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Configuration Manual

Waleed Bin Umer
Student ID: X23187956

1 Introduction

configuration guide will outline the primary aspects and procedures which should be put in
practice in order to accomplish the goals of the research project “Translating Egyptian
Hieroglyphs Using Deep Learning”. Besides that, it provides a detailed guide on how to set
up and operate the models on such hardware and software environments: SSD, YOLOV5,
YOLOV8 and Faster R-CNN.
The manual allows reproducibility and guarantees the adequate performance of the research
project. The contents include the following:

e Data collection and loading.

e Data splitting and pre-processing.

e Assessing and contrasting the models.

e Configuration of both hardware and software

2 Hardware Configuration

The hardware configuration used for deep learning training, to fill the computational needs
especially when working with larger models are given below:
Table 1: Hardware Configuration
Machine Name ASUS TUF Gaming F15

Processor 12™ Gen Intel® Core™ i5-12500H 2.50 GHz
RAM 16 GB

GPU NVIDIA GeForce RTX 3050

System Type 64-bit operating system, x64-based processor

Key Features:

e High CPU and GPU performance: In constructing deep learning models training stage
is also of significance that’s why it requires a good CPU and GPU.

e Efficiency of proper RAM: poor RAM efficiency can have completion of large data
and resource hungry computations operating adequately.

e des Acceleration — The GPU allows training over compute-intensive algorithms and
inference over them faster so that the advancements are clearly more effective than
CPU implementations.



3 Software Configuration

3.1 Google Colab

The research project is written on google colab. So, the very first step that needs to be done in
order to accomplish the tasks of this research project is registering with Gmail account since
the execution cannot be done without signing in the Gmail. Google Colab can be used for
deep learning projects because it is a free web-enabled IDE provided by Google Research.

( Welcome to Colaboratory @ o shae o
File Edit View Insert Runtime Tools Help

£ mas B b [ x +Code +Text | CopytoDrive Comnect v 4 Gemini A

Q Getting started
Welcome to Colab!

{x} Datascience

@g Machineleaming (New) Try the Gemini API

More resources -
(] « Generate a Gemini APl key

Featured examples « Talk to Gemini with the Speech-to-Text AP|

+ Gemini API: Quickstart with Python
+ Section « Gemini APl code sample

+ Compare Gemini with ChatGPT

« More notebooks

If you're already familiar with Colab, check out this video to learn about interactive tables, the executed code history view and the command
palette.

Figure 1: Google Colab
3.2 Data Source

It is more of a dataset research project or record rather than a hierarchical structure of coding.
Egyptian Hieroglyphs are available in a dataset that is above all free readily available for
download on the website Kaggle. It contains a training image of 6000 images and validation
images to the amount of 2000 images distributed over the sections of Animal, Plants Symbols
and Deities. To meet the constraint of time due to lack of sufficient resources, the data
augmentation method was also useful in creating variety enhancement over the training the
model. This project involves a dataset that helped design and test the algorithm of hieroglyph
detection and translation.

-
@' ~uomar - vpoateo 3 vears aco - 36 New Notebook & Download JR”)

Egyptian Hieroglyphics Datasets

Dataset of Egyptian Hieroglyphs extracted from dictionary of Gardiner's list.

Figure 2: Data set



3.3 Mounting the Google Drive

Mounting Google Drive in Google Colab allows you to access files and datasets stored in
your Drive without having to upload manually. This is done by running the command in the
figure [3] which connects your Google Drive to the Colab environment. Once authorized the
files will be available under the mentioned directory. Best use case is when you have big
datasets or shared resources on a project, and you are working in a Colab environment for a
smooth workflow.

[ ] from google.colab import drive
drive.mount('/content/drive')

M

Mounted at /content/drive

Figure 3: Mounting the google Drive

3.4 Loading the Data

To transfer the information already present in Google Drive to Colab for work. Use the
command shown in figure [4] to copy files from or upload files to Google Drive into the
current folder of Colab the command shown in figure [5] will make it possible to utilize the
raw data to analysis within Colab later on.

[ 1 ! cp "/content/drive/MyDrive/Egyptian Hieroglyphs/dataset(pascal voC).zip' /content

Figure 4: copying the dataset from drive

[ ] ! unzip ‘dataset(pascal_voC).zip’

Figure 5: Extracting the content of the dataset from drive

4 Project Development
4.1 Import Libraries

Libraries used in this project to run the scripts and frameworks. Various libraries are to
accomplish many functions in the project like data visualization and deep learning.
libraries in the project are:

« Matplotlib

*  Numpy

e Pandas

« PyTorch

e TensorFlow
* OpenCV

e seaborn



‘, # Importing necessary libraries for file handling, data manipulation, and visualization
import os # For interacting with the operating system (e.g., file handling, directory management)
import xml.etree.ElementTree as ET # For parsing and working with XML data (e.g., annotations)
import pandas as pd # For data manipulation and analysis
import matplotlib.pyplot as plt # For plotting and visualizations
import seaborn as sns # For enhanced statistical visualizations

# Configure matplotlib for inline plotting and set the plotting style
#matplotlib inline # Enables inline plotting in Jupyter Notebooks
plt.style.use('ggplot’) # Set the plotting style to 'ggplot’ for aesthetic visuals

# Importing mathematical and random libraries for numerical operations and randomness
import numpy as np # For numerical computations (e.g., arrays, matrices)

import math # For mathematical functions (e.g., trigonometry, logarithms)

import random # For generating random numbers and sampling

# Configuring locale settings for consistent encoding
import locale
locale.getpreferredencoding = lambda: "UTF-8" # Forces UTF-8 encoding for compatibility

# Re-importing 0S for redundancy (could be removed if no additional functionality is added)
import os # Duplicate import for operating system functions

# Importing utilities for file handling and additional data processing
import shutil # For file operations like copying, moving, or removing files
import random # Duplicate import for random operations

import json # For handling JSON data (e.g., reading and writing)

# Importing libraries for deep learning and image processing

import torch # For deep learning framework (e.g., PyTorch)

import utils # Custom utilities (ensure this is available in your environment)
from PIL import Image # For image handling and manipulation

from ultralytics import YOLO # For using YOLO models (e.g., YOLOVS, YOLOvS)

# For file uploads in Google Colab

from google.colab import files # To upload and handle files in Google Colab environment
from io import BytesIO # To handle binary file streams

Figure 6: All the imported libraries in code



4.2 Generating CSV Files

Converting XML annotations into a structured CSV file for handle easily.

[ 1 def CSV_generation(image_dir, annotation_dir, output_csv_path):

# List to hold data for the CSV
data = []

# Iterate through each annotation file
for xml_file in os.listdir(annotation_dir):
if xml_file.endswith('.xml"):
# Parse the XML file
tree = ET.parse(os.path.join(annotation_dir, xml_file))
root = tree.getroot()

# Get the image filename
filename = root.find('filename').text
image_path = os.path.join(image_dir, filename)

# Get image dimensions
with Image.open(image_path) as img:
width, height = img.size

# Iterate through each object in the XML

for obj in root.findall('object'):
class_name = obj.find('name’).text
bbox = obj.find('bndbox")

# Get bounding box coordinates

xmin = int(bbox.find('xmin').text)
ymin = int(bbox.find('ymin').text)
xmax = int(bbox.find('xmax').text)
ymax = int(bbox.find('ymax').text)

# Append data to the list
data.append([filename, width, height, class_name, xmin, ymin, xmax, ymax])

# Create a DataFrame and save to CSV
df = pd.DataFrame(data, columns=['filename', ‘width', ‘height', ‘class’', 'xmin', ‘ymin', ‘xmax', 'ymax'])

df.to_csv(output_csv_path, index=False)

print(f'CsSv file created at: {output_csv_path}')
return df

Figure 7: Code to convert XML to CSV

Generate a CSV file from the XML annotations:

[ 1] # Define the paths
dataset_dir = 'dataset(pascal_VOC)® # Update with your dataset path

train_image_dir = os.path.join(dataset_dir, 'train/images’)
train_annotation_dir = os.path.join(dataset_dir, ‘train/labels’)

train_output_csv_path = os.path.join(dataset_dir, "training_data.csv")

train_df = CSV_generation(train_image_dir,train_annotation_dir, train_output_csv_path)

3+ csv file created at: dataset(pascal_VOC)/training_data.csv
[ 1 val_image_dir = os.path.join(dataset_dir, 'wvalid/images’)
val_annotation_dir = os.path.join(dataset_dir, 'valid/labels')
val_output_csv_path = os.path.join(dataset_dir, 'validation_data.csv")
val_df = CSV_generation(val_image_dir, val_annotation_dir, val_output_csv_path)
3~ csv file created at: dataset(pascal_VOC)/validation_data.csv

Figure 8: code to build CSV from XML annotations



4.3 Class Counting

It analyses different classes that exist and the distribution across almost the entire datasets
available to be covered. Training Dataset: Contains 95 distinct classes. Validation Dataset:
Contains 96 distinct classes, also has a separate class called the “Head”. The “Head” class
appeared only 9 times in the validation dataset, and 9 did not feature in the training dataset.

[ ] def count classes(data, name: str):
print(f"Unique classes in {name}: {data['class'].nunique()}")
class_count = data['class'].value_counts().reset_index()
class_count.columns = ['class’, 'count']

median_value = class_count['count'].median()
plt.figure(figsize=(12,24))

sns.barplot(data=class_count, x='count', y="class', color="blue")
plt.axvline(x=median_value, linestyle='--')

plt.show()

[ ] count_classes(train_df, "train")

count_ _classes(val _df, "validation™)

Figure 9: Class Distribution in Training and Validation Dataset

4.4 Class Counting

Once the dataset contains the ordered and the same content, then the number of class
discrepancies is small and uniform.

e Head Class: Find Rows with the “Head” Class This class “head” has been observed in
training and validation sets and therefore it affects class count, and this has led to its
deletion.

e Remove the Corresponding Image and Annotation Files. On the need to remove the
oversampling of “Head”, locate and erase all images classified as ‘Head’, from the
validation and the training set.

Now the dataset is consistent and free from unnecessary class which helps in optimization to
train model and evaluation.



[ 1 import os
import pandas as pd

# Assuming train_df and val_df are your dataframes

# Step 1: Count the number of rows where class is "Head"
head_count_train = train_df[train_df['class'] == "Head"].shape[@]
head_count_val = val df[val_df['class'] == "Head"].shape[0]

print(f"Number of 'Head' class items in train_df: {head_count_train}")
print(f“Number of 'Head' class items in val df: {head_count_val}")

# Step 2: Filter out rows with class "Head"
train_df filtered = train_df[train_df['class'] != "Head"]
val_df filtered = val df[val _df['class'] != "Head"]

# Step 3: Delete the corresponding files from the dataset folder

# Example dataset folder path, adjust this to your actual folder location
dataset_folder = val image dir

annots_folder = val annotation dir

# Remove files corresponding to 'Head' class in train_df
head_files train = train_df[train_df['class’'] == "Head"]['filename’]
for file in head_files_train:
file_path = os.path.join(dataset_folder, file)
annots_path = os.path.join(annots_folder, file.split(".")[6] + ".xml")

# Debug prints to check paths

print("Checking file path: ", file path)
print("Checking annotation path: ", annots_path)
print(" )

# Delete image file

if os.path.exists(file_path):
os.remove(file_path)
print(f"Deleted {file path}")

else:
print(f"File {file path} not found")



# Delete XML annotation file

if os.path.exists(annots_path):
os.remove(annots_path)
print(f"Deleted {annots_path}")

else:
print(f"File {annots_path} not found")

# Remove files corresponding to 'Head' class in val df
head_files_val = val_df[val_df['class'] == "Head"]['filename']
for file in head_files_val:
file_path = os.path.join(dataset_folder, file)
annots_path = os.path.join(annots_folder, file.split(".")[@] + ".xml")

# Debug prints to check paths

print(" )
print("Checking file path: ", file_ path)
print("Checking annotation path: "

, annots_path)

# Delete image file

if os.path.exists(file_path):
os.remove(file_path)
print(f"Deleted {file_path}")

else:
print(f"File {file_path} not found")

# Delete XML annotation file

if os.path.exists(annots_path):
os.remove(annots_path)
print(f"Deleted {annots_path}")

else:
print(f"File {annots_path} not found")

Figure 10: Code to eliminating Inconsistencies classes

4.5 Data Visualization

The EDA visualizations explore spacial tends on the dataset:
I.  Bounding Box Alignment:
Code: A blank image was built by np.zeros(). Bounding box values from the dataset were

modified in the style that it aligns in accordance with the center point of the image center. It
was extracted by using cv2.rectangle().



[ 1 import numpy as np
import cv2
import pandas as pd

# Create a blank image (black palette) with the same size as the images
image_width = 770

image_height = 66@

blank_image = np.zeros((image_height, image_width, 3), np.uint8)

# Get the center of the blank image
center_x = image_width // 2
center_y = image_height // 2

for _, row in train_df.iterrows():

# Get the original bounding box
xmin, ymin = row[‘'xmin'], row[’

xmax, ymax = row[’xmax'], row[

# Calculate the width and height of the bounding box
box_width = xmax - xmin
box_height = ymax - ymin

# Recalculate the bounding box coordinates so that its center aligns with the center of the blank image
new_xmin = center_x - (box_width // 2)
new_ymin = center_y - (box_height // 2)
new_xmax = center_x + (box_width // 2)
new_ymax = center_y + (box_height // 2)

# Draw the bounding box on the blank image (use green color, thickness of 2)
cv2.rectangle(blank_image, (new_xmin, new_ymin), (new_xmax, new_ymax), (@, @, 240), 1)
# Display the resulting heatmap
plt.imshow(blank_image)
plt.axis('off")
plt.title('Bounding Boxes to image ratio")
plt.show()

Figure 11: Code for the bounding box

Purpose: It deals with two purposes, to see the visualization of how objects are scattered
across the dataset and ensuring alignment for better detection.

Bounding Boxes to image ratio

Figure 12: Shows bounding box overlap and concentration at the image center.



1.  Heatmap Creation:

Code: np.zeros() was set to with frequency map. incremental count was filled with bounding
box areas, normalized using cv2. normalize(), and visualized with cv2. applyColorMap() for
generating a heatmap.

[ ] # Create a blank image (black palette) with the same size as the images
image_width = 770
image_height = 660
frequency map = np.zeros((image_height, image width), np.float32)

# Loop through each bounding box in the dataset

for _, row in train_df.iterrows():
# Increment the pixel values in the frequency map for the bounding box area
frequency_map[row[ 'ymin']:row[ ‘ymax'], row['xmin']:row[ 'xmax']] += 1

# Normalize the frequency map to a range of ©-255
normalized _map = cv2.normalize(frequency map, None, @, 255, cv2.NORM_MINMAX)
normalized _map = normalized_map.astype(np.uint3)

# Apply a colormap to create a heatmap effect (e.g., COLORMAP_JET)

heatmap = cv2.applyColorMap(normalized_map,cv2.COLORMAP_TURBO)

# Combine the heatmap with the blank image

heatmap_overlay = cv2.addleighted(heatmap, 0.5, np.zeros_like(heatmap), ©.5, @)

# Display the resulting heatmap
plt.imshow(heatmap_overlay)
plt.axis('off')

plt.title('Object Frequency Heatmap')
plt.show()

Figure 13: code for spatial distribution through a heatmap

Purpose: Heatmap puts the light on the bounding boxes density, revealing higher
concentrations of boxes to the center of the image.

Object Frequency Heatmap

Figure 14: Highlights spatial distribution through a heatmap, focusing on high-density areas.
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1. Scatter Plot of Centers:

Code: Center points of bounding boxes were computed as (xmin+xmax)/2, (ymin+ymax)/2.
Circles were drawn by using these points cv2.circle() on a blank image.

# Create a blank image (black palette) with the same size as the images
image_width = 770

image_height = 660

blank_image = np.zeros((image height, image width, 3), dtype=np.uint8)

# Loop through each bounding box in the dataset to draw center points
for _, row in train_df.iterrows():
# Calculate center coordinates
center_x = int((row['xmin'] + row['xmax']) / 2)
center_y = int((row['ymin'] + row['ymax']) / 2)

# Draw a dot at the center of the bounding box
cv2.circle(blank_image, (center_x, center_y), radius=3, color=(@, 255, @), thickness=-1)

# Display the resulting image with center points
plt.imshow(blank_image)

plt.axis('off")

plt.title('Center Points of Bounding Boxes')
plt.shou()

Figure 15: code for scatter plot

Purpose: Clustering of object centers detected over image center from scatter plot supporting
the calculation with better detection focus.

Code aims at preprocessing and visualize the dataset on each step, making it more optimized
for the modeling tasks.

Center Points of Bounding Boxes

Figure 16: lllustrates uniform object detection with hieroglyphs centered in the image space
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4.6 Model Implementation

This study incorporated the process of training and possibly tuning as many as four object
detection models - SSD, YOLOVS5, YOLOVS, and Faster R-CNN for success in hierarchy
algorithm to glyphs in forms of symbols or characters intended to be written or carved. The
models were trained on a hieroglyph dataset in Google Colab, making use of GPU resources.

A. Model Training Details:

I. YOLOvVS Model:

The model YOLOv8 was qualified with 100 epochs.

IJ # YOLOv8 Training Script

# Section: Model Training Setup
# This section sets up the YOLOv8 model, configures parameters, and initiates training.

# Load model

model = YOLO('yolov8n.pt') # Initialize YOLOV8 model

# Set training parameters # Train the YOLOVS model with specified parameters

¢

training_params = { # Train the YOLOV8 model with specified parameters
"task':'detect’,
‘mode’: 'train', # Train the YOLOV8 model with specified parameters

‘batch':

"imgsz':

16,
320,

'cache': False,

‘augment': True,

'epochs:

100,

'patience’: 30,

"name'
}

J

# Train model

: name,

model. train(data="dataset.yaml', **training params) # Initialize YOLOVS model

)

Epoch
27/100

Epoch
28/100

Epoch
29/100

all 1039 1039 0.0081 0.0949 0.0133  0.00771

GPU_mem box_loss cls_loss dfl_loss Instances Size

0.696  1.332 1155 1,176 1 320: 100%| NN 224/244 [e0:40c00:00, 6.02it/s)

Class  Images Instances  Box(P R mapso mapse-05): 1oo%| NNNENEINN 33/33 [c0:esco0:00, 6.70it/s)
GPU_mem  box_loss cls_loss dfl loss Instances Size

0.696  1.352 1165  1.187 2 320: 100%| NN 204/244 [e0:40c00:00, 6.06it/s)

Class  Inages Instances  Box(P R mapso mapse-95): ek NN 33/33 [00:08<00:00, 4.02it/5)
GPU_mem box_loss cls_loss dfl loss Instances Size

0.696 1.3 1151 1,186 1 320: 100%| INNNEIIN | 2447244 [00:40c00:00, 6.04it/s)

Class  Inages Instances  Box(P R mapse mapse-95): ek NN 33/33 [00:04<00:00, 6.69it/s]

Figure 17: code for YOLOvVS training epochs
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Il.  YOLOvV5 Model:

YOLOvV5 model was trained for 100 epochs.

[ 1 !git clone https://github.com/ultralytics/yolovs # clone
%cd yolovs
%pip install -qr requirements.txt comet_ml # install

import torch
import utils
display = utils.notebook_init() # checks

0

YOLOVS %' v7.8-378-g2f74455a Python-3.18.12 torch-2.5.@+cul21 CUDA:@ (Tesla T4, 15102MiB)
Setup complete (2 CPUs, 12.7 GB RAM, 32.6/112.6 GB disk)

[ 1 !mkdir /content/yolovS/datasets
!cp -r “/content/dataset(pascal_VOC)" /content/yolov5/datasets

! cp /content/drive/MyDrive/Fiverr/Egyptian_ Hieroglyphs/yolov5/dataset.yaml "/content/yolov5/datasets/dataset(pascal VOC)"

v Training

[ 1 ! python train.py --name Runs_YOLOVSn_Egypt_hg --img 640 --batch 64 --epochs 180 --data "datasets/dataset(pascal VOC)/dataset.yaml” --weights yolovSn.pt --patience 3@

with torch.cuda.amp.autocast(amp):

0

8/99 8.66G ©.1627  0.02611 0.1215 121 640: s1%| [
with torch.cuda.amp.autocast(amp)

0/99 8.66G 0.1018  0.02607 0.1212 112 es0: 2% NI
with torch.cuda.amp.autocast(amp):

8/99 8.66G ©.1007  ©.82606 0.1208 124 6a0: sax| [N
with torch.cuda.amp.autocast(amp)

8/99 8.66G  0.09992  0.02595 0.1204 105 e40: so%| [N
with torch.cuda.amp.autocast(amp):

0/99 8.66G  0.09906 9.0259 0.1201 117 e40:  s7%| [IEIE
with torch.cuda.amp.autocast(amp):

8/99 8.66G ©.0082  ©.82592 ©.1108 133 ea0: sox| [N
with torch.cuda.amp.autocast(amp)

8/99 8.66G  0.09739  0.02585 0.1195 111 640:  61%| [N

| 31/61 [@0:53<00:58,
| 32/61 [@@:55¢00:53,
| 33/61 [00:56<00:44,

| 3a/61 [0:57<00:42,
| 35/61 [@0:58<00:37,
| 36/61 [01:00<00:36,

| 37/61 [01:01<00:33,

1.95s/it]/content/yolov5/train.py:412: Futurelarning
1.84s/it]/content/yolov5/train.py:412: FutureWarning
1.61s/it]/content/yolov5/train.py:412: FutureWarning
1.57s/it]/content/yolov5/train.py:412: Futurelarning
1.43s/it]/content/yolov5/train.py:412: FutureWarning
1.44s/it]/content/yolov5/train.py:412: FutureWarning

1.39s/it]/content/yolov5/train.py:412: Futurelarning

Figure 18: code for YOLOV5 training epochs

I11.  Faster R-CNN Training Model:

Faster R-CNN model was qualified on the hieroglyph dataset for 5,000 steps.

[ 1 import os
from detectron2.config import get_cfg
from detectron2.engine import DefaultTrainer
from detectron2 import model_zoo
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.evaluation import COCOEvaluator, inference_on_dataset

# Define your dataset registration function (assuming it's already registered in Detectron2 format)

# This is where you register your train and val datasets if you haven't already done so.

# For example:

# def register_my_dataset():

= # Dataset registration code goes here (refer to Detectron2 docs for dataset registration)

# Register the datasets
# register_my_dataset()

# Set up config object
cfg = get_cfg()

# Use a pre-trained model from model zoo (Faster R-CNN with ResNet-101 and FPN)
cfg.merge_from_file(model zoo.get config_file("C0CO-Detection/faster_rcnn_R_101_FPN_3x.yaml"))

# Set your dataset names for training and validation
cfg.DATASETS.TRAIN = ("my_dataset_train",)
cfg.DATASETS.TEST = ("my_dataset_val",)

# Set up dataloader parameters
cfg.DATALOADER.NUM_WORKERS = 4 # Number of workers for data loading

# Initialize model weights from model zoo

cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Detection/faster_rcnn_R_1@1_FPN_3x.yaml")
# cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml")
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L 1 # solver parameters (adjust learning rate and iterations for around 1@@ epochs)
cfg.SOLVER.IMS_PER BATCH = 8 # Batch size per GPU
cfg.SOLVER.BASE_LR = 0.00025 # Adjusted learning rate for stable training
cfg.SOLVER.WARMUP_ITERS = 200 # Warmup iterations
cfg.SOLVER.MAX_ITER = 5000 # Set to roughly ~2@ epochs (adjust based on dataset size and batch size)
cfg.SOLVER.STEPS = (3800, 4500) # Adjust learning rate step decay
cfg.SOLVER.GAMMA = @.1 # Decay rate for learning rate

# ROI Heads settings (adjust per your dataset size)
cfg.MODEL.ROI_HEADS.BATCH SIZE_PER_IMAGE = 128 # Max per-image proposals (adjust for your GPU memory)
cfg.MODEL.ROI_HEADS .NUM_CLASSES = 95 # Number of classes (set this to your class count + 1 if including background)

# Evaluation settings
cfg.TEST.EVAL_PERIOD = 1000 # Evaluate every 1000 iterations (or adjust as needed)

# Enable output directory creation
cfg.OUTPUT_DIR = "./output”
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)

# Create a custom Trainer
class CocoTrainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
# Build evaluator for COCO format (if dataset is COCO formatted)
return COCOEvaluator(dataset_name, cfg, True, output_folder)

# Initialize and start training
trainer = CocoTrainer(cfg)
trainer.resume_or_load(resume=False)
trainer.train()

(b1

[11/19 12:11:16 d2.engine.defaults]: Model:
GeneralizedRCNN(
(backbone): FPN(

(fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
(fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
(fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
(fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

Figure 19: code for Fast R-CNN training steps

IV. SSD Model:

Prepared an SSD model using the hieroglyph dataset for 20,000 steps using the Tensor-Flow
framework.

[ 1 # Run training!
Ipython /content/models/research/object _detection/model main_tf2.py \
--pipeline_config_path={pipeline_file} \
--model_dir={model_dir} \
--alsologtostderr \
--num_train_steps={num_steps} \
--sample_1_of n_eval examples=1

~ 11014 11:18:42.326220 135907369366144 model_lib_v2.py:7@5] Step 2500 per-step time 0.357s
' INFO:tensorflow:{'Loss/classification_loss': @.22673908,
'Loss/localization_loss': 0.12963215,
'Loss/regularization_loss': 0.1419716,
'Loss/total_loss': 0.4983428,
'learning_rate': 0.079815164}
11014 11:18:42.326586 135907369366144 model_lib_v2.py:708] {'Loss/classification_loss': 0.22673908,
'Loss/localization_loss': 0.12963215,
'Loss/regularization_loss': @.1419716,
'Loss/total_loss': 0.4983428,
'learning_rate': 0.079815164}
INFO:tensorflow:Step 2600 per-step time @.359s
11014 11:19:18.206498 135907369366144 model_lib_v2.py:7@5] Step 2600 per-step time 0.359s
INFO: tensorflow:{'Loss/classification_loss': @.18387805,
'Loss/localization_loss': 0.09241379,
'Loss/regularization_loss': 8.14146683,
'Loss/total_loss': @.41775867,
'learning_rate': 0.07978972}

Figure 20: code for SSD training steps
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4.7 Model Evaluation

The evaluation of models is done to know the robustness and effectiveness of all four models.
This was done on the basis of dividing the dataset into training and validation set by the ratio
of 80:20. All four models were evaluated by using the evaluation metric which includes mAP
(mean Average Precision), recall and F1Score.

I. YOLOvV8 Model:

The YOLOVS, that is an enhanced model of YOLOvV5 works in the same manner, but the
anchor free mechanism is done by itself, and this model has got the highest mAP that is
0.975, the precision value is 0.943, the recall is 0.977 and F1 score value is 0.960.

metrics/mAPS0(B metrics/mAPS0-95(B
t m cs/mAPS0-95(B)

metrics/recall(B)
trics/mAPSO(B! tag metr PS S0 mattica/recalB

Figure 21: Performance metrics of model during training, including mAP@50, mAP@50-95, precision, and
recall trends across epochs

train/box_loss train/cls_loss
tag: train/box_loss tag: train/cls_loss

Figure 22: Training loss curves for YOLOv8 showing box loss and classification loss reduction over epochs

1.  YOLOv5 Model:

This model uses features like fusion PANet that helps in object detection of various sizes and
shapes. Here the anchor-based training is also done where sizes and dimensions are adjusted
accordingly. The values here include as mAP achieved is 0.970, the precision is 0.93, the
recall is 0.970 and F1 score is 0.960
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metrics/mAP_0.5:0.95

metrics/recall
1ag: metrics/mAP_0.5:0.95 130 metrics/reca

Figure 23: code for SSD training steps Performance metrics of YOLOv5 during training, including mAP@0.5,
mAP@0.5:0.results in the form of accuracy, precision, recall over epochs

train/box_loss

train/obj_loss
ag: train/box_loss 0s

tag: train/obj_loss

Figure 24: Training loss trends for YOLOv5 showing box loss, classification loss, and abjectness loss over
epochs

IIl.  Faster R-CNN Training Model:

The Approach that used for this model was region-based where the first region-based
candidates originated and are combined for further alignment. The key metrics values that are
achieved include the mAP that is 0.937 and recall value is 0.650 followed by null values of
precision and F1 score.

fast_renn/fg_cls_accuracy L

1,000 2,000 3,000 4,000 4999 x

~
Run+  Smoothed Value Step Relative
L ] 0.949 0.9332 4999 3.271 hr

Figure 25: Classification accuracy curve of Fast R-CNN showing foreground class accuracy over training steps
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total_loss

0s

1,000 2,000 3,000 4,000 4999 X

#
Run + Smoothed Value Step Relative
L 0.3918 0.3966 4,999 3.271 hr

Figure 26: Total loss curve of Fast R-CNN showing loss reduction over training steps

IV. SSD Model:

The model showed exceptional result because of its real time detection capability. The
evaluated key metrics shows result as accuracy being 67.54% and null values of precision,
recall and F1 score.

Loss/classification_loss Loss/localization_loss
tag: Loss/classification_loss tag: Loss/localization_loss

Los:

Figure 27: Training loss curves for SSD model showing classification loss, localization loss, regularization
loss, and total loss over training iterations.

V.  Model Comparision:

The comparison of all models has shown that YOLOV8 has the highest mAP of 0.975 among
all the models that has done anchor free techniques by itself. Whereas the Single Shot
Detection model has got the lowest mAP that is 67.46 as it focused on larger objects and did
not focus on smaller objects. Although the Faster R-CNN got the average precision of 0.937
and YOLov5 achieved 0.970 but showed great results overall.
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67]

[ 1 import pandas as pd

mAP (%)

import plotly.express as px

# Data

data = {
"Model": ["SSD”, "Detectron2", "YOLOv5™, "YOLOv8"],
"mAP (%)": [67.54, 93.7, 97.313, 97.565],

# Create DataFrame
df = pd.DataFrame(data)

# Create the bar plot
fig = px.bar(
df,
="Model",
y="mAP (%) “:
color="Model",
text="mAP (%)",
title="Model mAP Comparison”,
labels={"mAP (%)": "Mean Average Precision (%)"},
color_discrete_sequence=["#A7C7E7", "#C6E2E9", "#DSE8D4", "#FBE4D5"],

# Customize appearance
fig.update_traces(
texttemplate="%{text:.2f}",
textposition="outside’' # Ensure text is above the bars
)
fig.update_layout(
height=60@, # Increase height
margin=dict(t=5@, b=100, 1=50, r=50), # Adjust margins for clarity
uniformtext_minsize=38,
uniformtext_mode="hide’,
xaxis=dict(title="Models"),
yaxis=dict(title="mAP (%)", range=[@, 105]), # Extend range to 185 to make space
title_x=0.5,

# Show the figure
fig.show()

Figure 28: code for model comparison

Model mAP Comparison

Model
550
Detectron2
YoLOVS
YoLove

100 97.31 97.56
93.70

67.54

SSD Detectron2 YOLOVS YOLOv8
Models

Figure 29: Comparison of mAP performance across SSD, Fast R-CNN, YOLOv5, and YOLOv8 models.
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