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1. Introduction 

The main idea of this manual is to make the users able to replicate the code in their own 
environment. It explains the hardware specification, specification, some essential libraries 
that are mandatory to run the code, source of the dataset, data preprocessed, model building, 
training and evaluation. A few of the code snippets are accompanied with some images. 

2. Environment  
The environment should be setup in first place to run the code, this section helps to set the 
environment for the successful replication of the code. This research is carried out in the 
google colab pro environment as it provides  access to computing higher resources like CPU,  
A100 GPU,  L4 GPU,  T4 GPU and TPU v2-8.  

3. System Configuration  

The computational task in this research was performed using Apple Macbook Air hardware. 
Table 1 describes the system, giving detailed specification of the hardware in the system. 

Table 1 : Hardware Specification 
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4. Setting Up The Google Colab Pro Environment 
My research project uses Python as the main programming language and Google Colab Pro 
to run the code, as you can see in figure 1. However, if you want a cloud based Jupyter 
notebook environment to run machine learning and deep learning models with very minimal 
setup, you can use Google Colab. This platform provides high performance GPU access (e.g., 
to NVIDIA A100 cards) in the Pro version. And with a lot of the computations taking place 
much more quickly thanks to the A100 GPU, it’s perfectly suited to training large models and 
handling complicated problems. As compared to other platforms, for example, Kaggle, Colab 
Pro is a premium service that carries with it better resource availability and capabilities to 
help with smooth execution of machine learning workflows. 
 

Figure 1 : Google Colab Pro set up  

To use the google colab version , you can simply go to the top right corner and accept the 
necessary terms and conditions and buy the pro version. This is how your pro environment 
looks like in figure 2.  
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Figure 2 : Google colab Pro  

5. Connecting to the Google Drive  
This research has been entirely connected to the google drive as shown in the figure 3 .  

Figure 3 : Google Drive environment  

6. Implementation  

Once we finish environmental setup and successfully connect with google drive, we can 
move onto the implementation part. The part under Implementation guides from importing 
the dataset to required libraries and frameworks and then jump onto model building, training 
and evaluation. 

6.1  Importing Libraries  

Significant number of libraries are used for preprocessing, training the model, evaluation and 
visualisation of the results of the research. In first place, the libraries need to be imported. 
Therefore import the libraries as named in the beginning part of the code as shown in the 
Figure 4.  
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Figure 4 : Necessary Libraries  

6.2 Data Preparartion  
 
Articles and their corresponding highlights dataset is loaded and the unnecessary columns are 
dropped. Lowercasing, expanding contractions, remove special characters, URLs and 
optionally stopword removal is text preprocessing. Two new sentence types have been 
introduced which we use to highlight <sostok> and <eostok> tokens for the start and end of 
summaries respectively. We clean the dataset by removing null or empty summaries. 
Histograms of summary and text lengths are used to analyze the distribution of the length. All 
of these steps has been shown in Figure 5,6,7,8.  

Figure 5 : Downloaded necessary vocabularies.  

Figure 6 :Checked Null values 
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Figure 7 : Contractions Removal  

Figure 8 : Cleaning the text and start and end tokens denoted 
 

Figure 9 : Text visualization Code  

After the successful preprocessing of the data, the model training starts further. 
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6.3 Data Splitting  
 
The data has been splitted into training, validation and testing data as shown in figure 10.  

Figure 10 : Data Splitting  

6.4 Tokenization  

In this code, text and summary data is preprocessed for a text summarization model by 
tokenizing words into numerical indices and padding sequences each to have uniform 
lengths. The text and the summary are applied for separate tokenization and their vocabulary 
sizes are truncated with t_max_features and s_max_features respectively. The maximum 
length for text sequences is padded up to 800 and for summary sequences up to 150. The 
vocabulary sizes are calculated and the processed data can be used for embedding and 
training a model with embedding dimension of 300. This has been shown in figure 11.  

Figure 11 : Tokenization for the text 

7. Model Implementation 

In this session, we will be discussing about 4 models for the abstractive text summarizatiopn 
project.  
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7.1  Study 1 : LSTM without attention layer  

The model consists of an encoder LSTM which operates on embedded text sequences, a 
decoder LSTM, which produces summaries conditioned on encoder states, and a 
softmaxbased dense layer for predicting next words show in figure 12.  

Figure 12 : Model Architecture  

Our model is compiled as using sparse categorical crossentropy loss and is trained on padded 
text and summary sequences, with a validation data, batch size 32 and specified epochs is 
shown in figure 13.  

Figure 13: Training Configuration  

A prediction way is created where we separate encoder and decoder models and encoder 
gives hidden states and decoder creates summaries step by step using predicted tokens is 
shown in figure 14.  
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Figure 14 : Inference Setup   

Results for precision, recall, and F-measure are recorded in a DataFrame comparing 
generated summaries against reference summaries using ROUGE-L metrics in figure 15.  

 

 

Figure 15 : Evaluation Metrices  
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7.2  Study 2 : BiLSTM without attention layer 

Input text is processed by the encoder (small bidirectional LSTM) forming forward and 
backward states, which are concatenated into final hidden and cell states, and then the 
decoder LSTM generates summaries using these states and predicting tokens through a time 
distributed dense layer with softmax is shown in figure 16.  

Figure 16 : Model Architecture  

We loaded the code into Colab and compiled the model using sparse categorical crossentropy 
loss and optimized it with the rmsprop optimizer, trained it on padded input (x train padded) 
and target (y train padded) sequences for a certain number of epochs with a certain batch size 
and providing with validation data for evaluation purposes is done in figure 17.  

Figure 17 : Training Configuration  

Separate encoder and decoder models are constructed for prediction, where the encoder 
provides concatenated hidden and cell states, and the decoder generates summaries one token 
at a time using predicted tokens is shown in figure 18.  
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Figure 18 : Inference setup  

Results for precision, recall, and F-measure are recorded in a DataFrame comparing 
generated summaries against reference summaries using ROUGE-L metrics in figure 19. 
 

Figure 19 : Evaluation Metrices 
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7.3 Study 3 : LSTM with attention layer and glove embeddings 

Make sure that GloVe embeddings were correctly preloaded and that it has the same 
embedding dimension as chosen.For this, the snapshot gives the detailed infomation 
( embed_dim=300 ) (figure 20).  

Figure 20 : Pre trained embedding 

Ensuring the compatibility between encoder and decoder hidden states.This is explained in 
figure 21. 
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Figure 21 : Attention Layer  

Also, adjust latent_dim, dropout, and recurrent dropout for resource efficiency is shown 
in figure 22. 

 

 

   

Figure 22: LSTM Parameters  
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Results for precision, recall, and F-measure are recorded in a DataFrame comparing 
generated summaries against reference summaries using ROUGE-L metrics in figure 23. 

Figure 23: Evaluation Metrices  

7.4 : Study 4: BiLSTM with attention layer and Glove Embedding  

Pre trained GloVe embeddings are also utilized to give semantic rich word representation. 
While the decoder produces summaries sequentially with the encoder last output states as 
input, it is initialized with the final states of the encoder which consists of a bidirectional 
LSTM, which captures the contextual information in both the forward and backward 
directions. Context aware generation is facilitated with a custom attention layer that aligns 
the decoder's focus with the most relevant bits of the encoder's outputs. Finally, token 
probabilities are obtained from model output via a dense layer with the softmax activation. A 
system for the abstraction, understanding, and generation of natures of that relationship is 
presented, parametrized by a summarization relation, and evaluated with ROUGE-L, a metric 
that has proven effective at measuring summarization performance. 

The same step will be followed for this model which is shown in figure 20,21 and 22. There 
will be slight changes in the model specification, instad of LSTM model, we will be using 
BiLSTM model as shown in figure 24.  
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Figure 24 : Complete model of BiLSTM with attention layer and glove embeddings 

8. Results  

After the successful completion of implementation code, you could find results getting 
displayed. The results are evaluated with the metrics like accuracy, precision, F1 score, and 
recall. 
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