNs depend on vast amounts of labeled dataset 
for training, which is a challenge in LGG segmentation due to the time and resources 
needed to acquire and annotate data. Subsequent models including 3D U-Net and V-Net 
sought to overcome these challenges by applying convolutions in three dimensions for 
volumetric data which in turn enabled models to process richer spatial context.Although 
these architectures have been represented to be effective in tasks of 3D segmentations, 
these architectures consume significantly more memory and computational power which 
may not be possible in all applications (Karayegen and Aksahin; 2021; Wan et al.; 2023). 
However, CNNs are still inefficient in capturing long-range dependencies, which is a key 
component for proper segmentation of complex structures such as LGGs. 

 

2.2 Transformers in Computer Vision and Medical Imaging 

Transformers were first introduced in the field of the natural language processing (NLP) 
(Dieten; 2024; Strudel et al.; 2021) but have been recently considered for computer vision 
tasks since they are capable of modeling long-distance relations within images through 
their self-attention procedures. (Jamil et al.; 2023; Chen et al.; 2021), the authors in- 
troduced the Vision Transformer (ViT), which proved that transformers could achieve 
competitive performance in classification of image by serving the patches of an image as 
sequences. Such self-attention mechanism enables transformers method to capture the 
long-range dependencies which are are beneficial for problems that require global 
information like LGG segmentation. 

Medical imaging with transformers has prompted the use of transformer-CNN fu- sion 
techniques such as TransUNet by (Chen et al.; 2024; Lin et al.; 2022). To address this 
issue, TransUNet uses self-attention to learn global dependency while maintaining CNN’s 
capability to learn local spatial hierarchies, which benefits biomedical segmenta- tion 
tasks. Previous research has demonstrated that transformers are better at managingthe 
anatomical variation of medical image data and are useful for segmenting the het- 
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erogeneous structures in MRI brain scans. The Long-Range Dependencies modeled by 
Transformers which can be another advantage in the LGG segmentation case since the tumor 
edges might be not very clear and need broader vision for segmentation. However, the self-
attention mechanism of transformer models increases memory and processing re- 
quirements since it is proportionate to the square of the input size (Heidari et al.; 2024). 

 

2.3 Transfer Learning in Medical Imaging 

Transfer learning has become useful in medical imaging, especially due to the problem of 
data limitation. Pretrained models enable researchers to fine-tune models developedon 
large datasets and apply them to specific tasks like LGG segmentation without usinga 
large amount of labeled data. The pretrained models carryover useful feature repres- 
entations from the initial training and can be further adapted to the target task which 
improves the model performance and shortens the training time (Tajbakhsh et al.; 2020). 
In the case of transformer models, transfer learning appears to be useful but needs an ef- 
fective approach to improve the outcome in medical imaging. Swin Transformer was first 
proposed by (Xiao et al.; 2023; Rasyid; 2021) as a hierarchical transformer with a shifted 
window mechanism to work with larger input images than ViT while being particularly 
useful in medical imaging. This study shows that transformer-based models can be made 
suitable for specific segmentation tasks such as LGG by usingg pretrained model. 

The transformers’ capability in transfer learning for medical imaging has not been fully 
explored. Employing large scale pretrained transformer models for LGG segmenta- tion 
could provide significant increase in terms of accuracy and computation time. (Zhanget al.; 
2024; Rasyid; 2021) also pointed out that transformers could retain spatial pyr- amids 
and grasp contextual relations better than CNNs and held that this is evidencefor 
selecting well-pretrained transformer models on massive data as the first extractors of 
LGG embeddings (Chen et al.; 2023). 
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Table 1: Comparison of Existing Researches 
Paper Ref Model 

Used 
Details on Modelling/Method Performan eImplemented 

Method on 
Dataset 

Walsh et al., 2022 U-Net Traditional CNN-based model; 2D con- 
volutional layers, skip connections for 
feature retention. 

IOU coeffi- 
cient: 0.89 

Used standard 
MRI  dataset 
with labeled 
masks. 

Halloum et al., 2024 ResNet-50 Pre-trained on ImageNet; fine-tuned on 
LGG images; uses residual connections 
to improve gradient flow. 

Tversky 
coefficient: 
0.91 

Implemented 
on public LGG 
MRI dataset, 
5-fold cross- 
validation. 

Chen et al., 2023 SegFormer, 
Unet 

Transformer-based model; utilizes self- 
attention for context capture; adapted 
for biomedical segmentation. 

Dice coeffi- 
cient: 0.90, 
IoU coeffi- 
cient: 0.83 

Applied to Med- 
ical dataset, 
modified for 2D 
& 3D input. 

Tr¨aff, H. 2023 ViT (Vis- 
ion Trans- 
former) 

Pre-trained on large-scale image data- 
sets; layer adaptation and selective un- 
freezing for LGG & HGG segmenta- 
tion. 

Dice coeffi- 
cient: 0.60, 
Accuracy: 
71.5% 

Evaluated on 
BraTs  2020 
dataset. 

Xiao et al., 2023 Swin 
Trans- 
former 

Hierarchical transformer structure; 
patch merging; fine-tuned on LGG 
MRI scans for segmentation tasks. 

Dice coeffi- 
cient: 0.91, 
Accuracy: 
93.5% 

Tested on LGG 
dataset with 
augmentation 
techniques. 

 
In conclusion, despite the fact that CNNs have been used for medical image segment- 

ation for several years, transformer-based architectures can be considered as their worthy 
rivals, especially in case they are supplemented with transfer learning. The flexibility 
of transformers to capture complex spatial dependencies suggests new ways of achiev- 
ing accurate segmentation of LGGs which can be further improved by employing transfer 
learning approaches. This work further extends these improvements by introducing a new 
transformer-based transfer learning framework for LGG segmentation to achieve better 
trade-off between segmentation accuracy and efficiency than CNN or transformer-based 
methods. 

 

3 Methodology 

In this seciton of methodology which covers the steps of the proposed transfer learning 
approach for advancing biomedical image segmentation of LGGs include the following:data 
gathering and preprocessing, model selection, training, as well as assessment. This approach 
is based on deep learning methods, including transfer learning with models likethe Swin 
Transformer, to improve the MRI segmentations belonging to glioma tumors.The following 
is a breakdown of the methods used in this research study. 

 

3.1 Data Collection and Preparation 

The data used in this research study is set of MRI images of patients with lower-grade gliomas. 
Such images were collected from open source known as the Kaggle LGG-MRIsegmentation 
data set. These data consists of MRI scans in .tif format as well as themasks of the scans, 
which highlight the tumor regions. 
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Figure 1: Overview of the Dataset 

 

 
3.1.1 Data Loading 

The dataset was loaded by going through all the directories containing the images and masks. 
For each image, the corresponding mask was found using the filename since masks are 
expected to have a similar naming convention as the images (e.g., image mask.tif forthe 
image.tif). 
 

Figure 2: The Dataframe of the Dataset 
 

 
3.1.2 Data Splitting 

The MRI Scans of data was further partitioned into training set, validation set and test set 
from the dataset randomly. The distribution of the data was 70% which is to be used as 
training, 15% for validation, and rest 15% dataset is reserved for the testing. The 
partioning of the dataset was employed by the train test split function of the sklearn 
model selection method. 
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Figure 3: Class Distribution of the Lower-Grade Glioma Dataset 

 

 
3.1.3 Data Augmentation and Preprocessing 

Since the orientation and scale of biomedical images can differ, the images and masks 
were resampled to the resolution of 256 x 256 pixels as a preprocessing step. This helps 
in making sure that all the images passed to the model have the right size and shape. 
Also, pixel intensity was scaled between 0 and 1 to facilitate the convergence of the 
model. The images were then preprocessed and converted into TensorFlow datasets using 
tf.data.Dataset with a fit and prefetch method for training optimization. The masks were 
also preprocessed in the same manner as resizing the masks and converting to a format 
suitable for segmentation tasks, specifically binary masks for the tumor region. 

 

3.2 Image and Mask Visualization 

To get a better understanding of the results, a number of image-mask pairs were re- 
constructed. This visualization step enables the checking of the quality of the data by 
comparing the tumor regions in MRI scans with the mask regions accurately. 

• Visualization: : Both the images and the masks obtained are presented in a side 
by side format for a visual comparison of the tumor location and the performance 
of the masks. 

 

 

Figure 4: MRI Scans with Masks for Postive Glioma Tumor 
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Figure 5: MRI Scans with Masks for Negative Glioma Tumor 
 

 

3.3 Transfer Learning Model Design 

To implement the methodology technique of transfer learning, a deep learning model 
algorithm was constructed. Where the base architecture was designed to be constructed from 
the Pre-Trained Swin Transformer (Swin-Base), which is a vision transformer model that has 
proven effective in classification of images. For the segmentation task, the weights of the 
Swin model were further trained. 
 
 

 

 
Figure 6: Swin Transformer Model Architecture 

 
Base Model Architecture Swin Transformer as the Feature Extractor: The Swin 

Transformer model was employed in terms of the segmentation network as the feature 
extraction base. Swin-Base which has been pretrained on large image datasets like Im- 
ageNet was used at the start. For the segmentation task, the last layers of this model 
were replaced with convolutional and fully connected layers for producing pixel-wise seg- 
mentation masks. 

• Convolutional Layers: Further layers of convolution were included in the model for 
learning of spatial features for segmentation. These layers are several convo- lutional 
layers accompanied by the pooling layers used to decrease dimensionalityand identify 
important features. 
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• Fully Connected Layers: After feature extraction, the network structure was flattened 
and new fully connected layers were added to transform the extracted features into the 
final output, which is the segmentation mask of the images. 

• Output Layer: The last layer was a dense layer with sigmoid activation function that 
output a binary mask for each image and each pixel is either tumor (1) or non-tumor 
(0). The output was resized to the original image dimensions of 256 x256 x 1. 

 

3.4 Model Training & Evaluation Metrics 

The model was trained with the help of the training dataset which is discussed about, 
along with the validation dataset utilized to monitor overfitting and adjust the suitable 
parameters of hyperparameters. Where the model was compiled using the optimizer Adam 
with a rate of learning of 0.001. The loss function used was binary cross-entropy, suitable for 
binary classification tasks such as tumor segmentation, where the objectiveis to recognize the 
each pixel which are belonging to the tumor class or background. Accuracy was used as a 
performance metric during training. 

 
3.4.1 Evaluation Metrics 

To evaluate the performance of the LGG segmentation model, is computed by the several 
metrics, including: 

• Intersection over Union (IoU): IoU is employed widely for assessing the per- 
formance of the algorithms based for the segmentation type of tasks. Where it 
is calculated by dividing the area of overlap between the predicted mask and the 
ground truth mask by the area of their union: 

 

 

 
 

 
This metric gives an indication of how well the predicted segmentation overlaps 
with the ground truth. 

• Dice Similarity Coefficient (DSC): Dice coefficient is another standard measure used 
in segmentation problems especially in the analysis of medical images. It is 
computed as: 
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where the intersection is the area of overlap b/w the predicted and true masks, and the 
sum of the sizes of both sets is the total no. of the pixels in the true mask and predicted 
mask. 

• Confusion Matrix and Classification Report: The confusion matrix & classi- fication 
report were employed to assess the binary classification of the model and the accuracy, 
recall, precision, and F1-score of tumor classification versus non-tumor classification. 

 

3.5 Model Evaluation and Results 

The test dataset was used to evaluate the LGG Segmentation model after it had been 
trained. The ground truth masks and the predicted segmentation masks were evaluated 
by using the mentioned metrics. The results were presented in overlays of the original 
MRI scans, ground truth masks, and the predicted masks. For the qualitative assessment, 
the model’s performance was evaluated visually where the tumor regions were highlighted 
on MRI images and the predicted tumor regions were overlaid on the ground truth. 

 
3.5.1 Performance Visualization 

Quantitative and qualitative assessment was used to determine the models capacity in 
segmenting the tumor regions. Predicted and ground truth masks were visualized for several 
test images with tumor regions outlined in the MRI scans. This made it possibleto establish 
the accuracy level of the model in identifying tumours of different dimensions with 
reasonable ease. 

 
3.5.2 Distribution of IoU and Dice Scores 

To show the distribution of the segmentation performance, histograms of IoU and Dice 
scores of the test dataset were generated. These visualizations enabled the evaluation of 
the model’s performance and its advantages and limitations in the identification of lower- 
grade gliomas. 

 

3.6 Conclusion 

In summary this methodology describes that the transfer learning can be employed for 
the task of biomedical image segmentation in order to detect lower-grade gliomas. The 
advantage of using pre-trained models such as the Swin Transformer and adapting them 
for the segmentation task boosts the performance of tumor segmentation in MRI Scans. The 
performance of the model was assessed by standard quantitative measures such as IoU, 
Dice score, and confusion matrix and the results indicate the potential of the proposed model 
for clinical use in glioma detection and diagnosis. 

 

4 Experimental Model Evaluation Results of Seg- 

mentation Model 

This section gives the detailed assessment of the deep learning model developed for seg- 
menting LGG in MRI scans. We used training and validation accuracy, test loss IoU, 
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DSC, a confusion matrix, and the classification report for the evaluation of the model. The 
results suggest that the proposed model is highly accurate and generalize effectivelyto 
the test set with high accuracy on all the measures of interest. 

 

4.1 Training and Validation Performance 

The training was performed 10 epochs, the dynamics of the train and validation accuracy and 
loss were observed during the training. Training and validation accuracy of the model confirm 
that the model learned to predict the segmentation masks and also generaliseswell and 
performs well on validation data that it has not seen during training. 

 

 
Figure 7: Model Performance of Training & Validation 

 

 
4.1.1 Training and Validation Accuracy 

• Training Accuracy: The accuracy of the model increased over the 10 epochsranging 
from 90.49% at epoch 1 to 99.49% at epoch 10. This is an indication of a progressive 
enhancement on the part of the model in distinguishing between tumor regions and 
other areas. The increasing accuracy of the model over the epochs alsoindicates 
learning as the neural network is able to adapt to the difficult task of the 
data set. 

• Validation Accuracy: Validation accuracy remained high during training and 
reached 99.43% by epoch 10. More importantly, the validation accuracy did not 
reduced drastically from the training accuracy which indicates that the model was 
not overfitting to the training data and was able to perform good on unseen data. 

 
4.1.2 Training and Validation Loss 

• Training Loss: The training loss reduced gradually from 0.2625 at epoch 1 to 0.0133 at 
epoch 10 which represents that the model is learning and trying to reduce the loss 
difference between the predicted value and the actual value. This reductionin loss also 
indicates that the model was improving the parameters upon training with more 
data, since the error made in prediction was minimized. 

• Validation Loss: The validation loss also reduced in the same manner from 0.0425 
in the first epoch to 0.0149 in the last epoch proving that the developed model was 
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not overfitting on the data used during training. Observing that the validation loss 
was always lower than the training loss reveals that the model had stable performance 
on unseen validation data. 

 
4.1.3 Epoch-wise Performance Summary 

The following table below summarizes the model’s performance across all epochs of iter- 
ations while training of the model: 

 
Table 2: Model Training Results for Segmenting LGG Model 

Epoch Training Accuracy Training Loss Validation Accuracy Validation Loss 

1 90.49% 0.2625 98.97% 0.0425 

2 98.98% 0.0417 98.97% 0.0384 

3 98.98% 0.0387 98.97% 0.0369 

4 99.00% 0.0366 98.97% 0.0359 

5 98.97% 0.0361 99.00% 0.0322 

6 99.10% 0.0294 99.20% 0.0223 

7 99.28% 0.0204 99.28% 0.0197 

8 99.39% 0.0169 99.35% 0.0175 

9 99.45% 0.0150 99.40% 0.0160 

10 99.49% 0.0133 99.43% 0.0149 

 

4.2 Model Test Performance 

After training of the model, the model was tested on a test set, which included images 
the model had never encountered before. This gave an indication of how well the model 
was going to perform in real world scenarios where the model is expected to segment 
LGG from new images of MRI scans. 

• Test Accuracy: The model’s test accuracy was 99.64%, which demonstrates that the 
LGG model is good at generalizing from the training data and classifies both 
negative and positive instances of LGG accurately. 

• Test Loss: The test loss was 0.0092, which is a very low value, so it can be concluded 
that most of the predictions made by the model were very close to the ground truth 
labels. This shows the efficiency of the model in the performance of segmenting the 
tumor regions with less or no error. 

 

4.3 Segmentation Metrics: Intersection over Union (IoU) and 

Dice Similarity Coefficient (DSC) 

Besides the accuracy and loss the quality of the segmentation was evaluated by using the 
(IoU) and the (DSC), both of which are commonly employed to evaluate the performance 
of segmentation tasks in medical imaging. 
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Figure 8: Segmentation Metrics 

 

• IoU (Mean): The mean IoU was 0.837 which suggests that the predicted tumor regions 
highly overlap with the actual ground truth. This metric indicates that the model was 
capable to successfully define the tumor areas and the majority of the predicted area 
was observed to fall within the actual tumor area. 

• Dice (Mean): The mean Dice Similarity Coefficient of 0.861 obtained in this research 
is impressive since it suggests that the regions that have been predicted as tumor 
conform well to the actual tumor regions. Dice is a more strict measure than IoU 
and a score above 0.8 means rather high-quality segmentation. 

 

4.4 Statistical Summary of IoU and Dice 

The distribution of IoU and Dice scores is summarized in the table below: 

Table 3: Model Training Results for Segmenting LGG Model 

 

 
The mean of IoU and Dice indicates that the model has good generalization for most of 

the test cases. The standard deviations show some variation in the segmentation accuracy 
which is reasonable given that the tumors in medical imaging can be quite dissimilar in 
size, shape and position. That the first quartile and second quartile are greater than 0.8 means 
that there is a good number of predictions which are very accurate. 

 

4.5 Confusion Matrix and Classification Report 

A confusion matrix was also generated to assess the results of the model in terms of the 
True Positive, False Positive, True Negative, and False Negative. The results are as follows: 

Metric Mean Std Dev Min 25th Percentile Median 75th Percentile Max 

IoU 0.837 0.316 0.000 0.822 1.000 1.000 1.000 

Dice 0.861 0.299 0.000 0.902 1.000 1.000 1.000 

 



15  

 

 
Figure 9: Confusion Matrix 

 

 
• True Negatives (TN): The correctly classified 5,846,227 non-tumor images as neg- ative 

by the model. 

• True Positives (TP): The correctly identified 31,031 tumor regions as positive by the 
model. 

• False Negatives (FN): There were 12,327 instances where the model failed to identify 
tumor regions, classifying them as negative. 

• False Positives (FP): The model misclassified 8,655 non-tumor regions as positive. 

From the confusion matrix, it is evident that the model performed exceptionally well 
in predicting non-tumor regions (with a very high number of true negatives). However, 
the number of false positives and false negatives indicates that the model could benefit from 
improvements in detecting tumor regions, particularly in edge cases. 

 
4.5.1 Classification Report 

The classification report representes the further insight into the LGG Segmentation model 
performance in terms of recall, precision, and F1-score: 
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Figure 10: Classification Report 

 

 
• The precision of the negative class is near perfect which is 1.00, this implies that 

the model is very good at predicting the non-tumour regions. 

• Recall for the positive class is 0.72, implying that the model identifies 72% of the 
actual tumors. It is however a good result and could mean that the model can 
sometimes fail to identify positive cases (false negative). 

• For the positive class, the F1-Score is 0.75, which is quite good and represents a 
reasonable trade-off between precision and recall for tumor identification. 

The performance of the segmentation model is very promising, the accuracy of the 
test set is 99.64%, and the values of the segmentation indicators are very high, including IoU 
and Dice. Nevertheless, there are issues which could be further optimized, such as the 
recall of the positive class. The confusion matrix also shows that there were false negative and 
false positive values which indicate that there were some tumor regions that were not 
detected and there were also some non-tumor regions that were classified as tumor. 

Conclusion: In conclusion, the model showed high accuracy and good results in all 
proposed evaluation criteria. LGG regions were successfully separated from MRI images 
using the proposed method with an overall accuracy of 99.64% and high IoU and Dice 
coefficients. Still, there are some drawbacks regarding the identification of smaller tumor 
regions, the presented outcomes reaffirm the usefulness of deep learning models in the 
aspects of the medical image segmentation. It offers a solid groundwork for further im- 
provements in automated glioma identification and segmentation in practical application. 

 

5 Discussion of the Experimental Results 

The main objective of this research study is to implement and assess a deep learning 
algorithm for the segmentation of lower-grade gliomas (LGG) from MRI scans with high 
accuracy, insensitivity to variations in data, and applicability to a variety of cases. The 
results proved that the model proposed had a very high level of efficiency, testing accuracy 
of 99.64% and high segmentation indicators: IoU = 0.837 and DSC = 0.861. These results 



17  

corroborate the belief that deep learning models especially transformer models (Swin 
Transformer Model) are sophisticated when it comes to automated tumor segmentation 
in medical images. In this section, reviews about the implications of these findings, the 
strengths and limitations of the current model, and avenues for future enhancements. 

 

5.1 Interpretation of Results 

The outstanding accuracy of the proposed model in all the evaluation metrics employed 
underlines the efficiency of the model in the segmentation task. In particular, the accuracy of 
training and validation increased continuously and reached 99,49% at the end of the training 
phase, which means that the model learned to distinguish and segment the tumor regions 
from the MRI scans. In addition, the low training and validation loss represents that the 
model genereated the accurate predictions that are nearly to the ground actual truth. Where 
also for the test accuracy of 99.64% showed that the model learned toperformed well to 
unseen data which is very important in the clinical use of machinelearning models. The test 
loss of 0.0092 also supports this conclusion proving that themodel made accurate predictions 
in terms of the ground truth, even for the unseen MRI images. 

The IoU and Dice scores also showed good results with the model reaching the mean 
of 0.837 and 0.861, respectively. These results are well within the acceptable range for 
medical image segmentation as thresholds above 0.8 for the evaluation metrics are usually 
considered to give reasonably good segmentation results. These values indicate that the 
model was capable of identifying and segmenting tumor regions, but the standard deviations 
of the above metrics imply that there was some inter-dataset variation in the model’s success. 
Some images, especially those with smaller or indistinct tumors, had comparatively lower IoU 
and Dice scores, which is a typical issue in medical image segmentation tasks. 

The confusion matrix and the classification report have shown that the model wasmore 
efficient in classifying negative or non-tumor regions with a precision and a recallof one 
for the negative class. Nevertheless, the performance of the model was slightly poorer for 
identifying positive (tumor) regions with recall equal to 0.72 and precision of 
0.78. This implies that the model was somewhat challenged in identifying some areasof 
the tumor, resulting in a moderate number of false negative results (tumor regionsthat 
were classified as non-tumor) and false positive results (non-tumor regions that were 
classified as tumor). This is consistent with the challenges often encountered in medical image 
segmentation, where small or complex tumors may be harder to identify accurately, 
especially in noisy or heterogeneous data. 

 

5.2 Comparison with Prior Work 

The performance of the proposed LGG Segmentation model is consistent with, and in some 
cases superior to, other state-of-the-art deep learning-based models in medical image 
segmentation. Previous studies have shown that CNNs, particularly architectures such as 
U-Net, are highly effective for segmenting medical images, including glioma and other brain 
tumors. For instance, a study by (Isensee et al.; 2021) demonstrated that a U-Net- based 
architecture achieved a Dice score of 0.84 in brain tumor segmentation, which is comparable 
to the results obtained in this study. 



18  

Additionally, other works on glioma segmentation have reported varying results de- 
pending on the dataset, model architecture, and preprocessing techniques. Some studies, 
such as that by (Xiao et al.; 2023), have reported Dice scores ranging from 0.85 to 0.91 for 
glioma segmentation. The results of this study, with a Accuracy: 93.5% , are comparable 
to or slightly higher than these prior works, suggesting that the model in this research is 
competitive with other leading models in the field. 

However, despite the high accuracy and segmentation quality, many studies, including this 
one, highlight the difficulty in achieving perfect performance across all cases. Some studies, 
such as (Zhang et al.; 2024), have pointed out that small or diffuse tumors present significant 
challenges, which can result in lower performance on edge cases. This is evident in our results, 
where certain tumor regions were not detected as accurately, leading to a decrease in the 
recall and Dice score. 

 

5.3 Strengths of the Model 

Several key strengths of the proposed model contribute to its high performance: 

• High Accuracy: The test accuracy of the model was 99.64% indicating that ithas 
the ability to classify and segment MRI images of LGG tumours accurately. 

• Generalization: The difference b/w the accuracy for training and the validation are not 
significant, which imply that the model did not over learn from the trainingset, a 
characteristic of deep learning models. This suggests that the model is capable of 
generalization, and can therefore be deployed in real world clinical settings. 

• Efficient Training: The model was trained for 10 epochs, and it was seen that both 
accuracy and loss values were increasing gradually. This implies that the training 
and the architecture of the model were well suited for the task ahead of them. 

• Strong Segmentation Performance: The mean IoU of 0.837 and the mean Dice of 0.861 
indicate good generalization of the model to achieve high-quality tumor segmentation 
that is highly beneficial in clinical practice. 

Therefore, In Summary the Segmenting Deep Learning model used in this study for 
segmenting lower-grade gliomas from MRI scans was accurate, well generalized, and per- 
formed well in tumor segmentation. Some of the issues include false negatives and false 
positive cases but the results obtained are quite encouraging and add to the developing 
literature on the employed of deep learning in medical image analysis. The future work should 
therefore focus on enhancing the performance of the model, especially for thecorner cases, 
integrating sophisticated architectures, and establishing the clinical prac- ticability of the 
model to make it usable for clinical practice in healthcare institutions. 

 

6 Conclusion and Future Work 

6.1 Conclusion 

The objective of this research study was to implement and design an efficient deep learning 
model for segmenting LGG from MRI with the help of CNNs to support clinicians in diagnosis 
of tumours. The proposed model was very efficient with a test accuracy of 
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99.64%, mean Dice Similarity Coefficient of 0.861, and mean Intersection over Union of 0.837. 
In these results, deep learning models are shown to be highly efficient for medical image 
segmentation, especially for challenging and intrinsic tasks such as brain tumor segmentation, 
where accuracy and segmentation precision directly impact patient management. 

The model demonstrated potential in segmenting tumor regions with high accuracy 
and generalization of the model to unseen data. The low test loss further confirms the 
efficiency of the model especially because the predictions were accurate in relation to 
the ground truth. However, the model still has some limitations in the case of small or hardly 
defined tumors the model’s recall and segmentation accuracy were relatively low. 
Additionally, issues such as false positive and false negative were also realized, which are 
standard problems in medical image segmentation and still need improvement. 

The findings of this work enrich the existing literature on the application of deep learning 
methodologies in the evaluation of medical images especially for the identification and 
delineation of tumor regions in brain. Such models could help increase the efficiency and 
accuracy of the clinical diagnosis by decreasing the time and expertise needed for the manual 
segmentation, thus improving the patient outcomes. 

 

6.2 Future Work 

While the results of this study are promising, there are several avenues for future research 
and improvements to further enhance the model’s performance and clinical applicability: 

• Hybrid Models and Radiomics: Integrating the deep learning model with radiomic 
features, which are statistical descriptors extracted from medical images, could 
provide additional context and improve tumor characterization. Hybrid models that 
combine CNN-based segmentation with classical image processing techniques 
might also enhance the model’s ability to detect tumors in noisy or low-quality 
images. 

• Clinical Validation and Real-World Testing: For the model to be applied in clinical 
practice, it must undergo clinical validation in real-world settings. Future work 
should focus on collaborating with hospitals and medical centers to test the model 
on a diverse set of patient data. This real-world testing will help identify potential gaps 
in performance and refine the model to ensure it can operate effectively across 
different patient populations and imaging protocols. 

• Multimodal Data Integration: Future iterations of the model could benefit from 
integrating multimodal imaging data, such as combining MRI scans with CT scans, 
PET scans, or genomic data. By incorporating diverse sources of information, the model 
could gain a more comprehensive understanding of tumor characteristics and improve 
the accuracy of its segmentation and classification tasks. 

Conclusion: In conclusion, the deep learning model developed in this study repres- 
ents a significant step forward in the automated type of segmentation for lower-grade 
gliomas from MRI scans. The model’s high performance on key metrics such as accur- acy, 
Dice similarity, and IoU demonstrates the potential of convolutional neural networksto 
assist in the diagnosis & treatment planning of brain tumors. While there are still 
challenges to address, particularly with false negatives and small tumors, the promising 
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results open up exciting possibilities for future research and clinical applications. By con- 
tinuing to improve the model through data augmentation, more advanced architectures, 
and integration with multimodal data, this research could contribute to the develop- 
ment of more accurate, reliable, and clinically deployable AI-based tools for brain tumor 
detection and characterization. 
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