\ National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Awadhesh Trivedi
Student ID: 23222468

School of Computing
National College of Ireland

Supervisor: Abid Yaqoob

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet
School of Computing

Student Name: Awadhesh Trivedi

Student ID: ... 23222468.....cctiiieee et s
Programme: ... Ms in Data Analytics.........c......... Year: ... 2024........
Module: .RESEAICH PrOjeCL.......eecieicee e e
Lecturer: e ADIA YaQoob.... .o
Submission

Due Date: B N B N B L0 SRR
Project Title: Options pricing using Machine Learning...................

Word Count: 937 Page Count: 11,

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: ... AWAANESH.....ooeie e

Date: = ... N N

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Awadhesh Trivedi
23222468

1 Introduction

This configuration guide can be used to run the code developed for this study. The statement
generically implies that the code will run flawlessly and without hitches when the instructions
in it are executed sequentially. Minimum specifications and other requirements for code
execution and the hardware needs for it are also presented in the document. Implementing
these suggestions will enhance reproduction of all project results and promote more
complicated study in the future.

2 System Specification

2.1 Hardware Configuration

Below are the required system specifications to execute the code:
e Processor: Intel Core i7

e System Memory: 1TB SSD Hard Disk

e RAM: 16GB

2.2 Software Comfiguration

The software requirements are discussed below:

e Windows Edition: Windows 11

e Integrated Development Environment: Jupyter Notebook
e Scripting Language: Python 3 +

e Storage: Local System Storage

3 Python Libraries

The "pip install Library_Name™ command is used to install the Python libraries in the Jupyter
Notebook environment.
Below are the libraries used for thesis implementation:

Numpy: For the arithmetic operation and for the array and matrix manipulations and
mathematical functions like square root, mean etc.

Pandas: For input/output of datasets as well as for missing observations and other initial steps
in data preparation.

Matplotlib.pyplot: A plotting package on which plots like the scatter plot or the line plot
needs to be performed to compare actuals with the predicted values.

1

Seaborn: A statistical visualization library that is employed for plotting specialized kinds of
charts such as heat maps to analyze correlation coefficients.

Scikit-learn: Provides tools for machine learning, including:

» LabelEncoder which has been used for encoding the labels for features like
‘Survived’, ‘Sex’ and ‘Embarked’.

» StandardScaler for scaling the features.

» Basic linear models regression and include Linear regression, decision trees, Random
forest, and even Neural networks.

» Some of the measurements that can be used for assessment in the current model
include, mean_squared_error and r2_score.

Xgboost: A gradient boosting library which is lightweight and optimized for both speed and
performance training of the XGBoost Regressor model.

Catboost: A library to perform gradient boosting for categorical features used in training of
Catboost Regressor.

Keras : machine learning API written in python(compatible with tensorflow) Applied when
you need to develop deep learning models such as LSTM Neural Networks, when working
with sequential data.

Yahoo Finance: To download the option data for analysis

4 Project Development

Code is ready to run after the necessary Python libraries have been installed.

4.1 Data Extraction

import yfinance as yf
import pandas as pd

Downlogding options dota for Apple (AAPL)
ticker = "AAPL"
stock = yf.Ticker(ticker)

Get ovailable expiration daotes
expiration_dates = stock.options
print(“Available Expiraticn Dates:™, expiration_dates)

Limit the expiration dotes to ground 28 (or fewer if there are not enough dotes)
num_dates = min{58, len(expiration_dates)) # Use up to 28 expiration dates or fewer if less are avoilable
selected_expiration_dates = expiration_dates[:num_dates]

Create empty Lists to store the calls and puts dota for selected expiration dates
all_calls = []
all puts = []

Loop through eoch selected expiration dote and get the ogption chain
for exp_date in selected expiration_dates:
print(f"\nFetching options data for expiration date: {exp_date}")

Get the option choin for the current expirotion dote
option_chain = stock.option_chain(exp_date)

Append the colls and puts dota to the lists
all_calls.append({option_chain.calls.assign(Expiration_Date=exp_date})
all_puts.append(option_chain.puts.assign{Expiration_Date=-exp_date))

Disploy the first few rows of the colls and puts doto for egch expirgtion date
print("Calls:\n", option_chain.calls.head())
print("Puts:\n", optien_chain.puts.head())

Concatenate the results into single DgtaFraomes for calls and puts

calls_df = pd.concat{all_calls, ignore_index=True)

puts_df = pd.concat(all_puts, ignore_index=True)

Show combined calls and puts dota for oll selected expiration dotes
print(*wnCombined Calls Data:\n", calls_df.head())

print("\nCombined Puts Data:n", puts_df.head(})

Optionally, save the dota to SV files for further analysis

calls_df.to_csv{'AAPL_Calls_28_Expirations.csv', index=False)
puts_df.to_csv("AAPL_Puts_28 Expirations.csv', index=False)

Data has been taken from Yahoo Finance for analysis using the code snippet above.

Below figure shows the extracted dataframes head

strike lastPrice bid ask change percentChange volume openinterest impliedVolatility inTheMoney contractSize currency Expiration_Date
105.0 12160 13595 139.75 0.000000 0.000000 20 2 2.093755 True REGULAR usD 2024-12-13
140.0 89.06 102.05 103.65 0.000000 0.000000 20 5 1.406253 True REGULAR uUsD 2024-12-13
150.0 9331 9205 9360 8220001 9.660361 380 1 2.105473 True REGULAR usD 2024-12-13
160.0 8347 8205 8365 -0.180000 -0.215183 3.0 14 1.078130 True REGULAR usD 2024-12-13
165.0 5867 77.95 7895 0.000000 0.000000 20 2 1.673830 True REGULAR usD 2024-12-13

4.2 Data preprocessing
Handling Missing Values: The dataset is identified for missing values and addressed.
Removing Duplicates: It will remove duplicate rows and leaves only unique rows.

Feature Scaling and Normalization: To make all numeric features of same order of

magnitude, each such feature is scaled with Min-Max scaling or StandardScaler etc. so that

model convergence is improved during training.

Feature Engineering: Variables are created from the dataset to increase the dataset’s
predictive power. For example: Introducing a "Type" variable to tell the difference between 0
for call and 1 for put options.

Handling Multicollinearity: To avoid high redundancies, bid and ask are dropped and to
detect multicollinear features, Variance Inflation Factor (VIF) is calculated.

Data Splitting: E.g. 80 - 20 split dataset on which the model is tested on unseen data.

Validation Checks: In order to make sure that the model is generally good, across any other
subset of data, you employ cross-validation techniques.

Final Dataset Preparation: Data is saved in clean processed format that ready for modeling,
with no errors or inconsistencies in the final dataset.

4.3 Data Visualization

Calls Correlation Matrix Heatmap Puts Correlation Matrix Heatmap

1.00 100

lastPrice 1.00 0.99 0.99 0.49 0.22 -0.94 lastPrice 0.99 0.99 -0.07 -0.15 0.70
0.75 0.75
Gl 0.99 1.00 1.00 0.50 -0.22 0.94 ~0.50 --
-0.25 -0.25

~ IR o o PO ﬂ- 010
-0.00 - -0.00

-0.50

impliedVolatility = 0.49 0.50 | 1.00 0.10 0.44 impliedVolatility ~ -0.07 -0.05 -0.46

--0.25 --0.25

0.01 --0.50

-0.75 -0.75
strike VK 044 strike 1.00
-1.00

openinterest = -0.22 0.2 - -0.50 openinterest -0.15

lastPrice
impliedVolatility
openlinterest
strike

lastPrice
impliedVolatility
openlinterest
strike

Figure 1. Corelation Heatmap of Numerical variables with strike price

o —

o o o

Figure 2. Boxplot of Strike, Last price, and Bid variable (Calls data)

H ¢ N
. 200 H 200 .
+
.
+
150 150 i
.
*
100 100
50 50
0 _— o o
o o o

Figure 3. Boxplot of Strike, Last price, and Bid variable (Puts Data)

Pair Plot of Features and Target Variable

i ¢
H ¢
g] y o
i g o
11 "l
R 1‘, N
HE

: , 4
", 'y ’
T I L]
0 50 00 130 200 250 0 50 100 150 200 0 50 0w 10 200 250 0 2 4] § 0 1 0 25000 50000 75000 100000 125000150000
[astPrice bid ask impliedVolatility openinterest
Figure 4. Scatter plot of Calls data
Pair Plot of Features and Target Variable

'. L] . N " . . " !l !

400 L] 1 (] 1 []]]
. . L] . .

! o * o H

umy?. .rf" l"‘.,i ' H

AU g’l [14 uﬁ.ﬁ,ﬁ'l ' H

oy ' ?,‘ Lo ' H]

= al

j s N
L]
é) \.‘ “"I.' ?;l
b,
18 e P Y, " v |0
0 S;J lfllﬂ ISID 260 6 SIO 160 15I[1 260 SE] 160 15;0 260 ﬁ i 2I i :1 ‘5 é Iﬂ 25600 50[500 ISUIDU mdﬂﬂﬂ]}ShOﬂlBﬂbﬂﬂ
lastPrice bid ask mpliedvolatility openinterest

Figure 5. Scatter plot of Puts data

Density Plot of Target Variable

S S

.

SEsssss=s=sssss=ssdss====

0.0030 -

0.0025 --—------------

Aysusqg

0.0015

0.0005 +--—----—-—————-

200 300 400

Target Value

100

Figure 6. Density plot of target variable

400

300

strike

200

100

250

150

ask

100

Importance
N

=1

inTheMoney
False

True
200
150
o
=
100
50
Q
False True 4] 100 200 300 400
inTheMoney strike
inTheMoney 12 inTheMoney
False False
True True
10
= 8
g
o
% 6
2
E
4
2
0
100 200 300 400 0 100 200 300 400
strike strike
Figure 7. Pair plot of Strike variable
Feature Importance Comparison Across Models
Model
RandomForest
XGBoost

j—
- — —| ——
o < & S
ES °
g &S
&
&
Features

Figure 8. Feature importance bar plot

Permutation
LinearRegression

Normalized Model Performance Comparison

MSE —— Linear Regression
XGBoost

Random Forest
CatBoost

LSTM

Figure 9. Model performance plot

4.4 Data Splitting & Transformation

features = calls_df[['lastPrice’, 'bid', 'ask', "impliedvolatility', 'openInterest’']]
target = calls_df['strike’]

features.isnull().sum()

lastprice 2}
bid 2]
ask 2]
impliedvolatility 2]
openInterest 2]

dtype: intea

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)

Initialize the StandardScaler
scaler = Standardscaler()

X _train_scaled = scaler.fit_transform(X_train)

Apply the same transformation to the test data
X_test scaled = scaler.transform(X_test)

Above code is to split the data between train and test and then transform the using standard
scaler for transformation

def calculate vif(dataframe):
Calculate variance Inflation Factor (VIF) for each feature in the dataframe.

Args:
dataframe (pd.DataFrame): DataFrame containing independent variables.

Returns:
pd.DataFrame: DataFrame with features and their corresponding VIF values.

vif data = pd.DataFrame()

vif data["Feature"”] = dataframe.columns

vif data["VIF"] = [variance inflation factor(dataframe.values, i) for i in range(dataframe.shape[1])]
return vif data

features
features

calls df[['lastPrice’, 'bid", ‘'ask’, 'impliedvolatility', ‘openInterest']]
features.dropna()

Calculate VIF
vif_result = calculate vif(features)
print(vif_result)

Above function is to check the varaince inflation factor between the variables

Example Dataset
features = puts_df[['lastPrice’, 'bid",
target = puts_df['strike’]

ask', 'impliedvolatility®, 'openInterest']]

Train a Random Forest Regressor
model = RandomForestRegressor(n_estimators=100, random state=42)
model.fit(features, target)

Extract Feature Importance
importance = model.feature importances_
feature names = features.columns

Create a DataFrame for easy visualization
importance df = pd.DataFrame({ ‘

‘Feature': feature names,

‘Importance’: importance
1) .sort _values(by='Importance', ascending=False)

print(importance_ df)

Plot Feature Importance

plt.figure(figsize=(8, 6))

plt.bar(importance df['Feature'], importance df['Importance'], color="skyblue")
plt.xlabel('Features")

plt.ylabel (' Importance')

plt.title('Feature Importance')

plt.xticks(rotation=45)

plt.show()

The code above is to check the feature importance of the data.
Similarly multiple feature importance tecniques are applied to check the importance of
feature

4.5 Model Building

1. Plain Linear Regression (No Hyperparameters)

linear_model = LinearRegression()

linear_scores = cross_val score(linear_model, X train_scaled, y_train, cv=5, scoring='r2")
print("Linear Regression R2 Scores:"”, linear_scores)

print("Average R2? for Linear Regression:”, linear_scores.mean())

2. Ridge Regression Hyperparameter Tuning
ridge model = Ridge()
ridge params = {
‘alpha': [©.01, ©.1, 1, 10, 100] # Regularization strength

b

ridge grid = GridSearchcV(ridge model, ridge params, cv=5, scoring='r2', n_ jobs=-1)
ridge grid.fit(X_train_scaled, y train)

print(“"Best Ridge Parameters:”, ridge_grid.best_params_)

print("Best Ridge R2? Score:", ridge_grid.best _score)

2. Lasso Regression Hyperparameter Tuning
lasso_model = Lasso()
lasso_params = {
‘alpha': [@.e1, ©.1, 1, 10, 100] # Regularization strength
h

lasso_grid = GridSearchcv(lasso_model, lasso params, cv=5, scoring='r2', n_jobs=-1)
lasso_grid.fit(X_train_scaled, y train)

print("Best Lasso Parameters:", lasso grid.best params)

print("Best Lasso R2 Score:"”, lasso_grid.best _score)

Hyper-parameter tuned Linear regression

& 1. Kandom Forest Hyperparameter uning
rf_model = RandomForestRegressor(random_state=42)
rf_params = {

"n_estimators®: [58, 188, 288].

"max_depth®: [Mone, 18, 28],

"'min_samples split®: [2, 5, 1]

¥

rf_grid = GridsearchCVv{r{f_model, rf_params, cwv=5, scoring="r2"', n_jobs=-1)
rf_grid.fit(¥_train_scaled, y_train)

print({(”Best Random Forest Parameters:", rf_grid.best_params_)

print({"Best Random Forest R?® Score:", rf_grid.best score_)

2. XGBoost Hyperparameter Tuning
xgb_ _model = XGBRegressor(random_state=42, wverbosity=98)
®xgb_params = {

"n_estimators®: [5@, 188, 28],
"max_depth®: [3, 5, 7].
"learning _rate": [@.81, 8.1, ©.2]

3

®gb_grid = GridSearchCV{xgb_ model, xgb_ params, cv=5, scoring="r2", n_jobs=-1)
»xgb_grid.fit(X_train_scaled, w_train)

print("Best XGBoost Parameters:", xgb_grid.best_params_)

print({“Best XGBoost R* Score:”, xgb grid.best_score_)

2. CatBoost Hyperparameter Tuning
cat_model = CatBoostRegressor{random_state=42, verbose=8)
cat_params = {

"iterations®: [1e&, 2868, 388],

"depth': [3, &6, 18],

"learning rate": [@.981, 8.1, ©.2]

Hyperparameter tunned RandomForest, Xgboost, and Catboost regressor.

10

Prepare data
data = data_m[['lastPrice’', 'bid", 'ask', 'impliedViolatility', 'openlnterest', “strike’,'Type']]

Sort data (if sequentiol information is needed)
data = data.sort_index()

Separate features and target
features = data[['lastPrice’,'bid", 'ask’, ‘impliedVolatility', ‘openInterest',’'Type']l]
target = data['strike']

Normalize features and target

scaler_x = MinMaxScaler(feature_range=(8, 1))

scaler_y = MinMaxScaler(feature_range=(8, 1))

features_scaled = scaler_x.fit_transform(featuras)

target_scaled = sceler_y.fit_transform(target.values.reshape(-1, 1))

Prepare daota for LSTM: convert to sequences
def create_sequences(X, y, time_steps=18):
X_seq, y_seq = [1, [] .
for i in range(len(X) - time_steps):
X_seq.append(X[i:i + time_steps])
y_seq.append{y[i + time steps])
return np.arrayiX_seq), np.array(y_seq)

time_steps = 18
¥_seg, y_seg = creste_sequences(features_scaled, target_scaled, time_steps)

Split into troin and test sets
X_train, X_test, y_train, y_test = train_test_split(X_ seq, v_seq, test_size=0.2, random state=42)

Build L5TM model

model = Sequentizl()

model . add(LSTM(58, input_shape=(X_train.shape[1], X_train.shape[2]), activation='relu’, return_sequences=False))
model .add(Dense{1)) # Output Laver for regression

model . compile{optimizer="adam', loss="mse')

Train the model
history = model.fit(X_train, y_train, epochs=58, batch_size=32, validation_data=(¥_test, y_test), werbose=1}

Fvaluote the model
loss = model.evaluate(X_test, y_test, verbose=8)
print(f"Test Loss: {loss:.&4f}")

Make predictions
y_pred = model.predict(X_test)

LSTM Model implementation.

Final Model output comparision:

Model MSE RMSE R?

Linear Regression 4888.51 69.91

0.33

XGBoost 710.04 26.65

0.9

Random Forest 892.9 29.88

0.88

CatBoost 358.89 18.94

0.95

LSTM 4310.96 65.66

0.46

11

	1 Introduction
	2 System Specification
	2.1 Hardware Configuration
	2.2 Software Comfiguration

	3 Python Libraries
	4 Project Development
	4.1 Data Extraction
	4.2 Data preprocessing
	4.3 Data Visualization
	4.4 Data Splitting & Transformation
	4.5 Model Building

