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Abstract 
Malware detection is an important factor in cybersecurity as the number of complex 

attacks on OS X and memory-based systems continues to rise. Due to the increasing use 

of ML techniques, the effect of training data size on detection accuracy and time 

complexity is still an open issue. This work focuses on the problem of choosing reliable 
ML models for malware detection in scenarios with limited resources, especially training 

data. Three Machine Learning algorithms, namely, Logistic Regression (LR), K-Nearest 

Neighbors (KNN), and Gaussian Naive Bayes (GNB) have been considered in the 
present research, for performance assessment on two popular benchmark datasets of OS 

X and memory malware, namely the OS X Malware Dataset and CIC-MalMem-2022. 

Thus, sensitivity to the proportion of training data (10%, 20%, 50%, 80%, and 90%) is 
estimated, as well as accuracy, precision, recall, F1-score, and time to train each model. 

The findings show that memory malware detection has the lowest sensitivity to data size, 

while OS X malware detection is more sensitive, with LR giving the best results at larger 

datasets. The research also reveals that GNB is the most computationally efficient for 
both types of malwares. This research aims at identifying appropriate algorithms for 

real-time analysis and efficient use of resources in the detection of malware. 

 

1. Introduction 
1.1 Background 
Malware detection is a fundamental part of cybersecurity that aims at detecting and 

preventing any malicious software that attacks computers. This, especially the memory 

related threats to the OS X systems call for improved and efficient measures in detecting 

these threats (Talukder et al.; 2020). The conventional or traditional methods of detection 

which include signature based detection are efficient in identifying known threats but are 

ineffective in identifying or detecting new or disguised threats. This shortcoming has resulted 

in the enhanced utilization of machine learning (ML) techniques because these models can 

process data to find trends that are associated with cyber threats (Gharghasheh et al.; 2022). 

To achieve their intended results, most of the ML algorithms require vast amounts of accurate 

and relevant data. But such type of data is not easily available in real life problems owing to 

factors such as privacy, cost, and time. Consequently, the role of the size of training data on 

the performance of the ML algorithms comes into focus. Understanding this relationship will 

help in the formulation of efficient detection techniques that can be used despite constraints 

in data to improve on the overall cybersecurity of organizations with scarce resources 

(Mijwil; 2020) 
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1.2 Aim 
This research looks into the crucial cyber security problem of malware detection by 

comprehensively investigating the impact of training data size on the performance of various 

machine learning algorithms for OS X and memory malware detection. This research intends 

to determine the relationship between the size of training data and the sensitivity of the 

various algorithms or how much the chosen algorithm will be affected by the size of the 

training data and, in turn, the overall detection rate by systematically altering the proportions 

of the training data and testing different algorithms. This research will help know the 

algorithms that can tolerate such deviations in data, and understanding the best trade-offs 

between computational cost and performance, and inform better resource-limited cyber 

security solutions, thus improving real-world malware identification. 

 

1.3 Objectives 
 To collect and pre-process OS X and memory malware datasets to ensure data quality 

and consistency. 

 To split each dataset into training, validation, and testing sets based on predefined 

proportions (10%, 20%, 50%, 80%, and 90%). 

 To create multiple sub-datasets with different training data proportions: 10%, 20%, 

50%, 80%, and 90% and ensure proportional representation of malware and benign 

samples in each sub-dataset. 

 To implement a diverse set of machine learning algorithms, including Logistic 

Regression, K-Nearest Neighbors and Gaussian Naive Bayes for OS X and memory 

malware detection. 

 To train each algorithm on each sub-dataset and evaluate its performance on a test set 

using metrics such as accuracy, precision, recall, and F1-score as well as time 

required for training, testing and validation. 

 To compare the performance variability of different algorithms across varying 

training data sizes within and between datasets. 

 To identify algorithms that demonstrate consistent robustness to fluctuations in 

training data size. 

 

1.4 Research Question 
1. How does the size of training data impact the effectiveness of detecting OS X 

and memory malware? 

2. Which machine learning algorithm demonstrates the highest level of robustness to 

variations in training data size for OS X and memory malware detection?  

3. What is the minimum proportion of training data required for each algorithm to 

achieve acceptable performance in OS X and memory malware detection?  

4. How do the computational requirements (training time, memory usage) of each 

algorithm change as the training data size increases for both OS X and memory 

malware datasets? 

 

1.5 Motivation  
The increasing and more frequent attacks on computer systems, and the increasing 

complexity of malware which also include those that attack OS X and other complex memory 

systems, requires better and more efficient methods of detecting the malware. Standard 

methods of detecting worm-type malware using signature-based approaches are no longer 

sufficient given that malware is continually evolving and hiding (Prachi et al.; 2022). Hence 
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there is a need to get a break through by using the ML technique. However, one of the factors 

that greatly affect the performance of any given ML algorithm is the size and quality of the 

training sets. Most organizations face difficulties in obtaining big data because of issues on 

privacy, cost, and time taken to collect data (Yücel et al.; 2020). To meet these challenges, 

this work formally analysing the dependency of various ML algorithms on the size of the 

training data for malware detection. This research seeks to improve the malware detection 

process through examining the approaches that these algorithms use to ensure that they have 

high detection rates even when the data is scarce. The results can be useful for the 

improvement of cybersecurity products especially in the conditions when there is limited 

possibility to get access to large data sets (Botacin et al.; 2020). 

 

1.6 Structure of the study  
This paper is organized to provide a clear and coherent flow of research outcomes and 

conclusions. It begins with the Introduction, which contains the background of the study, 

purpose of the research, research questions and objectives, and motivation of the study. Then, 

the Literature Survey section expands on previous work in malware detection using 

machine learning approaches, and issues with training data differences. The Research 

Methodology section provides information on the data sets used, data cleaning, the research 

design and the ML techniques used for this research. Subsequently, the Design and 

Implementation Specifications section describes the practical aspects of model 

implementation. The Evaluation section contains results of the experiment, which discusses 

the efficiency of each algorithm and the results of their training depending on the data set 

size. The Discussion and Conclusion part of the work discusses these findings in detail, as 

well as their prospects and applications in the sphere of cybersecurity. Also, the constraints of 

the study and the recommendations for further research is also discussed in the last chapter. 

  

2. Literature survey 
Malware detection has greatly evolved especially using of machine learning (ML) for 

detecting new and complex types of malwares that are targeting operating systems and 

memory systems. This has been due to the understandings of the fact that conventional 

signature-based detection methods are lack of ability to deal with advanced threats. 

Memory forensics has fast become an important field in digital investigation where various 

machine learning methods have been used in identifying and analyzing the features of 

malware. Sihwail et al. (2021) implemented a novel approach of using memory image to 

analyze and mine malware behaviors with classification accuracy of 98% using SVM 

classifiers. Continuing with this, Dener et al. (2022) adopted the Apache Spark’s Pyspark 

platform to compare a number of algorithms on the CIC-MalMem-2022 dataset, in which LR 

reached a stunning 99.97% in malware detection. Ramesh et al. (2024) continued this work 

by proposing a Hybrid Random Forest and Naive Bayes (HRFNB) model that identified 

malware through memory analysis with a detection rate of 99.89%. 

Various issues related to OS X malware detection have been identified as specific research 

problems. Gharghasheh and Hadayeghparast (2022) compared supervised machine learning 

techniques and proposed a novel idea of using library system calls as another feature set that 

increased the detection rate by 4%. Chen and Wulff (2022) likewise focused on the detection 

of macOS malware and found that Decision Tree algorithms achieved the best accuracy of 

92.78%. Thaeler et al. (2023) further enriched this study by extracting metadata and 

suspicious strings, which raised the number of feature sets from 984 to 1693 and obtained 

Random Forest F1 scores of 0.8-0.9. 
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The advanced detection techniques have, therefore, incorporated deep learning and computer 

vision techniques. Lightweight malware detection in IoT environments was presented in a 

hybrid model that incorporated CNN with Bi-LSTM by Shafin et al. (2023). In the recent 

research work done by Xing et al. (2022), the DL model which is an autoencoder was 

employed with grayscale images of malware and it produced an outstanding performance of 

96%. Venkatraman et al. (2019) have presented a hybrid DL process for detecting suspicious 

system behavior through image processing of approximately 75,000 malware samples. 

Ensemble and hybrid techniques have been identified as especially useful in increasing the 

reliability of detection. Damaševičius et al. (2021) developed an ensemble classification 

method integrating the NNs and the ML models with the overall accuracy of 99.9% and low 

FP and FN rates. In the current study, Azeez et al. (2021) utilized a stacked ensemble 

learning approach which is divided into two stages, and RF got an accuracy of 99.24%. Singh 

and Bist (2020) applied Stacked Ensemble Classifiers (STENC) with the accuracy of 96.72% 

and class balancing the data by SMOTE methods. 

There are also works on new feature selection and computational optimization techniques. 

Fang et al. (2024) presented a Deep Q-learning based Feature Selection Architecture 

(DQFSA) where more than 99% accuracy was achieved using 11 features out of a pool of 

103. Euh et al. (2020) proved that it is possible to have low-dimensional features with high 

detection capability and minimal storage and training time, with XGBoost attaining 97% 

classification rate using the Window Entropy Map (WEM). 

The current literature shows the lack of a clear understanding of how training data size 

impact algorithm performance across different platforms like OS X and memory systems. 

Although there are many articles that concern ML for malware detection, the analysis of the 

algorithms’ dependence on the training data size is still rather scarce. The proposed research 

is intended to offer specific and actionable recommendations to improve the effectiveness and 

flexibility of malware detection by comparing the results of various ML algorithms based on 

training data size in resource-scarce settings. 

This literature review aims to review current research on machine learning in malware 

detection and critically evaluate the current antecedent research thereby establishing the need 

for this research in enhancing cybersecurity techniques. 

 

Table 1 Summary Table of Recent Studies 

Author

s 

Y

e

a

r 

Dataset 

Used 

Methodologies Used Metrics Values Limitatio

ns 

Future 

Work 

Sihwail 

et al. 

2

0

2

1 

Custom 

Dataset 

(2502 

malicious, 

966 

benign) 

Extracted memory 

characteristics, applied 

binary vector feature 

transformation, trained 

and tested SVM classifier 

achieving 98% accuracy. 

Accurac

y, 

Sensitivi

ty, False 

Positive 

Rate 

(FPR) 

Accuracy: 

98%, 

Sensitivity

: 5%, 

FPR: 

1.24% 

Limited 

compariso

n to other 

malware 

techniques 

Develop a 

larger 

memory-

based 

dataset 

Dener 

et al. 

2

0

2

2 

CIC-

MalMem-

2022 

Used PySpark on Google 

Colab with CIC-

MalMem-2022 dataset, 

applied LR, RF, DT, GB, 

MLP, DFFNN, and 

Accurac

y, 

Precisio

n 

LR 

Accuracy: 

99.97%, 

GB 

Accuracy: 

Limited to 

binary 

classificati

on, no 

analysis on 

Expand 

dataset for 

detecting 

more 

malware 
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LSTM, achieving 

99.97% accuracy (LR). 

99.94%, 

NB 

Precision: 

98.41% 

malware 

variants 

types 

Shafin 

et al. 

2

0

2

3 

CIC-

MalMem-

2022 

Proposed a hybrid CNN-

BiLSTM model, tested 

on CIC-MalMem-2022 

dataset for IoT malware 

detection, outperforming 

ML-based models. 

Accurac

y 

Outperfor

ms 

existing 

models on 

detecting 

obfuscated 

malware 

Focuses 

primarily 

on IoT 

devices 

Implement 

model in 

more diverse 

IoT devices 

Bozkir 

et al. 

2

0

2

1 

Custom 

Dataset 

(4294 

samples) 

Converted memory 

dumps into RGB images, 

used GIST+HOG 

descriptors, applied 

UMAP for manifold 

learning, achieved 

96.39% accuracy (SMO). 

Accurac

y 

Accuracy: 

96.39% 

(SVM 

with 

GIST+HO

G), 

UMAP 

improves 

accuracy 

by 20% 

(varies by 

model) 

Limited to 

specific 

dataset and 

analysis on 

a standard 

desktop 

computer 

Broaden 

dataset, test 

on more 

systems for 

real-world 

use 

Shah et 

al. 

2

0

2

2 

Memory 

dumps 

Employed CLAHE and 

wavelet transforms for 

feature extraction from 

memory dumps, applied 

SVM, RF, DT, XGBoost, 

achieving 97.01% 

accuracy. 

Accurac

y, 

Precisio

n, 

Recall, 

F1-

Score 

Accuracy: 

97.01%, 

Precision: 

97.36%, 

F1-Score: 

96.36% 

Limited 

variety of 

malware 

used, 

dependenc

y on 

feature 

selection 

techniques 

Investigate 

deep 

learning 

techniques 

for further 

malware 

detection 

Gharg

hasheh 

& 

Haday

eghpar

ast 

2

0

2

2 

Custom 

Mac OS X 

dataset 

Utilized library system 

calls as features, 

compared ML algorithms 

(DT, SVM, KNN, 

Ensemble, LR), 

achieving 94.7% 

accuracy with KNN. 

ROC 

Curve 

Accuracy: 

94.7% 

(KNN) 

Small 

dataset, 

requires 

constant 

updates for 

malware 

signatures 

Expand 

dataset, 

explore new 

features to 

enhance 

detection 

Chen 

& 

Wulff 

2

0

2

2 

Custom 

Mac OS X 

dataset 

Used macOS malware 

samples, evaluated DT, 

SVM, GNB, SGD, and 

LR; DT achieved 92.78% 

accuracy. 

Accurac

y 

Accuracy: 

92.78% 

(DT), 

SGD 

Accuracy: 

91.77% 

Limited 

variety of 

malware 

used, small 

dataset 

Extend 

analysis to 

other 

algorithms 

and datasets 

Sihwail 

et al. 

2

0

1

9 

VirusTotal 

& Das 

Malwerk 

(1200 

Integrated memory 

forensics with dynamic 

analysis, used API call 

attributes, applied SVM, 

Accurac

y, False 

Positive 

Rate 

Accuracy: 

98.5%, 

FPR: 1.7% 

Dataset 

size 

limited to 

Windows 

Integrate 

registry/net

work 

features, 
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malware 

samples) 

achieving 98.5% 

accuracy. 

(FPR) 7 files improve 

sandbox 

defense 

mechanisms 

Carrie

r et al. 

2

0

2

2 

MalMem

Analysis-

2022 

Developed 

VolMemLyzer with 

stacked ensemble model 

using MalMemAnalysis-

2022 dataset, achieving 

99% accuracy with NB, 

DT, RF ensemble. 

Accurac

y 

Accuracy: 

99% 

Controlled 

settings, 

focused on 

only three 

malware 

types 

Expand to 

more 

malware 

types, test in 

real-world 

environment

s 

Al-

Qudah 

et al. 

2

0

2

3 

MalMem

Analysis-

2022 

Combined OCSVM with 

PCA for malware 

detection, applied to 

MALMEMANALYSIS-

2022 dataset, achieving 

99.4% accuracy. 

Accurac

y 

Accuracy: 

99.4% 

Dependenc

e on 

specific 

dataset 

Broaden 

dataset and 

test model in 

dynamic 

contexts 

Zhang 

et al. 

2

0

2

3 

PE files 

(In-

memory) 

Used CNN with memory 

forensics on PE files, 

analyzing binary chunks, 

achieving 97.48% 

detection accuracy. 

Accurac

y 

Accuracy: 

97.48% 

(using 

4096-byte 

fragments) 

False 

positives if 

malicious 

code 

doesn’t 

execute 

Improve 

detection of 

dynamic 

harmful 

behavior 

Xing et 

al. 

2

0

2

2 

Android 

apps 

(10,000 

benign, 

13,000 

malicious) 

Proposed an AE-2 

autoencoder for feature 

extraction, compared 

with CNN and traditional 

ML methods, achieving 

96% accuracy. 

Accurac

y, F1-

Score 

AE-2 

Accuracy: 

96%, F1-

Score: 

96% 

Data pre-

processing 

inefficienc

ies 

Improve 

pre-

processing 

techniques, 

enhance 

robustness 

Euh et 

al. 

2

0

2

0 

Custom 

(20,000 

benign, 

20,000 

malware) 

Evaluated tree-based 

ensemble models using 

WEM and API features, 

applied AdaBoost, 

XGBoost, RF, achieving 

97% accuracy with 

XGBoost. 

Accurac

y, AUC-

PRC 

Accuracy: 

97%, 

AUC-

PRC: 

0.96+ 

High 

computatio

nal cost for 

certain 

features 

Improve 

prediction 

algorithms, 

combine 

multiple 

feature types 

Venkat

raman 

et al. 

2

0

1

9 

75,000 

malware 

samples 

Used grayscale image 

representation of 

malware binaries, trained 

deep learning models 

achieving high accuracy 

using Adam optimizer. 

Accurac

y, 

Training 

Loss 

Fairly 

high 

accuracy, 

improved 

malware 

classificati

on 

Limited to 

large 

datasets 

Explore 

other deep 

learning 

architectures

, apply to 

real-time 

detection 

systems 

Damaš

evičius 

et al. 

2

0

2

1 

ClaMP 

Dataset 

Proposed an ensemble 

classifier combining 

DNN and CNN with 

classical ML models, 

achieving 99.9% 

Accurac

y, 

Precisio

n, F1-

Score, 

Accuracy: 

99.9%, 

FPR: 0%, 

FNR: 

0.2% 

Dataset-

specific 

models, no 

clear 

selection 

Refine 

model 

architecture, 

add XAI for 

explainabilit
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accuracy with 

ExtraTrees. 

AUC criterion y 

Azeez 

et al. 

2

0

2

1 

PE Dataset Developed a two-stage 

classification using 

stacked CNN and ML 

classifiers (NB, DT, RF, 

etc.), ExtraTrees 

performed best. 

Accurac

y, FPR, 

FNR  

Accuracy: 

99.24%, 

FPR: 

2.13%, 

FNR: 

0.31% 

Reliance 

on 

supervised 

learning, 

limited to 

known 

malware 

variants 

Develop 

unsupervise

d ensemble 

learning 

techniques, 

add XAI 

Fang et 

al. 

2

0

2

4 

Custom 

Dataset 

Used Deep Q-learning 

Feature Selection 

Algorithm (DQFSA), 

applied KNN, SVM, and 

RF, achieved 99% 

accuracy with a smaller 

feature set. 

Accurac

y, 

Feature 

Selectio

n 

Accuracy: 

99%, 

Smaller 

feature set 

accuracy: 

96% 

Dataset-

specific 

performan

ce, limited 

generalizat

ion 

Apply 

DQFSA to 

other feature 

selection 

tasks 

 

3.  Research Methodology 
This section describes how the impact of training data size will be assessed regarding the ML 

algorithms for OS X and memory malware detection. It describes the choice of models and 

methods of data preparation, as well as measures for evaluating the accuracy, precision, recall 

and efficiency of computations. The objective of the research is to determine effective 

algorithms that deliver high results irrespective of the data size and context of detection. 

 

3.1  Rationale for methods and Evaluation 
The selection of the methods and metrics for this research is informed by the need to 

holistically examine the influence of training data on the performance of the ML algorithms 

in the classification of OS X and memory malware. The Logistic Regression model is chosen 

as the first model for prediction, due to its simplicity, interpretability and great performance 

in binary classification problems (Carrier et al.; 2022). K-Nearest Neighbors (KNN) is 

included in the models because it is non-parametric and can identify local patterns, thereby 

providing information on the performance of distance-based algorithms as the data size 

increases (Abualhaj et al.; 2024). GNB is chosen for its efficiency and probabilistic nature 

and for its ability to handle high dimensional feature spaces which is pertinent to malware 

datasets and to increase the variety of classifiers employed for the comparison (Khalil and 

Abu; 2023). 

By designing the sub-datasets with different training data proportions (10%, 20%, 50%, 80% 

and 90%), the study is able to compare the behavior of each algorithm under different data 

constraints. This is similar to practical scenarios where the training data can be inadequate or 

excessive giving credibility to the study. This project uses the common metrics including 

accuracy, precision, recall, and F1-score, especially suitable in cases where the data is 

imbalanced as is often the case with malware detection. Besides, it is crucial to consider other 

computational factors such as training time and memory consumption to determine models 

that can perform well under limited resources. 

To increase the validity of the research, performance is compared across both OS X and 

memory malware datasets, which are different from each other. This cross-dataset 
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comparison is useful in the prediction of algorithms that are less sensitive to variations in 

malware detection schemes. 

  

3.2  Design Specification  
 

 

Figure 1: Architecture Diagram 

 

In order to answer the research questions, this section outlines the procedure for an 

experiment focusing on the impact of the training set size on the performance of the ML 

algorithms for classification of OS X and memory malware samples. This approach begins 

with the dataset collection where the OS X malware dataset will be collected from Cyber 

Science Lab and the memory malware dataset from University of New Brunswick. Data pre-

processing will be done on the data so as to enhance its quality and comparability by 

removing of duplicates as well as missing data, and selecting the required features. 

Subsequently, the data will be split for training, validation and testing at 10%, 20%, 50%, 

80% and 90% respectively. More specifically, several sub-datasets will be produced, based 

on various training data proportions. The ratio of malicious and benign samples will be kept 

the same in all of the four datasets. Next, Logistic Regression, K-Nearest Neighbors, 

Gaussian Naive Bayes and other supervised algorithms will be applied to the problem of OS 
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X and memory malware detection. These models have to be created in Python using the 

Scikit-learn library. Then each Algorithm will be trained on each of the sub dataset and the 

performance of each algorithm on the test set will be evaluated by accuracy, precision, recall 

and F1 Score. The time spent during the training, testing, and validation of each algorithm 

will also be considered for detecting OS X and memory malware. Therefore, this analysis 

aims at identifying the algorithms that are expected to work nearly optimal with respect to the 

training data size. 

 

3.3  Research Resources 
3.3.1 Software Tools 
 

 Python: A powerful programming language for data analysis, machine learning and 

data visualization.  

 Scikit-learn: A widely used library for ML to design many algorithms.  

 Pandas and NumPy: For data manipulation and numerical computations 

 Matplotlib and Seaborn: For data visualization.  

 Jupyter Notebook: For interactive data analysis and experimentation. 

 

3.3.2 Hardware 
 

 CPU: Intel Core i7 or AMD Ryzen 7 (or higher for demanding tasks)  

 GPU: NVIDIA GeForce RTX 30 Series or AMD Radeon RX 6000 Series (or 

equivalent)  

 RAM: 16GB or more  

 Storage: SSD for fast data access  

 Operating System: Linux-based (Ubuntu, Debian) 

 

3.3.3 Datasets 
 

 OS X Malware Datasets 

 Memory malware datasets 

 

3.4  Data Pre-Processing 
The initial preparations for both set of malware data, the OS X and Memory datasets, began 

with the loading of the data, inspecting the class balance and erasing of unneeded columns. In 

particular, the OS X dataset contained uninformed values in LoadDYLIB, missing 

LoadDYLIB values, and duplicate rows. The Memory dataset had the Category column 

dropped and the labels were numerical encoded as (Benign=0, Malware=1). The correlation 

analysis demonstrated dataset-specific patterns: OS X features were generally negatively 

correlated with the target class, except for Segments, while the Memory dataset had both 

positive and negative feature correlation. The OS X dataset was also balanced in this project 

using SMOTE. These two preprocessed datasets were saved as two CSV files for further 

analysis. 

 

3.5  Proposed Methodology 
For this methodology, three ML models which include LR, KNN, and GNB are used in 

malware detection; each model used undergoes hyperparameter tuning. Logistic Regression, 

a simple and easy to interpret linear model for binary classification, is chosen for the analysis. 
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It is very useful for tasks such as malware detection, for which the aiml is to classify the 

object into the 2 categories: benign or malicious (Chaganti, Ravi and Pham; 2022). The initial 

settings are set to default with the liblinear solver as it is suitable for binary classification. 

Other hyperparameters such as C (regularization strength), penalty and max iteration are 

tuned using RandomizedSearchCV to improve the performance of the model by considering 

different combinations. The parameter C regulates overfitting, and the parameter penalty 

controls the type of regularization, which can be L1, L2 or elastic net. 

This research chooses KNN algorithm for classification since it uses proximity as its basis for 

classification and it is useful in problems that have intricate relations between features such 

as detecting malware (Dolesi et al.; 2024). KNN does not make any assumption on the data 

distribution and has the capability to capture non-linear decision surfaces, which is very much 

useful in identifying different types of malwares. The KNN classifier is trained with default 

parameters and then the hyperparameters like number of neighbors, weights assigned and 

distance measure is set is set using RandomizedSearchCV. The basic yet effective concept of 

KNN that classifies data depend on the most common class of the nearest neighbors fits well 

to this task. 

KNN classifier is chosen because it is suitable for classification problems where features are 

assumed to be independent. For instance, some features of benign and malicious samples can 

be well captured by the GNB model for malware detection. The GNB model is then started 

with the default settings for the priors and all features are considered to be conditionally 

independent. The main hyperparameter, var_smoothing, is introduced to avoid numerical 

instability when the variance is very small for some features in the data set. The classifier that 

are chosen has a probabilistic approach, which means that it classifies with less 

computational effort, thus being appropriate for this task (Kimmell; 2022). 

All three models are trained with hyperparameters using 2-fold cross validation to avoid 

overfitting to a specific training set. RandomizedSearchCV is used to perform search for 

hyperparameters by sampling parameters from certain distribution in order to get the best 

results for each model. These models were selected based on their effectiveness to the binary 

classification problem of malware detection, whereby Logistic Regression is selected for its 

ability to provide an interpretation, KNN for its ability to handle non-linear boundaries and 

GNB for working with probabilistic classification. All the models are further trained and 

validated to improve the classification between the benign and malicious samples. 

 

3.6  Model Training, Evaluation, and Comparison 
The models such as LR, KNN and GNB—are fine-tuned using RandomizedSearchCV that 

further helps to further improve the effectiveness of the model by choosing the best set of 

hyperparameters from the training data. This step of optimization helps in enhancing the 

overall performance of the models in terms of prediction accuracy while being trained. In 

order to enhance the ability of distinguishing between malware and benign samples, the 

proposed methodology fine-tunes the following hyperparameters for each model to achieve a 

reliable model training process. 

Performance is observed in terms of Training Time and Memory Usage utilizing the time and 

memory_profiler libraries respectively during the training as well as testing phase. The 

following metrics are used to determine the computational complexity needed for training of 

each model. Whenever the models are trained, they are evaluated on a new and unseen 

dataset at Testing Time and that time is noted down. At the end of testing, a classification 

report that touches on Accuracy, Precision, Recall and F1-Score is produced. Accuracy 

evaluates the overall accuracy of the model while precision and recall are crucial for 
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detecting true FPs and true FNs. F1-Score is beneficial in measurement when precision and 

recall are both important and when there is a significant class imbalance. 

All of the models are validated on a different validation set for each model, to check that the 

model is able to perform better on new data and to minimize the risk of overfitting. This step 

is important to validate the performance of the model and its capacity to produce accurate 

results on new data. To assess the computational performance, the Training Time, Testing 

Time and Validation Time are recorded for each architecture. These time metrics give an 

insight of the time taken by each algorithm and the resources needed by the system in 

training, testing and validation. This makes it possible to determine the time taken to train the 

models and the accuracy of the models on new data that they haven’t been trained on. 

The last comparison of the models is based on Classification Performance where each model 

is comparing with other model using accuracy, precision, recall and F1-Score to determine 

how well they can differentiate between the benign and malware samples. Further, model 

performance is improved by Hyperparameter Optimization via RandomizedSearchCV, and 

Resource Efficiency is compared by analysing time taken to train the model and the memory 

used during training. These comparisons provide useful information about the ability of each 

model in the detection of memory malware. 

Lastly, the hyperparameters that were found to give the best results for each model after 

training, testing and validation are presented. The classification results and curves of all 

models on the testing and validation sets indicate the models’ ability to detect malware with 

the emphasis on the trade-offs among false positives and false negatives. This detailed 

evaluation allows identifying the best model for the malware detection task by comparison of 

the performance indicators and computational complexity. 

 

4. Design And Implementation Specifications 
Malware detection is necessary for cybersecurity enhancement. It identifies potential hazards 

to data and systems and implements protective measures. In two distinct scenarios: OS X 

malware and memory malware, this research examines the influence of training data size on 

the efficacy of ML algorithms for malware detection. To accomplish this, two distinct 

datasets were employed, each of which concentrated on a distinct form of malware. The 

subsequent sections will initially investigate the OS X malware dataset, followed by the 

memory malware dataset with experiments on both datasets. 

 

4.1  Collection of OS X Malware Data 

The OS X malware dataset, which is gathered from the Cyber Science Lab, comprises 613 

samples and 16 features. It comprises 152 malware samples (labelled 1) and 461 benign 

samples (labelled -1), a class imbalance that is indicative of real-world situations. This 

dataset functions as a basis for comprehending the distinctive attributes of OS X malware and 

the obstacles associated with its detection.The dataset was purged of three columns (name, 

strsize, and DYLIBnames) due to their irrelevant nature or the presence of non-numeric, 

identifier-like data ('name'). For the classification of malware (DYLIBnames and strsize). 

Following the removal of these columns, the dataset comprises 13 columns that are 

predominantly numerical in nature: 12 integers and 1 float ('LoadDYLIB'). It is evident from 

the information that the dataset contains 613 entries, with only one missing value in 

'LoadDYLIB' The data is consistent and prepared for further preprocessing and analysis, as 

there are no additional missing values, as indicated by the summary information. 
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4.1.1 Removing Null Values and Duplicate Rows 

One missing value in the 'LoadDYLIB' column is initially detected. To eliminate this lacking 

value, the corresponding row is dropped. The duplicate entries were verified after the null 

values were addressed revealing 99 duplicate entries. These duplicates were eliminated, and 

the dataset's index is reset to preserve its order. A new column, 'index', is introduced to store 

the initial index values when the index is reset. As a consequence, the dataframe now 

contains 14 columns. Clean and consistent data for analysis is guaranteed as a result of the 

reduction of the dataset to 513 rows and 14 columns following these preprocessing steps. 

4.1.2 Correlation Analysis of features in the OS X Malware Data 

According to the heatmap, the target feature 'class' is negatively correlated with all features 

except 'Segments', suggesting an inverse relationship. The positive correlation observed in 

'Segments' indicates its potential significance in the detection of malware. 

4.1.3 Visualising the Key Features in OS X malware data 

In the 'class' column of the OS X malware dataset, the pie chart illustrates the percentage of 

each class. It indicates that 24.8% of the data is classified as malware (class '1'), while the 

majority, 75.2%, is classified as non-malware (class '-1'). In modelling, the necessity of 

managing class distribution is underscored by this imbalance. 

 

Figure 2: Pie Chart showing distribution of classes in OS X malware data 

The OS X malware dataset's frequency of each class category across various segments is 

illustrated in the stacked bar diagram. The preponderance of occurrences are classified as 

Segment '3' in both the malware (class '1') and non-malware (class '-1') categories. 
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Figure 3: Stacked Bar Plot of frequency of each class across various segments 

This suggests that Segment '3' is present in both classes, which could imply its importance in 

the differentiation between malware and non-malware. The plot assists in the identification of 

trends in the distribution of segments within each class, thereby offering insight into the 

potential importance of the feature. 

4.1.4 OS X Malware Data Balancing 

The dataset is balanced by oversampling the minority class (malware, class '1') using 

SMOTE, which resulted in 386 instances of each class ('1' for malware and '-1' for non-

malware). This process guarantees an equitable distribution of both classes, thereby 

enhancing model performance by addressing class imbalance. 

4.2  Collection of Memory Malware Data 

The Memory Malware dataset (Obfuscated-MalMem2022.csv) is collected from the 

University of New Brunswick (UNB). It contains 57 columns and 58,596 rows, which 

correspond to the system's detailed activity features. The target column, 'Class', is composed 

of two balanced classes: Benign (29,298 instances) and Malware (29,298 instances). Since 

the Class column serves as the target variable, the Category column is removed to make the 

data simpler. The info() method confirmed that there are no missing values in the 56 columns 

of the dataset. Data types include 15 float, 40 integer, and 1 object (target) features. 

4.2.1 Preprocessing: Null Check, Handling Duplicates, and Encoding 

No null values were identified and the dataset is considered full. The dataset is then stripped 

down to 58,027 rows and 57 columns after 569 duplicate rows were found and eliminated. 

The index is reset to ensure uniformity. To further ensure compatibility with ML models, the 

categorical values "Benign" and "Malware" in the 'Class' column were transformed to 

numerical labels: 0 for "Benign" and 1 for "Malware". 

4.2.2 Correlation Analysis of features in the Memory Malware Data 

Annotations and a cool colour palette are used to build a heatmap that visualises the dataset's 

correlation matrix. All 55 features in the accompanying heatmap show a positive or negative 

correlation with the output feature "Class," making it a tremendously large heatmap. This is 

helpful for comprehending the effect of feature relationships on malware categorisation. 
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4.2.3 Visualising the Key Features 

This pie chart from the Memory Malware dataset shows how the 'Class' column is distributed. 

Instances of benign content make for 50.4% of the dataset, whereas instances of malware 

content account for 49.6%. This equilibrium allows for fair assessment and training of ML 

models. 

 

Figure 4: Pie Chart showing distribution of classes in Memory malware data 

The stacked bar plot illustrates the frequency of malware and non-malware instances at 

varying callbacks.ngeneric values. There is a commonality in this feature, as both classes 

predominantly have a callbacks.ngeneric value of '3'. 

 

Figure 5: Stacked Bar Plot of frequency of each class across various callbackss.ngeneric 

The plot indicates that this shared attribute may function as a critical indicator for 

classification, despite the presence of variations in other categories. The distribution is more 

easily comprehended, and patterns that are pertinent to malware detection are more readily 

identified as a result of the proportionate representation across classes. 

5. Evaluation 

After preprocessing, the OS X malware dataset comprises 772 samples and 13 features, with 

the binary classes being converted from {1, -1} to {1, 0}. The memory malware dataset 

comprises 55 features and 58,027 samples, with binary classes predefined as {0, 1}. Both 

datasets were subjected to feature selection and cleansing to guarantee their fitness for the 

purpose of training machine learning models. 
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5.1  Data Splitting and Sub-Dataset Creation 

Based on predetermined training data proportions of 10%, 20%, 50%, 80%, and 90%, both 

datasets were divided into training, validation, and testing sets. After allotting training data, 

the remaining samples were equitably allocated to validation and testing. Each subset 

maintained a proportional representation of benign and malware samples. 

Table 2: Splitted data samples using predefined training proportions 

Training Data 

Proportion 

OS X Malware (samples) Memory Malware(samples) 

Train Test Val. Train Test Val. 

10% 77 348 347 5802 26113 26112 

20% 154 309 309 11605 23211 23211 

50% 386 193 193 29013 14507 14507 

80% 617 78 77 46421 5803 5803 

90% 694 39 39 52224 2902 2901 

 

5.2  Model Implementation and Hyperparameter Tuning 

For both datasets, three machine learning algorithms—LR, KNN, and GNB—are employed. 

Hyperparameter optimization is accomplished through the utilisation of 

RandomizedSearchCV with 2-fold cross-validation. Each model is trained on all sub-datasets 

and assessed using metrics such as precision, recall, F1-score, and computational time for 

training, testing, and validation. 

5.3  Performance Across Training Data Proportions in OS X Malware 

Detection 

The results reveal that the amount of training data greatly affects LR. As the size of the 

training set increases, there is a noticeable enhancement in accuracy and performance. While 

LR gets a testing accuracy of 0.97 with 10% training data, it reaches perfection with 1.00 

accuracy, precision, recall, and F1 score when the training data is increased to 90%. 

Accordingly, it appears that LR's ability to generalise and accurately detect malware is 

greatly enhanced with more training data samples. With its impressive performance, LR 

stands out as an algorithm that could be used to detect malware on OS X. 

The sensitivity of KNN to data size is, in contrast, more moderate. The performance of KNN 

is significantly worse for lower training proportions, such as 10% and 20%, with testing 

accuracy hanging around 0.74 and 0.81, respectively. The testing accuracy of KNN is 0.91 

with 50% training data and 0.87 with 90% training data, demonstrating a steady improvement 

in performance as the training data grows. Nevertheless, KNN is never able to achieve the 

same level of precision as LR. Regardless, KNN is still a viable bet for OS X malware 

detection due to its increased accuracy with bigger training datasets. 
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Table 3: Performance metrics of ML Algorithms in OS X malware detection 

 

Regardless of the quantity of training data, GNB's performance remains consistent. Even with 

smaller datasets (10% training data), GNB consistently exhibits accuracy (around 0.95 to 

0.96), demonstrating its stability and capacity to perform effectively with fewer data points. 

Since labelled training data may be scarce in resource-constrained settings, GNB is an 

excellent choice. Despite the fact that GNB's accuracy does not surpass 0.97, its reliability 

and speed render it a formidable contender for the detection of OS X malware, particularly 

when computational efficiency is a critical factor. 

5.3.1 Computational Efficiency during OS X Malware Detection 

Based on the results, LR is the quickest of the three. Its training time is 0.47 seconds with 

10% training data and only slightly increases at 90%. Similarly, its testing time is relatively 

low and remains consistent throughout data sizes.  

Figure 10: Computational Efficiency of ML Algorithms in OS X malware detection 

 

Alternatively, KNN's training, testing, and validation periods are significantly longer, 

particularly when dealing with larger training samples. For example, KNN's testing time 
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jumps to 1.80 seconds when 90% of the data is taken for training, demonstrating its 

computational inefficiency when dealing with large datasets. With training and testing times 

that are far lower than KNN and only somewhat higher than LR, GNB maintains its position 

as the most efficient algorithm. Real-time malware detection in OS X systems is a top 

priority, and GNB is a perfect fit because of its quick training times, particularly with all 

proportions of training data. 

5.4  Performance Across Training Data Proportions in Memory Malware 

Detection 

According to the findings, LR reliably delivers excellent performance with respect to all data 

proportions. With only 10% training data, LR achieves a testing accuracy of 1.00 while 

keeping precision, recall, and F1-score at ideal levels as the data amount increases. Because 

of this, it seems that LR can detect memory malware very well, even with little training data.  

Table 4: Performance metrics of ML Algorithms in memory malware detection 

 

With validation accuracy starting at 0.99 at 10% and reaching 1.00 with increasing 

proportions, the training set size directly correlates to the amount of data provided, 

demonstrating that LR is able to generalise effectively. When considering memory malware 

identification, LR is a trustworthy technique that consistently performs well on both small 

and large data sizes. Additionally, KNN exhibits flawless detection across all proportions of 

the training data, with testing accuracy, precision, recall, and F1-score all coming in at 1.00 

across the board. Based on these results, KNN seems to be a great option for identifying 

memory malware because of how well it captures patterns in the data. However, GNB falls 

short of the flawless performance achieved by LR and KNN, while it still achieves 

respectable results. A testing accuracy of 0.99 is achieved by GNB at 10% training data, and 

this accuracy is consistent across all proportions. Despite being marginally less accurate than 

LR and KNN, GNB is still a dependable classifier with an accuracy, recall, and F1 of 0.99. 

Nonetheless, GNB shows promise as a viable alternative for memory malware detection due 

to its consistent performance across different data volumes. 
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5.4.1 Computational Efficiency during Memory Malware Detection 

Training times for LR are reasonable and scale up as the training data amount increases; for 

example, at 10% training data, it takes 32.30 seconds, and at 90%, it rises to 583.45 seconds. 

In comparison to KNN, which incurs substantially greater computational costs, LR continues 

to be comparatively efficient, even with this boost. 

Figure 11: Computational Efficiency of ML Algorithms in memory malware detection 

 

The computational expense of KNN becomes apparent at 90% training data; the time 

required for training increases to 937.66 seconds from 144.83 seconds at 10%. At 10% 

training data, GNB's training times are as low as 0.35 seconds, and at 90%, they only 

marginally increase to 1.10 seconds, making it the most computationally efficient. Since 

speed and minimal resource consumption are paramount in cybersecurity applications, GNB 

is a perfect fit. 

6. Discussion and Conclusion  
6.1    Critical Analysis of Sensitivity of ML Algorithms to Training Data 

Sizes in Malware Detection 

Investigating the effect of training data size on ML algorithm performance for OS X and 

memory malware detection reveals that training data proportions impact both types of 

malware detection in different ways. Regardless of the quantity of training data, all three 

algorithms (LR, KNN, and GNB) in memory malware detection consistently attain testing 

accuracies between 99% and 100%. Given that all models kept their high detection rates over 

different amounts of training data, it shows that the memory malware detection task is 

substantially less sensitive to changes in training data size. The chosen models are extremely 

capable of detecting memory-based malware, as evidenced by the robust accuracy, even with 

smaller training proportions.  

On the other hand, there is considerable diversity in algorithm performance for OS X 

malware detection when varying training data sizes. When using 80% or more of the training 

data, Logistic Regression (LR) achieves 100% accuracy, demonstrating consistent good 

performance. The accuracy decreases to approximately 97% at reduced training data 

proportions (10% and 20%), but performance improves as the data size increases. 

K-Nearest Neighbours (KNN) demonstrates considerable accuracy swings when it comes to 

detecting OS X malware. Its performance noticeably drops when compared to other models, 

especially at smaller training data proportions (10% with 74% accuracy). Gaussian Naive 
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Bayes (GNB) demonstrates a minor decline in accuracy when the training data is smaller, 

such as 20% with 92% accuracy, despite its relatively good performance. 

Figure 12: Testing Accuracy of ML models in OS X and memory malware detection 

 

The two scenarios illustrate that LR is the most efficient approach in terms of computing 

speed, although training time grows with bigger datasets, particularly for memory malware 

detection (where it goes from 32.30 seconds at 10% training data to 583.45 seconds at 90%). 

Training times for KNN range from 144.83 seconds at 10% training data to 937.66 seconds at 

90%, indicating that it is computationally expensive. This becomes a substantial load for 

larger datasets. For real-time malware detection in both OS X and memory malware 

scenarios, GNB is the best option because it is computationally efficient and training and 

testing timeframes are minimally affected. 

In broad terms, the computational complexity of memory malware detection is higher than 

that of OS X malware detection, despite the fact that the accuracy of memory malware 

detection is consistently robust across all algorithms and training data sizes. The 

computational demands of models, particularly LR and KNN, are underscored by the 

substantial increase in time required as the size of the training data increases. The efficacy of 

OS X malware detection is more sensitive to the proportions of training data, with LR 

exhibiting the most favourable balance between accuracy and efficiency at higher data 

volumes. GNB continues to be the most computationally efficient option, providing a balance 

between speed and accuracy that renders it the optimal choice for real-time cybersecurity 

solutions and resource-limited environments. 

Optimum Model Selection: Due to its consistent accuracy and computational efficiency, 

GNB is the most effective model for detecting memory malware. The optimal choice for OS 

X malware detection is LR, as it achieves 100% accuracy with larger training data sizes while 

maintaining reasonable computational costs. 

6.2 Addressing Research Questions 
 

1. How does the size of training data impact the effectiveness of detecting OS X 

and memory malware? 

The accuracy of OS X malware detection was substantially enhanced by the size of the 

training data, particularly for LR. On the other hand, memory malware detection 
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demonstrated minimal sensitivity to the size of the training data, achieving consistently high 

accuracy (99–100%) across all models. GNB in particular demonstrated exceptional 

computational efficiency in real-time, resource-limited scenarios. 

2. Which machine learning algorithm demonstrates the highest level of robustness to 

variations in training data size for OS X and memory malware detection?  

OS X malware detection is most robust when using Logistic Regression (LR), which 

maintains a high level of accuracy (97%–100%) across a variety of training sizes. For the 

detection of memory malware, all algorithms (LR, KNN, and GNB) exhibit consistent 

performance (99%-100%). However, GNB is the preferable option due to its computational 

efficiency, which renders it ideal for resource-limited settings. 

3. What is the minimum proportion of training data required for each algorithm to achieve 

acceptable performance in OS X and memory malware detection?  

Logistic Regression and Gaussian Naive Bayes were able to obtain a 97% and 96% accuracy 

rate, respectively, for OS X malware detection with only 10% training data. Nevertheless, 

KNN necessitated a minimum of 50% of the training data to achieve a 91% stability in its 

performance. To detect memory malware, all algorithms achieved ≥99% accuracy with 10% 

training data. 

4. How do the computational requirements (training time, memory usage) of each algorithm 

change as the training data size increases for both OS X and memory malware datasets? 

All algorithms on the OS X and memory malware datasets experience an increase in 

computing needs for training time and memory usage as the training data size increases. 

Table 5: Training time and Memory usage 

 
As the amount of training data increases, the computational demands for detecting OS X 

malware and memory malware also rise. The table above shows that with increase in data 

size the memory usage also increases. 
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6.3  Conclusion 

Malware detection plays an important role in cybersecurity, as this is the process of 

identifying and eliminating threats that are present in the shape of malicious software. As the 

number of cyber threats, especially those that exploit memory in OS X systems, has been on 

the rise, there is a need to develop better and faster methods of detecting malware. This work 

was set to explore how the size of the training data will influence the performance of various 

machine learning algorithms in the detection of OS X and memory malware. Here the attempt 

was made to assess how these algorithms behave when the training dataset proportions are 

altered and which of the models is most effective in terms of resource-limited real-word 

environments. 

This project investigates the performance of three classification algorithms: LR, KNN and 

GNB in terms of their performance on varying training dataset sizes and computational time. 

The analysis revealed that, for memory malware detection, model performance was not as 

impacted by changes in training data size, and all models maintained very high accuracy rates 

of 99-100%. On the other hand, the performance of OS X malware detection was influenced 

by data size; LR provided the optimal performance at a larger set, while KNN offered 

unstable results. 

The research outcomes show that GNB has better computational capability and therefore is 

the most suitable for detection of memory malware, especially in environments with limited 

resources. Using LR, the best results were obtained for OS X malware detection with the 

highest accuracy and sufficient training data. Based on the results, GNB and LR were the 

most stable models, with GNB providing the best trade-off between accuracy and time 

complexity for real-time use. 

In conclusion, this research revealed the importance of the training data set size and offered 

guidelines for choosing the most suitable algorithms for real-world malware detection. 

6.4  Future Enhancements 

To facilitate a more thorough assessment of algorithm performance across various malware 

categories, future research could concentrate on expanding the dataset to encompass a 

broader range of malware types beyond OS X and memory malware. Furthermore, the 

investigation of more sophisticated methods for machine learning, such as neural network 

models (e.g., CNN or RNN), could offer evidence regarding whether these types of models 

outperform conventional algorithms like LR, KNN, and GNB in malware detection tasks. 

Additional refinement of data balancing techniques, such as the implementation of alternative 

oversampling or undersampling methods beyond SMOTE, may also enhance model 

performance, particularly in the context of highly imbalanced datasets. 

Additionally, the accuracy and efficacy of the model could be improved by integrating 

feature engineering techniques, such as the selection of more informative features and the 

utilisation of domain-specific knowledge. In addition, research could evaluate the efficacy of 

real-time malware detection models in live environments to evaluate their scalability and 

robustness by integrating model deployment. 

 



22 

 

 

 

References 
Talukder, S. and Talukder, Z. (2020). A survey on malware detection and analysis tools, 

International Journal of Network Security & Its Applications (IJNSA), 12. 

 

Gharghasheh, S.E. and Hadayeghparast, S. (2022). Mac OS X malware detection with 

supervised machine learning algorithms, Handbook of Big Data Analytics and Forensics, pp. 

193-208. 

 

Mijwil, M.M. (2020). Malware Detection in Android OS Using Machine Learning 

Techniques, International Journal of Data Science and Applications, 3(2), pp. 5-9. 

 

Prachi and Kumar, S. (2022). An effective ransomware detection approach in a cloud 

environment using volatile memory features, Journal of Computer Virology and Hacking 

Techniques, 18(4), pp. 407-424. 

 

Yücel, Ç. and Koltuksuz, A. (2020). Imaging and evaluating the memory access for malware, 

Forensic Science International: Digital Investigation, 32, p. 200903. 

 

Botacin, M., Grégio, A. and Alves, M.A.Z. (2020, September). Near-memory & in-memory 

detection of fileless malware, In Proceedings of the International Symposium on Memory 

Systems, pp. 23-38. 

 

Sihwail, R., Omar, K. and Arifin, K.A.Z. (2021). An Effective Memory Analysis for 

Malware Detection and Classification, Computers, Materials & Continua, 67(2). 

 

Dener, M., Ok, G. and Orman, A. (2022). Malware detection using memory analysis data in 

big data environment, Applied Sciences, 12(17), p. 8604. 

 

Ramesh, S.P., Anand, S.R. and Karthikeyan, V.G. (2024, November). Machine Learning 

Approach for Malware Detection Using Malware Memory Analysis Data, In International 

Conference on Applications and Techniques in Information Security, pp. 135-145. Singapore: 

Springer Nature Singapore. 

 

Chen, A.C. and Wulff, K. (2022). Machine learning for OSX malware detection, Handbook 

of Big Data Analytics and Forensics, pp. 209-222. 

 

Thaeler, A., Yigit, Y., Maglaras, L., Buchanan, W.J., Moradpoor, N. and Russell, G. (2023, 

November). Enhancing Mac OS Malware Detection through Machine Learning and Mach-O 

File Analysis, In 2023 IEEE 28th International Workshop on Computer Aided Modeling and 

Design of Communication Links and Networks (CAMAD), pp. 170-175. IEEE. 

 

Shafin, S.S., Karmakar, G. and Mareels, I. (2023). Obfuscated memory malware detection in 

resource-constrained IoT devices for smart city applications, Sensors, 23(11), p. 5348. 

 

Venkatraman, S., Alazab, M. and Vinayakumar, R. (2019). A hybrid deep learning image-

based analysis for effective malware detection, Journal of Information Security and 

Applications, 47, pp. 377-389. 



23 

 

 

 

Damaševičius, R., Venčkauskas, A., Toldinas, J. and Grigaliūnas, Š. (2021). Ensemble-based 

classification using neural networks and machine learning models for windows pe malware 

detection, Electronics, 10(4), p. 485. 

 

Azeez, N.A., Odufuwa, O.E., Misra, S., Oluranti, J. and Damaševičius, R. (2021, February). 

Windows PE malware detection using ensemble learning, In Informatics, 8(1), p. 10. MDPI. 

Singh, A. and Bist, A.S. (2020). OSX malware detection: Challenges and solutions, Journal 

of Information and Optimization Sciences, 41(2), pp. 379-385. 

 

Fang, Z., Wang, J., Geng, J. and Kan, X. (2019). Feature selection for malware detection 

based on reinforcement learning, IEEE Access, 7, pp. 176177-176187. 

 

Euh, S., Lee, H., Kim, D. and Hwang, D. (2020). Comparative analysis of low-dimensional 

features and tree-based ensembles for malware detection systems, IEEE Access, 8, pp. 76796-

76808. 

 

Botacin, M., Grégio, A. and Alves, M.A.Z. (2020, September). Near-memory & in-memory 

detection of fileless malware, In Proceedings of the International Symposium on Memory 

Systems, pp. 23-38. 

 

Bumanglag, K. (2022). An Application of Machine Learning to Analysis of Packed Mac 

Malware. 

 

Hilabi, R. and Abu-Khadrah, A. (2024). Windows operating system malware detection using 

machine learning, Bulletin of Electrical Engineering and Informatics, 13(5), pp. 3401-3410. 

 

Carrier, T., Victor, P., Tekeoglu, A. and Lashkari, A.H. (2022, February). Detecting 

Obfuscated Malware using Memory Feature Engineering, In Icissp, pp. 177-188. 

 

Abualhaj, M., Abu-Shareha, A., Shambour, Q., Alsaaidah, A., Al-Khatib, S. and Anbar, M. 

(2024). Customized K-nearest neighbors’ algorithm for malware detection, International 

Journal of Data and Network Science, 8(1), pp. 431-438. 

 

Khalil, M. and Abu Al-Haija, Q. (2023). Memory Malware Identification via Machine 

Learning, In Mobile Computing and Sustainable Informatics: Proceedings of ICMCSI 2023, 

pp. 301-315. Singapore: Springer Nature Singapore. 

 

Chaganti, R., Ravi, V. and Pham, T.D. (2022). Deep learning based cross architecture internet 

of things malware detection and classification, Computers & Security, 120, p. 102779. 

 

Dolesi, K., Steinbach, E., Velasquez, A., Whitaker, L., Baranov, M. and Atherton, L. (2024). 

A machine learning approach to ransomware detection using opcode features and k-nearest 

neighbors on windows, Authorea Preprints. 

 

Kimmell, J.C. (2022). Analyzing and Explaining Machine Learning Based Online Malware 

Detection in Cloud (Master's thesis, Tennessee Technological University). 


	1. Introduction
	1.1 Background
	1.2 Aim
	1.3 Objectives
	1.4 Research Question
	1.5 Motivation
	1.6 Structure of the study

	2. Literature survey
	3.  Research Methodology
	3.1  Rationale for methods and Evaluation
	3.2  Design Specification
	3.3  Research Resources
	3.3.1 Software Tools
	3.3.2 Hardware
	3.3.3 Datasets

	3.4  Data Pre-Processing
	3.5  Proposed Methodology
	3.6  Model Training, Evaluation, and Comparison

	4. Design And Implementation Specifications
	4.1  Collection of OS X Malware Data
	4.1.1 Removing Null Values and Duplicate Rows
	4.1.2 Correlation Analysis of features in the OS X Malware Data
	4.1.3 Visualising the Key Features in OS X malware data
	4.1.4 OS X Malware Data Balancing

	4.2  Collection of Memory Malware Data
	4.2.1 Preprocessing: Null Check, Handling Duplicates, and Encoding
	4.2.2 Correlation Analysis of features in the Memory Malware Data
	4.2.3 Visualising the Key Features


	5. Evaluation
	5.1  Data Splitting and Sub-Dataset Creation
	5.2  Model Implementation and Hyperparameter Tuning
	5.3  Performance Across Training Data Proportions in OS X Malware Detection
	5.3.1 Computational Efficiency during OS X Malware Detection

	5.4  Performance Across Training Data Proportions in Memory Malware Detection
	5.4.1 Computational Efficiency during Memory Malware Detection


	6. Discussion and Conclusion
	6.1    Critical Analysis of Sensitivity of ML Algorithms to Training Data Sizes in Malware Detection
	6.2 Addressing Research Questions
	6.3  Conclusion
	6.4  Future Enhancements

	References

