

Evaluating the Sensitivity of Machine

Learning Algorithms to Training Data Size

in OS X and Memory Malware Detection

MSc Research Project

MSc in Data Analytics

Devika Tamidala

Student ID: x23189428

School of Computing

National College of Ireland

Supervisor: Vikas Tomer

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Devika Tamidala

Student ID:

X23189428

Programme:

MSc in Data Analytics

Year:

2024

Module:

Research Project

Supervisor:

Vikas Tomer

Submission Due
Date:

12/12/2024

Project Title:

Evaluating the Sensitivity of Machine Learning Algorithms to
Training Data Size in OS X and Memory Malware Detection

Word Count:

8733 Page Count: 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Devika Tamidala

Date:

12/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Evaluating the Sensitivity of Machine Learning

Algorithms to Training Data Size in OS X and

Memory Malware Detection

Devika Tamidala
x23189428

Abstract
Malware detection is an important factor in cybersecurity as the number of complex

attacks on OS X and memory-based systems continues to rise. Due to the increasing use

of ML techniques, the effect of training data size on detection accuracy and time

complexity is still an open issue. This work focuses on the problem of choosing reliable
ML models for malware detection in scenarios with limited resources, especially training

data. Three Machine Learning algorithms, namely, Logistic Regression (LR), K-Nearest

Neighbors (KNN), and Gaussian Naive Bayes (GNB) have been considered in the
present research, for performance assessment on two popular benchmark datasets of OS

X and memory malware, namely the OS X Malware Dataset and CIC-MalMem-2022.

Thus, sensitivity to the proportion of training data (10%, 20%, 50%, 80%, and 90%) is
estimated, as well as accuracy, precision, recall, F1-score, and time to train each model.

The findings show that memory malware detection has the lowest sensitivity to data size,

while OS X malware detection is more sensitive, with LR giving the best results at larger

datasets. The research also reveals that GNB is the most computationally efficient for
both types of malwares. This research aims at identifying appropriate algorithms for

real-time analysis and efficient use of resources in the detection of malware.

1. Introduction
1.1 Background
Malware detection is a fundamental part of cybersecurity that aims at detecting and

preventing any malicious software that attacks computers. This, especially the memory

related threats to the OS X systems call for improved and efficient measures in detecting

these threats (Talukder et al.; 2020). The conventional or traditional methods of detection

which include signature based detection are efficient in identifying known threats but are

ineffective in identifying or detecting new or disguised threats. This shortcoming has resulted

in the enhanced utilization of machine learning (ML) techniques because these models can

process data to find trends that are associated with cyber threats (Gharghasheh et al.; 2022).

To achieve their intended results, most of the ML algorithms require vast amounts of accurate

and relevant data. But such type of data is not easily available in real life problems owing to

factors such as privacy, cost, and time. Consequently, the role of the size of training data on

the performance of the ML algorithms comes into focus. Understanding this relationship will

help in the formulation of efficient detection techniques that can be used despite constraints

in data to improve on the overall cybersecurity of organizations with scarce resources

(Mijwil; 2020)

2

1.2 Aim
This research looks into the crucial cyber security problem of malware detection by

comprehensively investigating the impact of training data size on the performance of various

machine learning algorithms for OS X and memory malware detection. This research intends

to determine the relationship between the size of training data and the sensitivity of the

various algorithms or how much the chosen algorithm will be affected by the size of the

training data and, in turn, the overall detection rate by systematically altering the proportions

of the training data and testing different algorithms. This research will help know the

algorithms that can tolerate such deviations in data, and understanding the best trade-offs

between computational cost and performance, and inform better resource-limited cyber

security solutions, thus improving real-world malware identification.

1.3 Objectives
 To collect and pre-process OS X and memory malware datasets to ensure data quality

and consistency.

 To split each dataset into training, validation, and testing sets based on predefined

proportions (10%, 20%, 50%, 80%, and 90%).

 To create multiple sub-datasets with different training data proportions: 10%, 20%,

50%, 80%, and 90% and ensure proportional representation of malware and benign

samples in each sub-dataset.

 To implement a diverse set of machine learning algorithms, including Logistic

Regression, K-Nearest Neighbors and Gaussian Naive Bayes for OS X and memory

malware detection.

 To train each algorithm on each sub-dataset and evaluate its performance on a test set

using metrics such as accuracy, precision, recall, and F1-score as well as time

required for training, testing and validation.

 To compare the performance variability of different algorithms across varying

training data sizes within and between datasets.

 To identify algorithms that demonstrate consistent robustness to fluctuations in

training data size.

1.4 Research Question
1. How does the size of training data impact the effectiveness of detecting OS X

and memory malware?

2. Which machine learning algorithm demonstrates the highest level of robustness to

variations in training data size for OS X and memory malware detection?

3. What is the minimum proportion of training data required for each algorithm to

achieve acceptable performance in OS X and memory malware detection?

4. How do the computational requirements (training time, memory usage) of each

algorithm change as the training data size increases for both OS X and memory

malware datasets?

1.5 Motivation
The increasing and more frequent attacks on computer systems, and the increasing

complexity of malware which also include those that attack OS X and other complex memory

systems, requires better and more efficient methods of detecting the malware. Standard

methods of detecting worm-type malware using signature-based approaches are no longer

sufficient given that malware is continually evolving and hiding (Prachi et al.; 2022). Hence

3

there is a need to get a break through by using the ML technique. However, one of the factors

that greatly affect the performance of any given ML algorithm is the size and quality of the

training sets. Most organizations face difficulties in obtaining big data because of issues on

privacy, cost, and time taken to collect data (Yücel et al.; 2020). To meet these challenges,

this work formally analysing the dependency of various ML algorithms on the size of the

training data for malware detection. This research seeks to improve the malware detection

process through examining the approaches that these algorithms use to ensure that they have

high detection rates even when the data is scarce. The results can be useful for the

improvement of cybersecurity products especially in the conditions when there is limited

possibility to get access to large data sets (Botacin et al.; 2020).

1.6 Structure of the study
This paper is organized to provide a clear and coherent flow of research outcomes and

conclusions. It begins with the Introduction, which contains the background of the study,

purpose of the research, research questions and objectives, and motivation of the study. Then,

the Literature Survey section expands on previous work in malware detection using

machine learning approaches, and issues with training data differences. The Research

Methodology section provides information on the data sets used, data cleaning, the research

design and the ML techniques used for this research. Subsequently, the Design and

Implementation Specifications section describes the practical aspects of model

implementation. The Evaluation section contains results of the experiment, which discusses

the efficiency of each algorithm and the results of their training depending on the data set

size. The Discussion and Conclusion part of the work discusses these findings in detail, as

well as their prospects and applications in the sphere of cybersecurity. Also, the constraints of

the study and the recommendations for further research is also discussed in the last chapter.

2. Literature survey
Malware detection has greatly evolved especially using of machine learning (ML) for

detecting new and complex types of malwares that are targeting operating systems and

memory systems. This has been due to the understandings of the fact that conventional

signature-based detection methods are lack of ability to deal with advanced threats.

Memory forensics has fast become an important field in digital investigation where various

machine learning methods have been used in identifying and analyzing the features of

malware. Sihwail et al. (2021) implemented a novel approach of using memory image to

analyze and mine malware behaviors with classification accuracy of 98% using SVM

classifiers. Continuing with this, Dener et al. (2022) adopted the Apache Spark’s Pyspark

platform to compare a number of algorithms on the CIC-MalMem-2022 dataset, in which LR

reached a stunning 99.97% in malware detection. Ramesh et al. (2024) continued this work

by proposing a Hybrid Random Forest and Naive Bayes (HRFNB) model that identified

malware through memory analysis with a detection rate of 99.89%.

Various issues related to OS X malware detection have been identified as specific research

problems. Gharghasheh and Hadayeghparast (2022) compared supervised machine learning

techniques and proposed a novel idea of using library system calls as another feature set that

increased the detection rate by 4%. Chen and Wulff (2022) likewise focused on the detection

of macOS malware and found that Decision Tree algorithms achieved the best accuracy of

92.78%. Thaeler et al. (2023) further enriched this study by extracting metadata and

suspicious strings, which raised the number of feature sets from 984 to 1693 and obtained

Random Forest F1 scores of 0.8-0.9.

4

The advanced detection techniques have, therefore, incorporated deep learning and computer

vision techniques. Lightweight malware detection in IoT environments was presented in a

hybrid model that incorporated CNN with Bi-LSTM by Shafin et al. (2023). In the recent

research work done by Xing et al. (2022), the DL model which is an autoencoder was

employed with grayscale images of malware and it produced an outstanding performance of

96%. Venkatraman et al. (2019) have presented a hybrid DL process for detecting suspicious

system behavior through image processing of approximately 75,000 malware samples.

Ensemble and hybrid techniques have been identified as especially useful in increasing the

reliability of detection. Damaševičius et al. (2021) developed an ensemble classification

method integrating the NNs and the ML models with the overall accuracy of 99.9% and low

FP and FN rates. In the current study, Azeez et al. (2021) utilized a stacked ensemble

learning approach which is divided into two stages, and RF got an accuracy of 99.24%. Singh

and Bist (2020) applied Stacked Ensemble Classifiers (STENC) with the accuracy of 96.72%

and class balancing the data by SMOTE methods.

There are also works on new feature selection and computational optimization techniques.

Fang et al. (2024) presented a Deep Q-learning based Feature Selection Architecture

(DQFSA) where more than 99% accuracy was achieved using 11 features out of a pool of

103. Euh et al. (2020) proved that it is possible to have low-dimensional features with high

detection capability and minimal storage and training time, with XGBoost attaining 97%

classification rate using the Window Entropy Map (WEM).

The current literature shows the lack of a clear understanding of how training data size

impact algorithm performance across different platforms like OS X and memory systems.

Although there are many articles that concern ML for malware detection, the analysis of the

algorithms’ dependence on the training data size is still rather scarce. The proposed research

is intended to offer specific and actionable recommendations to improve the effectiveness and

flexibility of malware detection by comparing the results of various ML algorithms based on

training data size in resource-scarce settings.

This literature review aims to review current research on machine learning in malware

detection and critically evaluate the current antecedent research thereby establishing the need

for this research in enhancing cybersecurity techniques.

Table 1 Summary Table of Recent Studies

Author

s

Y

e

a

r

Dataset

Used

Methodologies Used Metrics Values Limitatio

ns

Future

Work

Sihwail

et al.

2

0

2

1

Custom

Dataset

(2502

malicious,

966

benign)

Extracted memory

characteristics, applied

binary vector feature

transformation, trained

and tested SVM classifier

achieving 98% accuracy.

Accurac

y,

Sensitivi

ty, False

Positive

Rate

(FPR)

Accuracy:

98%,

Sensitivity

: 5%,

FPR:

1.24%

Limited

compariso

n to other

malware

techniques

Develop a

larger

memory-

based

dataset

Dener

et al.

2

0

2

2

CIC-

MalMem-

2022

Used PySpark on Google

Colab with CIC-

MalMem-2022 dataset,

applied LR, RF, DT, GB,

MLP, DFFNN, and

Accurac

y,

Precisio

n

LR

Accuracy:

99.97%,

GB

Accuracy:

Limited to

binary

classificati

on, no

analysis on

Expand

dataset for

detecting

more

malware

5

LSTM, achieving

99.97% accuracy (LR).

99.94%,

NB

Precision:

98.41%

malware

variants

types

Shafin

et al.

2

0

2

3

CIC-

MalMem-

2022

Proposed a hybrid CNN-

BiLSTM model, tested

on CIC-MalMem-2022

dataset for IoT malware

detection, outperforming

ML-based models.

Accurac

y

Outperfor

ms

existing

models on

detecting

obfuscated

malware

Focuses

primarily

on IoT

devices

Implement

model in

more diverse

IoT devices

Bozkir

et al.

2

0

2

1

Custom

Dataset

(4294

samples)

Converted memory

dumps into RGB images,

used GIST+HOG

descriptors, applied

UMAP for manifold

learning, achieved

96.39% accuracy (SMO).

Accurac

y

Accuracy:

96.39%

(SVM

with

GIST+HO

G),

UMAP

improves

accuracy

by 20%

(varies by

model)

Limited to

specific

dataset and

analysis on

a standard

desktop

computer

Broaden

dataset, test

on more

systems for

real-world

use

Shah et

al.

2

0

2

2

Memory

dumps

Employed CLAHE and

wavelet transforms for

feature extraction from

memory dumps, applied

SVM, RF, DT, XGBoost,

achieving 97.01%

accuracy.

Accurac

y,

Precisio

n,

Recall,

F1-

Score

Accuracy:

97.01%,

Precision:

97.36%,

F1-Score:

96.36%

Limited

variety of

malware

used,

dependenc

y on

feature

selection

techniques

Investigate

deep

learning

techniques

for further

malware

detection

Gharg

hasheh

&

Haday

eghpar

ast

2

0

2

2

Custom

Mac OS X

dataset

Utilized library system

calls as features,

compared ML algorithms

(DT, SVM, KNN,

Ensemble, LR),

achieving 94.7%

accuracy with KNN.

ROC

Curve

Accuracy:

94.7%

(KNN)

Small

dataset,

requires

constant

updates for

malware

signatures

Expand

dataset,

explore new

features to

enhance

detection

Chen

&

Wulff

2

0

2

2

Custom

Mac OS X

dataset

Used macOS malware

samples, evaluated DT,

SVM, GNB, SGD, and

LR; DT achieved 92.78%

accuracy.

Accurac

y

Accuracy:

92.78%

(DT),

SGD

Accuracy:

91.77%

Limited

variety of

malware

used, small

dataset

Extend

analysis to

other

algorithms

and datasets

Sihwail

et al.

2

0

1

9

VirusTotal

& Das

Malwerk

(1200

Integrated memory

forensics with dynamic

analysis, used API call

attributes, applied SVM,

Accurac

y, False

Positive

Rate

Accuracy:

98.5%,

FPR: 1.7%

Dataset

size

limited to

Windows

Integrate

registry/net

work

features,

6

malware

samples)

achieving 98.5%

accuracy.

(FPR) 7 files improve

sandbox

defense

mechanisms

Carrie

r et al.

2

0

2

2

MalMem

Analysis-

2022

Developed

VolMemLyzer with

stacked ensemble model

using MalMemAnalysis-

2022 dataset, achieving

99% accuracy with NB,

DT, RF ensemble.

Accurac

y

Accuracy:

99%

Controlled

settings,

focused on

only three

malware

types

Expand to

more

malware

types, test in

real-world

environment

s

Al-

Qudah

et al.

2

0

2

3

MalMem

Analysis-

2022

Combined OCSVM with

PCA for malware

detection, applied to

MALMEMANALYSIS-

2022 dataset, achieving

99.4% accuracy.

Accurac

y

Accuracy:

99.4%

Dependenc

e on

specific

dataset

Broaden

dataset and

test model in

dynamic

contexts

Zhang

et al.

2

0

2

3

PE files

(In-

memory)

Used CNN with memory

forensics on PE files,

analyzing binary chunks,

achieving 97.48%

detection accuracy.

Accurac

y

Accuracy:

97.48%

(using

4096-byte

fragments)

False

positives if

malicious

code

doesn’t

execute

Improve

detection of

dynamic

harmful

behavior

Xing et

al.

2

0

2

2

Android

apps

(10,000

benign,

13,000

malicious)

Proposed an AE-2

autoencoder for feature

extraction, compared

with CNN and traditional

ML methods, achieving

96% accuracy.

Accurac

y, F1-

Score

AE-2

Accuracy:

96%, F1-

Score:

96%

Data pre-

processing

inefficienc

ies

Improve

pre-

processing

techniques,

enhance

robustness

Euh et

al.

2

0

2

0

Custom

(20,000

benign,

20,000

malware)

Evaluated tree-based

ensemble models using

WEM and API features,

applied AdaBoost,

XGBoost, RF, achieving

97% accuracy with

XGBoost.

Accurac

y, AUC-

PRC

Accuracy:

97%,

AUC-

PRC:

0.96+

High

computatio

nal cost for

certain

features

Improve

prediction

algorithms,

combine

multiple

feature types

Venkat

raman

et al.

2

0

1

9

75,000

malware

samples

Used grayscale image

representation of

malware binaries, trained

deep learning models

achieving high accuracy

using Adam optimizer.

Accurac

y,

Training

Loss

Fairly

high

accuracy,

improved

malware

classificati

on

Limited to

large

datasets

Explore

other deep

learning

architectures

, apply to

real-time

detection

systems

Damaš

evičius

et al.

2

0

2

1

ClaMP

Dataset

Proposed an ensemble

classifier combining

DNN and CNN with

classical ML models,

achieving 99.9%

Accurac

y,

Precisio

n, F1-

Score,

Accuracy:

99.9%,

FPR: 0%,

FNR:

0.2%

Dataset-

specific

models, no

clear

selection

Refine

model

architecture,

add XAI for

explainabilit

7

accuracy with

ExtraTrees.

AUC criterion y

Azeez

et al.

2

0

2

1

PE Dataset Developed a two-stage

classification using

stacked CNN and ML

classifiers (NB, DT, RF,

etc.), ExtraTrees

performed best.

Accurac

y, FPR,

FNR

Accuracy:

99.24%,

FPR:

2.13%,

FNR:

0.31%

Reliance

on

supervised

learning,

limited to

known

malware

variants

Develop

unsupervise

d ensemble

learning

techniques,

add XAI

Fang et

al.

2

0

2

4

Custom

Dataset

Used Deep Q-learning

Feature Selection

Algorithm (DQFSA),

applied KNN, SVM, and

RF, achieved 99%

accuracy with a smaller

feature set.

Accurac

y,

Feature

Selectio

n

Accuracy:

99%,

Smaller

feature set

accuracy:

96%

Dataset-

specific

performan

ce, limited

generalizat

ion

Apply

DQFSA to

other feature

selection

tasks

3. Research Methodology
This section describes how the impact of training data size will be assessed regarding the ML

algorithms for OS X and memory malware detection. It describes the choice of models and

methods of data preparation, as well as measures for evaluating the accuracy, precision, recall

and efficiency of computations. The objective of the research is to determine effective

algorithms that deliver high results irrespective of the data size and context of detection.

3.1 Rationale for methods and Evaluation
The selection of the methods and metrics for this research is informed by the need to

holistically examine the influence of training data on the performance of the ML algorithms

in the classification of OS X and memory malware. The Logistic Regression model is chosen

as the first model for prediction, due to its simplicity, interpretability and great performance

in binary classification problems (Carrier et al.; 2022). K-Nearest Neighbors (KNN) is

included in the models because it is non-parametric and can identify local patterns, thereby

providing information on the performance of distance-based algorithms as the data size

increases (Abualhaj et al.; 2024). GNB is chosen for its efficiency and probabilistic nature

and for its ability to handle high dimensional feature spaces which is pertinent to malware

datasets and to increase the variety of classifiers employed for the comparison (Khalil and

Abu; 2023).

By designing the sub-datasets with different training data proportions (10%, 20%, 50%, 80%

and 90%), the study is able to compare the behavior of each algorithm under different data

constraints. This is similar to practical scenarios where the training data can be inadequate or

excessive giving credibility to the study. This project uses the common metrics including

accuracy, precision, recall, and F1-score, especially suitable in cases where the data is

imbalanced as is often the case with malware detection. Besides, it is crucial to consider other

computational factors such as training time and memory consumption to determine models

that can perform well under limited resources.

To increase the validity of the research, performance is compared across both OS X and

memory malware datasets, which are different from each other. This cross-dataset

8

comparison is useful in the prediction of algorithms that are less sensitive to variations in

malware detection schemes.

3.2 Design Specification

Figure 1: Architecture Diagram

In order to answer the research questions, this section outlines the procedure for an

experiment focusing on the impact of the training set size on the performance of the ML

algorithms for classification of OS X and memory malware samples. This approach begins

with the dataset collection where the OS X malware dataset will be collected from Cyber

Science Lab and the memory malware dataset from University of New Brunswick. Data pre-

processing will be done on the data so as to enhance its quality and comparability by

removing of duplicates as well as missing data, and selecting the required features.

Subsequently, the data will be split for training, validation and testing at 10%, 20%, 50%,

80% and 90% respectively. More specifically, several sub-datasets will be produced, based

on various training data proportions. The ratio of malicious and benign samples will be kept

the same in all of the four datasets. Next, Logistic Regression, K-Nearest Neighbors,

Gaussian Naive Bayes and other supervised algorithms will be applied to the problem of OS

9

X and memory malware detection. These models have to be created in Python using the

Scikit-learn library. Then each Algorithm will be trained on each of the sub dataset and the

performance of each algorithm on the test set will be evaluated by accuracy, precision, recall

and F1 Score. The time spent during the training, testing, and validation of each algorithm

will also be considered for detecting OS X and memory malware. Therefore, this analysis

aims at identifying the algorithms that are expected to work nearly optimal with respect to the

training data size.

3.3 Research Resources
3.3.1 Software Tools

 Python: A powerful programming language for data analysis, machine learning and

data visualization.

 Scikit-learn: A widely used library for ML to design many algorithms.

 Pandas and NumPy: For data manipulation and numerical computations

 Matplotlib and Seaborn: For data visualization.

 Jupyter Notebook: For interactive data analysis and experimentation.

3.3.2 Hardware

 CPU: Intel Core i7 or AMD Ryzen 7 (or higher for demanding tasks)

 GPU: NVIDIA GeForce RTX 30 Series or AMD Radeon RX 6000 Series (or

equivalent)

 RAM: 16GB or more

 Storage: SSD for fast data access

 Operating System: Linux-based (Ubuntu, Debian)

3.3.3 Datasets

 OS X Malware Datasets

 Memory malware datasets

3.4 Data Pre-Processing
The initial preparations for both set of malware data, the OS X and Memory datasets, began

with the loading of the data, inspecting the class balance and erasing of unneeded columns. In

particular, the OS X dataset contained uninformed values in LoadDYLIB, missing

LoadDYLIB values, and duplicate rows. The Memory dataset had the Category column

dropped and the labels were numerical encoded as (Benign=0, Malware=1). The correlation

analysis demonstrated dataset-specific patterns: OS X features were generally negatively

correlated with the target class, except for Segments, while the Memory dataset had both

positive and negative feature correlation. The OS X dataset was also balanced in this project

using SMOTE. These two preprocessed datasets were saved as two CSV files for further

analysis.

3.5 Proposed Methodology
For this methodology, three ML models which include LR, KNN, and GNB are used in

malware detection; each model used undergoes hyperparameter tuning. Logistic Regression,

a simple and easy to interpret linear model for binary classification, is chosen for the analysis.

10

It is very useful for tasks such as malware detection, for which the aiml is to classify the

object into the 2 categories: benign or malicious (Chaganti, Ravi and Pham; 2022). The initial

settings are set to default with the liblinear solver as it is suitable for binary classification.

Other hyperparameters such as C (regularization strength), penalty and max iteration are

tuned using RandomizedSearchCV to improve the performance of the model by considering

different combinations. The parameter C regulates overfitting, and the parameter penalty

controls the type of regularization, which can be L1, L2 or elastic net.

This research chooses KNN algorithm for classification since it uses proximity as its basis for

classification and it is useful in problems that have intricate relations between features such

as detecting malware (Dolesi et al.; 2024). KNN does not make any assumption on the data

distribution and has the capability to capture non-linear decision surfaces, which is very much

useful in identifying different types of malwares. The KNN classifier is trained with default

parameters and then the hyperparameters like number of neighbors, weights assigned and

distance measure is set is set using RandomizedSearchCV. The basic yet effective concept of

KNN that classifies data depend on the most common class of the nearest neighbors fits well

to this task.

KNN classifier is chosen because it is suitable for classification problems where features are

assumed to be independent. For instance, some features of benign and malicious samples can

be well captured by the GNB model for malware detection. The GNB model is then started

with the default settings for the priors and all features are considered to be conditionally

independent. The main hyperparameter, var_smoothing, is introduced to avoid numerical

instability when the variance is very small for some features in the data set. The classifier that

are chosen has a probabilistic approach, which means that it classifies with less

computational effort, thus being appropriate for this task (Kimmell; 2022).

All three models are trained with hyperparameters using 2-fold cross validation to avoid

overfitting to a specific training set. RandomizedSearchCV is used to perform search for

hyperparameters by sampling parameters from certain distribution in order to get the best

results for each model. These models were selected based on their effectiveness to the binary

classification problem of malware detection, whereby Logistic Regression is selected for its

ability to provide an interpretation, KNN for its ability to handle non-linear boundaries and

GNB for working with probabilistic classification. All the models are further trained and

validated to improve the classification between the benign and malicious samples.

3.6 Model Training, Evaluation, and Comparison
The models such as LR, KNN and GNB—are fine-tuned using RandomizedSearchCV that

further helps to further improve the effectiveness of the model by choosing the best set of

hyperparameters from the training data. This step of optimization helps in enhancing the

overall performance of the models in terms of prediction accuracy while being trained. In

order to enhance the ability of distinguishing between malware and benign samples, the

proposed methodology fine-tunes the following hyperparameters for each model to achieve a

reliable model training process.

Performance is observed in terms of Training Time and Memory Usage utilizing the time and

memory_profiler libraries respectively during the training as well as testing phase. The

following metrics are used to determine the computational complexity needed for training of

each model. Whenever the models are trained, they are evaluated on a new and unseen

dataset at Testing Time and that time is noted down. At the end of testing, a classification

report that touches on Accuracy, Precision, Recall and F1-Score is produced. Accuracy

evaluates the overall accuracy of the model while precision and recall are crucial for

11

detecting true FPs and true FNs. F1-Score is beneficial in measurement when precision and

recall are both important and when there is a significant class imbalance.

All of the models are validated on a different validation set for each model, to check that the

model is able to perform better on new data and to minimize the risk of overfitting. This step

is important to validate the performance of the model and its capacity to produce accurate

results on new data. To assess the computational performance, the Training Time, Testing

Time and Validation Time are recorded for each architecture. These time metrics give an

insight of the time taken by each algorithm and the resources needed by the system in

training, testing and validation. This makes it possible to determine the time taken to train the

models and the accuracy of the models on new data that they haven’t been trained on.

The last comparison of the models is based on Classification Performance where each model

is comparing with other model using accuracy, precision, recall and F1-Score to determine

how well they can differentiate between the benign and malware samples. Further, model

performance is improved by Hyperparameter Optimization via RandomizedSearchCV, and

Resource Efficiency is compared by analysing time taken to train the model and the memory

used during training. These comparisons provide useful information about the ability of each

model in the detection of memory malware.

Lastly, the hyperparameters that were found to give the best results for each model after

training, testing and validation are presented. The classification results and curves of all

models on the testing and validation sets indicate the models’ ability to detect malware with

the emphasis on the trade-offs among false positives and false negatives. This detailed

evaluation allows identifying the best model for the malware detection task by comparison of

the performance indicators and computational complexity.

4. Design And Implementation Specifications
Malware detection is necessary for cybersecurity enhancement. It identifies potential hazards

to data and systems and implements protective measures. In two distinct scenarios: OS X

malware and memory malware, this research examines the influence of training data size on

the efficacy of ML algorithms for malware detection. To accomplish this, two distinct

datasets were employed, each of which concentrated on a distinct form of malware. The

subsequent sections will initially investigate the OS X malware dataset, followed by the

memory malware dataset with experiments on both datasets.

4.1 Collection of OS X Malware Data

The OS X malware dataset, which is gathered from the Cyber Science Lab, comprises 613

samples and 16 features. It comprises 152 malware samples (labelled 1) and 461 benign

samples (labelled -1), a class imbalance that is indicative of real-world situations. This

dataset functions as a basis for comprehending the distinctive attributes of OS X malware and

the obstacles associated with its detection.The dataset was purged of three columns (name,

strsize, and DYLIBnames) due to their irrelevant nature or the presence of non-numeric,

identifier-like data ('name'). For the classification of malware (DYLIBnames and strsize).

Following the removal of these columns, the dataset comprises 13 columns that are

predominantly numerical in nature: 12 integers and 1 float ('LoadDYLIB'). It is evident from

the information that the dataset contains 613 entries, with only one missing value in

'LoadDYLIB' The data is consistent and prepared for further preprocessing and analysis, as

there are no additional missing values, as indicated by the summary information.

12

4.1.1 Removing Null Values and Duplicate Rows

One missing value in the 'LoadDYLIB' column is initially detected. To eliminate this lacking

value, the corresponding row is dropped. The duplicate entries were verified after the null

values were addressed revealing 99 duplicate entries. These duplicates were eliminated, and

the dataset's index is reset to preserve its order. A new column, 'index', is introduced to store

the initial index values when the index is reset. As a consequence, the dataframe now

contains 14 columns. Clean and consistent data for analysis is guaranteed as a result of the

reduction of the dataset to 513 rows and 14 columns following these preprocessing steps.

4.1.2 Correlation Analysis of features in the OS X Malware Data

According to the heatmap, the target feature 'class' is negatively correlated with all features

except 'Segments', suggesting an inverse relationship. The positive correlation observed in

'Segments' indicates its potential significance in the detection of malware.

4.1.3 Visualising the Key Features in OS X malware data

In the 'class' column of the OS X malware dataset, the pie chart illustrates the percentage of

each class. It indicates that 24.8% of the data is classified as malware (class '1'), while the

majority, 75.2%, is classified as non-malware (class '-1'). In modelling, the necessity of

managing class distribution is underscored by this imbalance.

Figure 2: Pie Chart showing distribution of classes in OS X malware data

The OS X malware dataset's frequency of each class category across various segments is

illustrated in the stacked bar diagram. The preponderance of occurrences are classified as

Segment '3' in both the malware (class '1') and non-malware (class '-1') categories.

13

Figure 3: Stacked Bar Plot of frequency of each class across various segments

This suggests that Segment '3' is present in both classes, which could imply its importance in

the differentiation between malware and non-malware. The plot assists in the identification of

trends in the distribution of segments within each class, thereby offering insight into the

potential importance of the feature.

4.1.4 OS X Malware Data Balancing

The dataset is balanced by oversampling the minority class (malware, class '1') using

SMOTE, which resulted in 386 instances of each class ('1' for malware and '-1' for non-

malware). This process guarantees an equitable distribution of both classes, thereby

enhancing model performance by addressing class imbalance.

4.2 Collection of Memory Malware Data

The Memory Malware dataset (Obfuscated-MalMem2022.csv) is collected from the

University of New Brunswick (UNB). It contains 57 columns and 58,596 rows, which

correspond to the system's detailed activity features. The target column, 'Class', is composed

of two balanced classes: Benign (29,298 instances) and Malware (29,298 instances). Since

the Class column serves as the target variable, the Category column is removed to make the

data simpler. The info() method confirmed that there are no missing values in the 56 columns

of the dataset. Data types include 15 float, 40 integer, and 1 object (target) features.

4.2.1 Preprocessing: Null Check, Handling Duplicates, and Encoding

No null values were identified and the dataset is considered full. The dataset is then stripped

down to 58,027 rows and 57 columns after 569 duplicate rows were found and eliminated.

The index is reset to ensure uniformity. To further ensure compatibility with ML models, the

categorical values "Benign" and "Malware" in the 'Class' column were transformed to

numerical labels: 0 for "Benign" and 1 for "Malware".

4.2.2 Correlation Analysis of features in the Memory Malware Data

Annotations and a cool colour palette are used to build a heatmap that visualises the dataset's

correlation matrix. All 55 features in the accompanying heatmap show a positive or negative

correlation with the output feature "Class," making it a tremendously large heatmap. This is

helpful for comprehending the effect of feature relationships on malware categorisation.

14

4.2.3 Visualising the Key Features

This pie chart from the Memory Malware dataset shows how the 'Class' column is distributed.

Instances of benign content make for 50.4% of the dataset, whereas instances of malware

content account for 49.6%. This equilibrium allows for fair assessment and training of ML

models.

Figure 4: Pie Chart showing distribution of classes in Memory malware data

The stacked bar plot illustrates the frequency of malware and non-malware instances at

varying callbacks.ngeneric values. There is a commonality in this feature, as both classes

predominantly have a callbacks.ngeneric value of '3'.

Figure 5: Stacked Bar Plot of frequency of each class across various callbackss.ngeneric

The plot indicates that this shared attribute may function as a critical indicator for

classification, despite the presence of variations in other categories. The distribution is more

easily comprehended, and patterns that are pertinent to malware detection are more readily

identified as a result of the proportionate representation across classes.

5. Evaluation

After preprocessing, the OS X malware dataset comprises 772 samples and 13 features, with

the binary classes being converted from {1, -1} to {1, 0}. The memory malware dataset

comprises 55 features and 58,027 samples, with binary classes predefined as {0, 1}. Both

datasets were subjected to feature selection and cleansing to guarantee their fitness for the

purpose of training machine learning models.

15

5.1 Data Splitting and Sub-Dataset Creation

Based on predetermined training data proportions of 10%, 20%, 50%, 80%, and 90%, both

datasets were divided into training, validation, and testing sets. After allotting training data,

the remaining samples were equitably allocated to validation and testing. Each subset

maintained a proportional representation of benign and malware samples.

Table 2: Splitted data samples using predefined training proportions

Training Data

Proportion

OS X Malware (samples) Memory Malware(samples)

Train Test Val. Train Test Val.

10% 77 348 347 5802 26113 26112

20% 154 309 309 11605 23211 23211

50% 386 193 193 29013 14507 14507

80% 617 78 77 46421 5803 5803

90% 694 39 39 52224 2902 2901

5.2 Model Implementation and Hyperparameter Tuning

For both datasets, three machine learning algorithms—LR, KNN, and GNB—are employed.

Hyperparameter optimization is accomplished through the utilisation of

RandomizedSearchCV with 2-fold cross-validation. Each model is trained on all sub-datasets

and assessed using metrics such as precision, recall, F1-score, and computational time for

training, testing, and validation.

5.3 Performance Across Training Data Proportions in OS X Malware

Detection

The results reveal that the amount of training data greatly affects LR. As the size of the

training set increases, there is a noticeable enhancement in accuracy and performance. While

LR gets a testing accuracy of 0.97 with 10% training data, it reaches perfection with 1.00

accuracy, precision, recall, and F1 score when the training data is increased to 90%.

Accordingly, it appears that LR's ability to generalise and accurately detect malware is

greatly enhanced with more training data samples. With its impressive performance, LR

stands out as an algorithm that could be used to detect malware on OS X.

The sensitivity of KNN to data size is, in contrast, more moderate. The performance of KNN

is significantly worse for lower training proportions, such as 10% and 20%, with testing

accuracy hanging around 0.74 and 0.81, respectively. The testing accuracy of KNN is 0.91

with 50% training data and 0.87 with 90% training data, demonstrating a steady improvement

in performance as the training data grows. Nevertheless, KNN is never able to achieve the

same level of precision as LR. Regardless, KNN is still a viable bet for OS X malware

detection due to its increased accuracy with bigger training datasets.

16

Table 3: Performance metrics of ML Algorithms in OS X malware detection

Regardless of the quantity of training data, GNB's performance remains consistent. Even with

smaller datasets (10% training data), GNB consistently exhibits accuracy (around 0.95 to

0.96), demonstrating its stability and capacity to perform effectively with fewer data points.

Since labelled training data may be scarce in resource-constrained settings, GNB is an

excellent choice. Despite the fact that GNB's accuracy does not surpass 0.97, its reliability

and speed render it a formidable contender for the detection of OS X malware, particularly

when computational efficiency is a critical factor.

5.3.1 Computational Efficiency during OS X Malware Detection

Based on the results, LR is the quickest of the three. Its training time is 0.47 seconds with

10% training data and only slightly increases at 90%. Similarly, its testing time is relatively

low and remains consistent throughout data sizes.

Figure 10: Computational Efficiency of ML Algorithms in OS X malware detection

Alternatively, KNN's training, testing, and validation periods are significantly longer,

particularly when dealing with larger training samples. For example, KNN's testing time

17

jumps to 1.80 seconds when 90% of the data is taken for training, demonstrating its

computational inefficiency when dealing with large datasets. With training and testing times

that are far lower than KNN and only somewhat higher than LR, GNB maintains its position

as the most efficient algorithm. Real-time malware detection in OS X systems is a top

priority, and GNB is a perfect fit because of its quick training times, particularly with all

proportions of training data.

5.4 Performance Across Training Data Proportions in Memory Malware

Detection

According to the findings, LR reliably delivers excellent performance with respect to all data

proportions. With only 10% training data, LR achieves a testing accuracy of 1.00 while

keeping precision, recall, and F1-score at ideal levels as the data amount increases. Because

of this, it seems that LR can detect memory malware very well, even with little training data.

Table 4: Performance metrics of ML Algorithms in memory malware detection

With validation accuracy starting at 0.99 at 10% and reaching 1.00 with increasing

proportions, the training set size directly correlates to the amount of data provided,

demonstrating that LR is able to generalise effectively. When considering memory malware

identification, LR is a trustworthy technique that consistently performs well on both small

and large data sizes. Additionally, KNN exhibits flawless detection across all proportions of

the training data, with testing accuracy, precision, recall, and F1-score all coming in at 1.00

across the board. Based on these results, KNN seems to be a great option for identifying

memory malware because of how well it captures patterns in the data. However, GNB falls

short of the flawless performance achieved by LR and KNN, while it still achieves

respectable results. A testing accuracy of 0.99 is achieved by GNB at 10% training data, and

this accuracy is consistent across all proportions. Despite being marginally less accurate than

LR and KNN, GNB is still a dependable classifier with an accuracy, recall, and F1 of 0.99.

Nonetheless, GNB shows promise as a viable alternative for memory malware detection due

to its consistent performance across different data volumes.

18

5.4.1 Computational Efficiency during Memory Malware Detection

Training times for LR are reasonable and scale up as the training data amount increases; for

example, at 10% training data, it takes 32.30 seconds, and at 90%, it rises to 583.45 seconds.

In comparison to KNN, which incurs substantially greater computational costs, LR continues

to be comparatively efficient, even with this boost.

Figure 11: Computational Efficiency of ML Algorithms in memory malware detection

The computational expense of KNN becomes apparent at 90% training data; the time

required for training increases to 937.66 seconds from 144.83 seconds at 10%. At 10%

training data, GNB's training times are as low as 0.35 seconds, and at 90%, they only

marginally increase to 1.10 seconds, making it the most computationally efficient. Since

speed and minimal resource consumption are paramount in cybersecurity applications, GNB

is a perfect fit.

6. Discussion and Conclusion
6.1 Critical Analysis of Sensitivity of ML Algorithms to Training Data

Sizes in Malware Detection

Investigating the effect of training data size on ML algorithm performance for OS X and

memory malware detection reveals that training data proportions impact both types of

malware detection in different ways. Regardless of the quantity of training data, all three

algorithms (LR, KNN, and GNB) in memory malware detection consistently attain testing

accuracies between 99% and 100%. Given that all models kept their high detection rates over

different amounts of training data, it shows that the memory malware detection task is

substantially less sensitive to changes in training data size. The chosen models are extremely

capable of detecting memory-based malware, as evidenced by the robust accuracy, even with

smaller training proportions.

On the other hand, there is considerable diversity in algorithm performance for OS X

malware detection when varying training data sizes. When using 80% or more of the training

data, Logistic Regression (LR) achieves 100% accuracy, demonstrating consistent good

performance. The accuracy decreases to approximately 97% at reduced training data

proportions (10% and 20%), but performance improves as the data size increases.

K-Nearest Neighbours (KNN) demonstrates considerable accuracy swings when it comes to

detecting OS X malware. Its performance noticeably drops when compared to other models,

especially at smaller training data proportions (10% with 74% accuracy). Gaussian Naive

19

Bayes (GNB) demonstrates a minor decline in accuracy when the training data is smaller,

such as 20% with 92% accuracy, despite its relatively good performance.

Figure 12: Testing Accuracy of ML models in OS X and memory malware detection

The two scenarios illustrate that LR is the most efficient approach in terms of computing

speed, although training time grows with bigger datasets, particularly for memory malware

detection (where it goes from 32.30 seconds at 10% training data to 583.45 seconds at 90%).

Training times for KNN range from 144.83 seconds at 10% training data to 937.66 seconds at

90%, indicating that it is computationally expensive. This becomes a substantial load for

larger datasets. For real-time malware detection in both OS X and memory malware

scenarios, GNB is the best option because it is computationally efficient and training and

testing timeframes are minimally affected.

In broad terms, the computational complexity of memory malware detection is higher than

that of OS X malware detection, despite the fact that the accuracy of memory malware

detection is consistently robust across all algorithms and training data sizes. The

computational demands of models, particularly LR and KNN, are underscored by the

substantial increase in time required as the size of the training data increases. The efficacy of

OS X malware detection is more sensitive to the proportions of training data, with LR

exhibiting the most favourable balance between accuracy and efficiency at higher data

volumes. GNB continues to be the most computationally efficient option, providing a balance

between speed and accuracy that renders it the optimal choice for real-time cybersecurity

solutions and resource-limited environments.

Optimum Model Selection: Due to its consistent accuracy and computational efficiency,

GNB is the most effective model for detecting memory malware. The optimal choice for OS

X malware detection is LR, as it achieves 100% accuracy with larger training data sizes while

maintaining reasonable computational costs.

6.2 Addressing Research Questions

1. How does the size of training data impact the effectiveness of detecting OS X

and memory malware?

The accuracy of OS X malware detection was substantially enhanced by the size of the

training data, particularly for LR. On the other hand, memory malware detection

20

demonstrated minimal sensitivity to the size of the training data, achieving consistently high

accuracy (99–100%) across all models. GNB in particular demonstrated exceptional

computational efficiency in real-time, resource-limited scenarios.

2. Which machine learning algorithm demonstrates the highest level of robustness to

variations in training data size for OS X and memory malware detection?

OS X malware detection is most robust when using Logistic Regression (LR), which

maintains a high level of accuracy (97%–100%) across a variety of training sizes. For the

detection of memory malware, all algorithms (LR, KNN, and GNB) exhibit consistent

performance (99%-100%). However, GNB is the preferable option due to its computational

efficiency, which renders it ideal for resource-limited settings.

3. What is the minimum proportion of training data required for each algorithm to achieve

acceptable performance in OS X and memory malware detection?

Logistic Regression and Gaussian Naive Bayes were able to obtain a 97% and 96% accuracy

rate, respectively, for OS X malware detection with only 10% training data. Nevertheless,

KNN necessitated a minimum of 50% of the training data to achieve a 91% stability in its

performance. To detect memory malware, all algorithms achieved ≥99% accuracy with 10%

training data.

4. How do the computational requirements (training time, memory usage) of each algorithm

change as the training data size increases for both OS X and memory malware datasets?

All algorithms on the OS X and memory malware datasets experience an increase in

computing needs for training time and memory usage as the training data size increases.

Table 5: Training time and Memory usage

As the amount of training data increases, the computational demands for detecting OS X

malware and memory malware also rise. The table above shows that with increase in data

size the memory usage also increases.

21

6.3 Conclusion

Malware detection plays an important role in cybersecurity, as this is the process of

identifying and eliminating threats that are present in the shape of malicious software. As the

number of cyber threats, especially those that exploit memory in OS X systems, has been on

the rise, there is a need to develop better and faster methods of detecting malware. This work

was set to explore how the size of the training data will influence the performance of various

machine learning algorithms in the detection of OS X and memory malware. Here the attempt

was made to assess how these algorithms behave when the training dataset proportions are

altered and which of the models is most effective in terms of resource-limited real-word

environments.

This project investigates the performance of three classification algorithms: LR, KNN and

GNB in terms of their performance on varying training dataset sizes and computational time.

The analysis revealed that, for memory malware detection, model performance was not as

impacted by changes in training data size, and all models maintained very high accuracy rates

of 99-100%. On the other hand, the performance of OS X malware detection was influenced

by data size; LR provided the optimal performance at a larger set, while KNN offered

unstable results.

The research outcomes show that GNB has better computational capability and therefore is

the most suitable for detection of memory malware, especially in environments with limited

resources. Using LR, the best results were obtained for OS X malware detection with the

highest accuracy and sufficient training data. Based on the results, GNB and LR were the

most stable models, with GNB providing the best trade-off between accuracy and time

complexity for real-time use.

In conclusion, this research revealed the importance of the training data set size and offered

guidelines for choosing the most suitable algorithms for real-world malware detection.

6.4 Future Enhancements

To facilitate a more thorough assessment of algorithm performance across various malware

categories, future research could concentrate on expanding the dataset to encompass a

broader range of malware types beyond OS X and memory malware. Furthermore, the

investigation of more sophisticated methods for machine learning, such as neural network

models (e.g., CNN or RNN), could offer evidence regarding whether these types of models

outperform conventional algorithms like LR, KNN, and GNB in malware detection tasks.

Additional refinement of data balancing techniques, such as the implementation of alternative

oversampling or undersampling methods beyond SMOTE, may also enhance model

performance, particularly in the context of highly imbalanced datasets.

Additionally, the accuracy and efficacy of the model could be improved by integrating

feature engineering techniques, such as the selection of more informative features and the

utilisation of domain-specific knowledge. In addition, research could evaluate the efficacy of

real-time malware detection models in live environments to evaluate their scalability and

robustness by integrating model deployment.

22

References
Talukder, S. and Talukder, Z. (2020). A survey on malware detection and analysis tools,

International Journal of Network Security & Its Applications (IJNSA), 12.

Gharghasheh, S.E. and Hadayeghparast, S. (2022). Mac OS X malware detection with

supervised machine learning algorithms, Handbook of Big Data Analytics and Forensics, pp.

193-208.

Mijwil, M.M. (2020). Malware Detection in Android OS Using Machine Learning

Techniques, International Journal of Data Science and Applications, 3(2), pp. 5-9.

Prachi and Kumar, S. (2022). An effective ransomware detection approach in a cloud

environment using volatile memory features, Journal of Computer Virology and Hacking

Techniques, 18(4), pp. 407-424.

Yücel, Ç. and Koltuksuz, A. (2020). Imaging and evaluating the memory access for malware,

Forensic Science International: Digital Investigation, 32, p. 200903.

Botacin, M., Grégio, A. and Alves, M.A.Z. (2020, September). Near-memory & in-memory

detection of fileless malware, In Proceedings of the International Symposium on Memory

Systems, pp. 23-38.

Sihwail, R., Omar, K. and Arifin, K.A.Z. (2021). An Effective Memory Analysis for

Malware Detection and Classification, Computers, Materials & Continua, 67(2).

Dener, M., Ok, G. and Orman, A. (2022). Malware detection using memory analysis data in

big data environment, Applied Sciences, 12(17), p. 8604.

Ramesh, S.P., Anand, S.R. and Karthikeyan, V.G. (2024, November). Machine Learning

Approach for Malware Detection Using Malware Memory Analysis Data, In International

Conference on Applications and Techniques in Information Security, pp. 135-145. Singapore:

Springer Nature Singapore.

Chen, A.C. and Wulff, K. (2022). Machine learning for OSX malware detection, Handbook

of Big Data Analytics and Forensics, pp. 209-222.

Thaeler, A., Yigit, Y., Maglaras, L., Buchanan, W.J., Moradpoor, N. and Russell, G. (2023,

November). Enhancing Mac OS Malware Detection through Machine Learning and Mach-O

File Analysis, In 2023 IEEE 28th International Workshop on Computer Aided Modeling and

Design of Communication Links and Networks (CAMAD), pp. 170-175. IEEE.

Shafin, S.S., Karmakar, G. and Mareels, I. (2023). Obfuscated memory malware detection in

resource-constrained IoT devices for smart city applications, Sensors, 23(11), p. 5348.

Venkatraman, S., Alazab, M. and Vinayakumar, R. (2019). A hybrid deep learning image-

based analysis for effective malware detection, Journal of Information Security and

Applications, 47, pp. 377-389.

23

Damaševičius, R., Venčkauskas, A., Toldinas, J. and Grigaliūnas, Š. (2021). Ensemble-based

classification using neural networks and machine learning models for windows pe malware

detection, Electronics, 10(4), p. 485.

Azeez, N.A., Odufuwa, O.E., Misra, S., Oluranti, J. and Damaševičius, R. (2021, February).

Windows PE malware detection using ensemble learning, In Informatics, 8(1), p. 10. MDPI.

Singh, A. and Bist, A.S. (2020). OSX malware detection: Challenges and solutions, Journal

of Information and Optimization Sciences, 41(2), pp. 379-385.

Fang, Z., Wang, J., Geng, J. and Kan, X. (2019). Feature selection for malware detection

based on reinforcement learning, IEEE Access, 7, pp. 176177-176187.

Euh, S., Lee, H., Kim, D. and Hwang, D. (2020). Comparative analysis of low-dimensional

features and tree-based ensembles for malware detection systems, IEEE Access, 8, pp. 76796-

76808.

Botacin, M., Grégio, A. and Alves, M.A.Z. (2020, September). Near-memory & in-memory

detection of fileless malware, In Proceedings of the International Symposium on Memory

Systems, pp. 23-38.

Bumanglag, K. (2022). An Application of Machine Learning to Analysis of Packed Mac

Malware.

Hilabi, R. and Abu-Khadrah, A. (2024). Windows operating system malware detection using

machine learning, Bulletin of Electrical Engineering and Informatics, 13(5), pp. 3401-3410.

Carrier, T., Victor, P., Tekeoglu, A. and Lashkari, A.H. (2022, February). Detecting

Obfuscated Malware using Memory Feature Engineering, In Icissp, pp. 177-188.

Abualhaj, M., Abu-Shareha, A., Shambour, Q., Alsaaidah, A., Al-Khatib, S. and Anbar, M.

(2024). Customized K-nearest neighbors’ algorithm for malware detection, International

Journal of Data and Network Science, 8(1), pp. 431-438.

Khalil, M. and Abu Al-Haija, Q. (2023). Memory Malware Identification via Machine

Learning, In Mobile Computing and Sustainable Informatics: Proceedings of ICMCSI 2023,

pp. 301-315. Singapore: Springer Nature Singapore.

Chaganti, R., Ravi, V. and Pham, T.D. (2022). Deep learning based cross architecture internet

of things malware detection and classification, Computers & Security, 120, p. 102779.

Dolesi, K., Steinbach, E., Velasquez, A., Whitaker, L., Baranov, M. and Atherton, L. (2024).

A machine learning approach to ransomware detection using opcode features and k-nearest

neighbors on windows, Authorea Preprints.

Kimmell, J.C. (2022). Analyzing and Explaining Machine Learning Based Online Malware

Detection in Cloud (Master's thesis, Tennessee Technological University).

	1. Introduction
	1.1 Background
	1.2 Aim
	1.3 Objectives
	1.4 Research Question
	1.5 Motivation
	1.6 Structure of the study

	2. Literature survey
	3. Research Methodology
	3.1 Rationale for methods and Evaluation
	3.2 Design Specification
	3.3 Research Resources
	3.3.1 Software Tools
	3.3.2 Hardware
	3.3.3 Datasets

	3.4 Data Pre-Processing
	3.5 Proposed Methodology
	3.6 Model Training, Evaluation, and Comparison

	4. Design And Implementation Specifications
	4.1 Collection of OS X Malware Data
	4.1.1 Removing Null Values and Duplicate Rows
	4.1.2 Correlation Analysis of features in the OS X Malware Data
	4.1.3 Visualising the Key Features in OS X malware data
	4.1.4 OS X Malware Data Balancing

	4.2 Collection of Memory Malware Data
	4.2.1 Preprocessing: Null Check, Handling Duplicates, and Encoding
	4.2.2 Correlation Analysis of features in the Memory Malware Data
	4.2.3 Visualising the Key Features

	5. Evaluation
	5.1 Data Splitting and Sub-Dataset Creation
	5.2 Model Implementation and Hyperparameter Tuning
	5.3 Performance Across Training Data Proportions in OS X Malware Detection
	5.3.1 Computational Efficiency during OS X Malware Detection

	5.4 Performance Across Training Data Proportions in Memory Malware Detection
	5.4.1 Computational Efficiency during Memory Malware Detection

	6. Discussion and Conclusion
	6.1 Critical Analysis of Sensitivity of ML Algorithms to Training Data Sizes in Malware Detection
	6.2 Addressing Research Questions
	6.3 Conclusion
	6.4 Future Enhancements

	References

