

Configuration Manual

MSc Research Project
MSc in Data Analytics

Kruthika Surendrakumar
Student ID: X22241965

School of Computing
National College of Ireland

Supervisor : Abdul Shahid

National College of Ireland

MSc Project Submission Sheet

School of Computing

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Student
Name:

 Kruthika Surendrakumar

Student ID: X22241965

Programme: MSc In Data Analytics Year: 2024-2025

Module: MSc In Data Analytics

Lecturer: Abdul Shahid

Submission
Due Date: 12/12/2024

Project
Title:

Abstractive Summarization Using Neural Networks with Attention
Mechanisms

Word Count: 1,691 Page Count: 15

Signature: Kruthika Surendrakumar

Date: 12/12/2024

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Kruthika Surendrakumar
Student ID: X2241965

1. Introduction

The main idea of this manual is to make the users able to replicate the code in their own
environment. It explains the hardware specification, specification, some essential libraries
that are mandatory to run the code, source of the dataset, data preprocessed, model building,
training and evaluation. A few of the code snippets are accompanied with some images.

2. Environment
The environment should be setup in first place to run the code, this section helps to set the
environment for the successful replication of the code. This research is carried out in the
google colab pro environment as it provides access to computing higher resources like CPU,
A100 GPU, L4 GPU, T4 GPU and TPU v2-8.

3. System Configuration

The computational task in this research was performed using Apple Macbook Air hardware.
Table 1 describes the system, giving detailed specification of the hardware in the system.

Table 1 : Hardware Specification

 1

4. Setting Up The Google Colab Pro Environment
My research project uses Python as the main programming language and Google Colab Pro
to run the code, as you can see in figure 1. However, if you want a cloud based Jupyter
notebook environment to run machine learning and deep learning models with very minimal
setup, you can use Google Colab. This platform provides high performance GPU access (e.g.,
to NVIDIA A100 cards) in the Pro version. And with a lot of the computations taking place
much more quickly thanks to the A100 GPU, it’s perfectly suited to training large models and
handling complicated problems. As compared to other platforms, for example, Kaggle, Colab
Pro is a premium service that carries with it better resource availability and capabilities to
help with smooth execution of machine learning workflows.

Figure 1 : Google Colab Pro set up

To use the google colab version , you can simply go to the top right corner and accept the
necessary terms and conditions and buy the pro version. This is how your pro environment
looks like in figure 2.

 2

Figure 2 : Google colab Pro

5. Connecting to the Google Drive
This research has been entirely connected to the google drive as shown in the figure 3 .

Figure 3 : Google Drive environment

6. Implementation

Once we finish environmental setup and successfully connect with google drive, we can
move onto the implementation part. The part under Implementation guides from importing
the dataset to required libraries and frameworks and then jump onto model building, training
and evaluation.

6.1 Importing Libraries

Significant number of libraries are used for preprocessing, training the model, evaluation and
visualisation of the results of the research. In first place, the libraries need to be imported.
Therefore import the libraries as named in the beginning part of the code as shown in the
Figure 4.

 3

Figure 4 : Necessary Libraries

6.2 Data Preparartion

Articles and their corresponding highlights dataset is loaded and the unnecessary columns are
dropped. Lowercasing, expanding contractions, remove special characters, URLs and
optionally stopword removal is text preprocessing. Two new sentence types have been
introduced which we use to highlight <sostok> and <eostok> tokens for the start and end of
summaries respectively. We clean the dataset by removing null or empty summaries.
Histograms of summary and text lengths are used to analyze the distribution of the length. All
of these steps has been shown in Figure 5,6,7,8.

Figure 5 : Downloaded necessary vocabularies.

Figure 6 :Checked Null values

 4

Figure 7 : Contractions Removal

Figure 8 : Cleaning the text and start and end tokens denoted

Figure 9 : Text visualization Code

After the successful preprocessing of the data, the model training starts further.

 5

6.3 Data Splitting

The data has been splitted into training, validation and testing data as shown in figure 10.

Figure 10 : Data Splitting

6.4 Tokenization

In this code, text and summary data is preprocessed for a text summarization model by
tokenizing words into numerical indices and padding sequences each to have uniform
lengths. The text and the summary are applied for separate tokenization and their vocabulary
sizes are truncated with t_max_features and s_max_features respectively. The maximum
length for text sequences is padded up to 800 and for summary sequences up to 150. The
vocabulary sizes are calculated and the processed data can be used for embedding and
training a model with embedding dimension of 300. This has been shown in figure 11.

Figure 11 : Tokenization for the text

7. Model Implementation

In this session, we will be discussing about 4 models for the abstractive text summarizatiopn
project.

 6

7.1 Study 1 : LSTM without attention layer

The model consists of an encoder LSTM which operates on embedded text sequences, a
decoder LSTM, which produces summaries conditioned on encoder states, and a
softmaxbased dense layer for predicting next words show in figure 12.

Figure 12 : Model Architecture

Our model is compiled as using sparse categorical crossentropy loss and is trained on padded
text and summary sequences, with a validation data, batch size 32 and specified epochs is
shown in figure 13.

Figure 13: Training Configuration

A prediction way is created where we separate encoder and decoder models and encoder
gives hidden states and decoder creates summaries step by step using predicted tokens is
shown in figure 14.

 7

Figure 14 : Inference Setup

Results for precision, recall, and F-measure are recorded in a DataFrame comparing
generated summaries against reference summaries using ROUGE-L metrics in figure 15.

Figure 15 : Evaluation Metrices

 8

7.2 Study 2 : BiLSTM without attention layer

Input text is processed by the encoder (small bidirectional LSTM) forming forward and
backward states, which are concatenated into final hidden and cell states, and then the
decoder LSTM generates summaries using these states and predicting tokens through a time
distributed dense layer with softmax is shown in figure 16.

Figure 16 : Model Architecture

We loaded the code into Colab and compiled the model using sparse categorical crossentropy
loss and optimized it with the rmsprop optimizer, trained it on padded input (x train padded)
and target (y train padded) sequences for a certain number of epochs with a certain batch size
and providing with validation data for evaluation purposes is done in figure 17.

Figure 17 : Training Configuration

Separate encoder and decoder models are constructed for prediction, where the encoder
provides concatenated hidden and cell states, and the decoder generates summaries one token
at a time using predicted tokens is shown in figure 18.

 9

Figure 18 : Inference setup

Results for precision, recall, and F-measure are recorded in a DataFrame comparing
generated summaries against reference summaries using ROUGE-L metrics in figure 19.

Figure 19 : Evaluation Metrices

 10

7.3 Study 3 : LSTM with attention layer and glove embeddings

Make sure that GloVe embeddings were correctly preloaded and that it has the same
embedding dimension as chosen.For this, the snapshot gives the detailed infomation
(embed_dim=300) (figure 20).

Figure 20 : Pre trained embedding

Ensuring the compatibility between encoder and decoder hidden states.This is explained in
figure 21.

 11

Figure 21 : Attention Layer

Also, adjust latent_dim, dropout, and recurrent dropout for resource efficiency is shown
in figure 22.

Figure 22: LSTM Parameters

 12

Results for precision, recall, and F-measure are recorded in a DataFrame comparing
generated summaries against reference summaries using ROUGE-L metrics in figure 23.

Figure 23: Evaluation Metrices

7.4 : Study 4: BiLSTM with attention layer and Glove Embedding

Pre trained GloVe embeddings are also utilized to give semantic rich word representation.
While the decoder produces summaries sequentially with the encoder last output states as
input, it is initialized with the final states of the encoder which consists of a bidirectional
LSTM, which captures the contextual information in both the forward and backward
directions. Context aware generation is facilitated with a custom attention layer that aligns
the decoder's focus with the most relevant bits of the encoder's outputs. Finally, token
probabilities are obtained from model output via a dense layer with the softmax activation. A
system for the abstraction, understanding, and generation of natures of that relationship is
presented, parametrized by a summarization relation, and evaluated with ROUGE-L, a metric
that has proven effective at measuring summarization performance.

The same step will be followed for this model which is shown in figure 20,21 and 22. There
will be slight changes in the model specification, instad of LSTM model, we will be using
BiLSTM model as shown in figure 24.

 13

 14

Figure 24 : Complete model of BiLSTM with attention layer and glove embeddings

8. Results

After the successful completion of implementation code, you could find results getting
displayed. The results are evaluated with the metrics like accuracy, precision, F1 score, and
recall.

 15

	Introduction
	Environment
	System Configuration
	Setting Up The Google Colab Pro Environment
	Connecting to the Google Drive
	Implementation
	6.3 Data Splitting The data has been splitted into training, validation and testing data as shown in figure 10.
	Model Implementation

