

Abstractive Summarization Using Neural
Networks with Attention Mechanisms

MSc Research Project
MSc in Data Analytics

Kruthika Surendrakumar
Student ID: X22241965

School of Computing
National College of Ireland

Supervisor: Abdul Shahid

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Kruthika Surendrakumar

Student ID:	 X22241965

Programme: MSc in Data Analytics	 Year: 2024-2025

Module:	 Research in Computing

Supervisor:	 Abdul Shahid
Submission
Due Date:	 12/12/2024

Project
Title:

Abstractive Summarization Using Neural Networks with Attention
Mechanisms

Word Count:

 8,153 Page Count : 23

I hereby certify that the information contained in this (my submission) is information pertaining to research I
conducted for this project. All information other than my own contribution will be fully referenced and listed in the
relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the
Referencing Standard specified in the report template. To use other author's written or electronic work is illegal
(plagiarism) and may result in disciplinary action.

Signature:	 Kruthika Surendrakumar

Date:	 12/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box
located outside the office.

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Abstractive Summarization Using Neural Networks
with Attention Mechanisms

Kruthika Surendrakumar
X22241965

Abstract

In the present world where a huge quantity of information is available, text
summarization especially news articles text summarization has gained higher
importance. Previous approaches to performing traditional extractive
summarization appear to work well but fails in terms of providing precise and
meaningful summaries. Previous methods and researched tended to suffer from
low performance of generating coherent and informative summaries that would
capture content of news articles. In contrast to the earlier works done in this area
and to overcome the shortcomings, this study presents an improved abstractive
summarization model for news articles using advanced sequence to sequence
model framework. This study explores the methods of news text summarization
with sequence-to-sequence models. Using the CNN/DailyMail dataset that offers
more than 300,000 articles, the following piece of work focuses on the
performance of basic and extended models to create ‘compressed’ and ‘cohesive’
summaries. The study evaluates two baseline models: LSTM and Bidirectional
LSTM both Random Search regimen exclusion, and No-Attention paradigm. It
then generalises this assessment to models with attention and learnt pretrained
GloVe word vectors, namely Sequence to Sequence LSTM with attention and
embedding, and BiLSTM with attention and embedding. The overall objective is
therefore to evaluate the impact of these enhancements to the quality of
summaries via ROUGE scores. It brings out an all round collection of data,
cleaning and preprocessing of text data before proceeding to the final stages of
model building. The performance is highly guarded and measured through the
ROUGE metrics that allow the assessment of the quality of the generated
summaries between the models.

Keywords: News text summarization, Sequence-to-sequence models, 	
BiLSTM ,Attention Mechanism, Glove Embeddings, Abstractive
Summarization.

2

1. Introduction

The process of taking large text and making it smaller retaining the important, useful details
is called summarization.. Automating text summary has been of interest due to the potential
to speed up the traditionally cumbersome task of generating a short summary of natural
language processing (NLP) applications text. A few of those are text categorization, data
retrieval, news summarizing, legal text summarization and headline generation (Gliwa et al.
(2019)). Text summarization techniques are categorized under these two types: Abstractive
and extractive summarization. Extractive summarizing involves picking out key lines or
phrases directly from the original text using a scoring system; while, abstractive
summarization reads through the content and paraphrasing it as hummanized summary
(Zhang et al., (2020)).

The increase in information volume in our news feeds today poses a challenge to us readers
filtering out the critical insights in each news article flooded in our news feeds in a timely
and effective way. In order to meet this demand, businesses and content aggregators have
started looking for automated solutions that can create short, informative summaries. Current
techniques in summarization struggle to retain existing semantic depth of long articles,
limiting the utility of created summaries. These shortcomings have given rise to research that
is focused on augmenting sequence to sequence models by incorporating pretrained
embeddings such as GloVe and additionally augmenting them using attention mechanisms.
The results of these improvements are summarized with ROUGE scores. Specifically, the
study analyzes whether the attention layers in combination with GloVe embeddings yield
improved models for LSTM and BiLSTM models compared to baseline models lacking these
features. The research then discusses the implications of these advanced models by focusing
on a subset of the CNN/DailyMail dataset.

Figure 1: Types of Text Summarisation

3

2. Related Work

This article is the in-depth analysis of techniques used for automatic text summarization using
several Deep Learning models. The review is divided into sub-sections as follows:

2.1. Extractive Summarization.

Text summary is broadly categorized into Two kinds of extractive and abstract approaches. In
text extractive summarization relevant sentences are taken from the text, preserving the
original content, in contrast abstractive summarization produces new sentences reformulating
content from the source, more flexibly and fluently. Whilst being fluent, abstractive
summarization struggles with content selection and coherence. To deal with these challenges,
recent advancements integrate both techniques especially when it comes to summarizing long
documents; Xiao and Carenini (2019) propose the use of a neural model to improve long
document summarization by combining modeling of global and local context, and evaluated
on the PubMed and arXiv dataset. Specifically, local context modeling is shown to be
essential, and in fact even more important than capturing global context.

Liu et al. (2019) investigated the neural extractive models especially focusing on their
architecture and learning strategies. Using methods such as BERT and reinforcement
learning, they improved their performance on CNN/Daily Mail dataset with ROUGE scores
of 42.69, 19.60 and 38.85. In addition, the large scale multi news dataset was introduced and
the HiMAP model was used to tackle multi document summarization (MDS) by Fabbri et al.
(2019). In turn, their hybrid framework combined single‑document summarization (SDS)
with extractive and abstractive methods and resulted in significant improvements. Extractive
summarization was redefined by Zhong et al. (2020), as a similarity problem in semantic
space. Enhanced performance on data sets like CNN/Daily Mail and WikiHow was
demonstrated and further refinements are possible. Gupta et al. (2022) discuss transformer
based models to summarize large text datasets, their differentiability between extractive and
abstractive summarization methods and present them using a few examples. The study
compared models trained on the BBC news dataset and compared their ability to produce
natural and accurate summaries and looked at challenges of scalability and efficiency.
Together, these studies emphasize the centrality of looking at text summarization as a
combination of techniques (algorithmic and neural), architectures, and datasets to push the
state of the art.

2.2 Abstract Summarization

Unlike extractive, which selects their own passages in the original text, abstractive
summarization creates new sentences to represent what the text says. Currently, recent
advancements concentrates in improving the content selection, coherence, and fluency. While

4

a Bottom Up attention mechanism was proposed by Gehrmann et al. (2018) to integrate a
content selector to highlight key phrases. This method enhances efficiency, retraining ease,
and performance yielding ROUGE-1, ROUGE-2, and ROUGE-L scores of 47.38, 31.23 and
41.81 on CNN-DM and NYT datasets.

For dialogue summarisation, Gliwa et al. (2019) introduced the SAMSum Corpus, a
manually annotated dataset. The results indicate that summarizing dialogues are more
challenging than doing so with news and show lower ROUGE scores on dialog tasks. All in
all, this work highlights the necessity for creative models and evaluation metrics specifically
designed for conversation data. Gupta & Gupta (2019) provide a survey of abstractive
summarisation, tackling the generation of fluent summaries and evaluation. Exploring future
directions, they gave a categorization comparing techniques, tools, and evaluation methods,
and stressed the complexity of the task by the sheer inherent properties of language. Pegasus,
a transformer based pre training method for abstractive summarisation, was first introduced
by Zhang et al. (2020). It cuts out or muzzles the main sentences, then rebuild these sentences
as continuos sequences. PEGASUS excels in 12 summarisation genres and sets the new state
of the art on six benchmarks while also working well in low resource scenarios. Among
seq2seq based neural abstractive models, Shi et al. (2021) classified the models based on
saliency, fluency and readability. Techniques were categorized into network topology,
parameter estimation, and decoding improvements. The authors benchmarked them on
datasets like Newsroom and Bytecup and find that both models perform significantly better
than an extractive model baseline and achieve strong ROUGE scores, demonstrating the
model's applicability to different types of datasets. Together, these studies contribute towards
abstractive summarisation by improving content selection, using pre-training objectives, and
handling problems specific to summarising dialogue.

Study Proposed
Approachh

Challenges
Faced

Results Key Metrices

Xiao and
Carenini, (2019)

Combined global
and local context
for long
document
summarization.

Benefits
primarily from
local context
modeling.

Outperformed
previous work on
Pubmed and
arXiv.

ROUGE-1,
ROUGE-2,
METEOR
(specific scores
not provided)

Liu et al., (2019) Analyzed
different model
architectures,
transferable
knowledge, and
learning schemas
for extractive
summarization.

Need to
understand why
neural models
perform well and
how to improve
them.

Improved state-
ofthe-art on
CNN/DailyMail
by a large
margin.

ROUGE-1:
42.69,
ROUGE-2:
19.60, ROUGE-
L: 38.85

5

Fabbri et al.,
(2019)

Introduced
MultiNews
dataset and a
combined
extractiveabstract
ive
summarization
model.

Limited datasets
for
multidocument
summarization.

Achieved
competitive
results on Multi-
News dataset.

ROUGE-1:
43.47,
ROUGE-2:
14.89, ROUGE-
SU: 17.41

Zhang et al.,
(2020)

Proposed
pretraining
Transformers
with a new
selfsupervised
objective;
masked
important
sentences to
generate
summaries.

Need for
effective
pretraining
objectives and
systematic
evaluation.

Achieved state-
ofthe-art on 12
summarization
tasks; performed
well in
lowresource
settings.

ROUGE scores
(specific scores
not provided)

Shi et al., (2021) Reviewed
various seq2seq
models for
abstractive
summarization
and evaluated
different neural
network
components.

Challenges in
network
structure,
parameter
inference, and
decoding
efficiency.

Benchmarked
models on CNN/
Daily Mail,
Newsroom, and
Bytecup datasets.

ROUGE-1,
ROUGE-2,
ROUGE-L
(specific scores
not provided)

Gliwa et al.,
(2019)

Introduced
SAMSum
Corpus for
abstractive
dialogue
summarization;
compared
performance with
news corpora.

Dialogue
summarization
challenges and
non-standard
quality measures

Model-generated
dialogue
summaries
achieved high
ROUGE scores
but lower human
judgment
compared to
news.

ROUGE-1: 0.32,
ROUGE-2: 0.30,
ROUGE-L: 0.32
(correlation with
human
judgment)

Xiao and
Carenini, (2019)

Combined global
and local context
for long
document
summarization.

Benefits
primarily from
local context
modeling.

Outperformed
previous work on
Pubmed and
arXiv.

ROUGE-1,
ROUGE-2,
METEOR
(specific scores
not provided)

Gupta and
Gupta, (2019)

Reviewed recent
papers on
abstractive
summarization;
categorized
methods and
discussed
challenges.

Complexities of
natural language
text; varying
methods and
tools.

Provided a
thorough
understanding of
the field, listed
methods, tools,
and evaluation
techniques.

No specific
metrics provided

6

2.3 Pretrained Embeddings: GloVe in Seq2Seq Models

GloVe (GloVal Vectors for Word Representation) word vectors offer high dimensional,
semantically rich representations and improve Seq2Seq models for the problem of text
summarization. The pretrained embeddings are obtained from co occurrence statistics in large
scale corpora, and outperform simpler representations, capturing structural word semantics.
Other approaches using GloVe to refine the meaning of input data as well as enrich
summaries semantically are described. DeepSumm (Joshi et al. (2023)) mounted topic
models and word embeddings for single document summarization. RNNs with probabilistic
topic distribution and an attention mechanism are used in DeepSumm to rank sentences on
based of novelty, content, and position. It is tested on DUC 2002 and CNN/DailyMail
datasets and reports ROUGE-1, ROUGE-2 and ROUGE-L scores of 53.2, 28.7 and 49,
surpassing other existing approaches. The decoder qualitéé, to improve the performance of
extractive summarization over the baseline, Solanki et al. 2024 applied a GloVe embedding
with an LSTM based encoder-decoder model. To model the ontological relationships,
embeddings were used which enhanced textual context understanding. The model was
evaluated on the Kaggle news dataset and achieved BLEU score of 59.4% and cosine
similarity of 50.2%, which is substantial increase in model quality. First, these works show
that incorporating features from GloVe embeddings can help improve both extractive as well
as abstractive summarization by obtaining better semantic and contextual representation.

2.4 Attention Mechanisms in Seq2Seq Models

It was found that attention mechanisms in Seq2Seq models are essential for improving
abstractive text summarization. In Kumar and Solanki (2023), the authors proposed a
Transformer based model with a self-attention mechanism, denoted T2SAM. T2SAM
outperformed baseline models by addressing coreference identification as well as improving
textual cohesion. It was trained on multiple datasets and decreased training loss from 30.58 to
1.82 in 30 epochs, achieving 48.5% F1-Score accuracy indicating substantial improvements
in summary quality and coherence. A Seq2Seq model with attention architecture has been

Xiao and
Carenini, (2019)

Combined global
and local context
for long
document
summarization.

Benefits
primarily from
local context
modeling.

Outperformed
previous work on
Pubmed and
arXiv.

ROUGE-1,
ROUGE-2,
METEOR
(specific scores
not provided)

Gupta et al.,
(2022)

Compared
transformer-
based pre-trained
models with
various
selfsupervised
objectives.

Lack of tailored
pre-training
objectives for
abstractive
summarization;
limited
systematic
evaluation

Achieved state-
ofthe-art
performance on
12 downstream
datasets; excelled
in low-resource
settings.

ROUGE scores
(specific scores
not provided)

7

developed by Sultana et al. (2022), for Bengali news summarization by applying
Bidirectional RNN and LSTM. Further, with preprocessing and word embedding on a dataset
of 30 Bengali newspapers, model parameters such as training loss reduced to 0.001 and
accuracy improved from 44.48% to 56.19%. This work successfully addressed the problems
of Bengali language summarization, producing summaries that are more succinct and better
than baseline models. Pan et al. (2019) understood how implicit and contextual informations
are handled in text summarization. In order to incorporate scene and topic context into
Seq2Seq models, they introduced an external attention mechanism using Latent Dirichlet
Allocation (LDA) based word topic distribution. This approach is tested on CNN and Daily
Mail datasets and outperforms baselines as a strongly robust approach to uncover hidden
context and advance sentence summarization. In addition to these, the versatility of attention
mechanisms to improve contextual understanding and ensure that the summary is accurate
was shown.

3. Research Methodology

In this section of the report we will explore the approach taken for conducting the study that is
being presented.

3.1 Dataset Description
 Among the most popular datasets for text summarizing model training and testing in
particular for extractive and abstractive summarization tasks are CNN/DailyMail. Over 300K
news items are included from CNN and the Daily Mail, plus brief, human written summary
highlights that serve as synopses of the articles. These features make the dataset very useful
for training algorithms that generate summaries. The dataset, initially used for abstractive
question answering and machine reading comprehension, is challenging because it requires
summarization and contextual information.

The story's content, associated highlights and a unique integer id (SHA1 hash of the story's
url) are in every dataset item.Although widely used, the database possesses problems such as
the incorrect factual correctness, coherence, and fluency; and suited adjectives in the
summaries.an 300,000 news items from CNN and the Daily Mail are included, along with
succinct, human-written highlights that act as synopses of the pieces. Because of these
features, the dataset is very useful for training algorithms that create summaries. The dataset,
which was initially created for abstractive question answering and machine reading
comprehension, is difficult since it calls for both summarization and contextual information.

Every dataset item contains the story's content, associated highlights, and a unique identifier
(SHA1 hash of the story's URL). Despite its extensive use, the dataset presents difficulties
by including problems with factual correctness, coherence, fluency and the suitability of the

8

summaries adjectives. When preparing the data to train the model, besides cleaning the text,
reducing interference and creating token and word embedding matrices of them are required.
The word vectors used within GloVe, and the other pretrained word embeddings, leverages
word vectors to add to the semantic depth of the summaries. The CNN/DailyMail dataset,
when used alongside the more complex methods such as attention mechanisms and deep
learning models, provides a wealth of help for developing text summarization algorithms at
large.

3.2 Data Preparation and Setup

The environment and data preparation is done before model implementation. During model
training and evaluation the TensorFlow logging API is used to control what is output so that
only the proper information is displayed. To accomplish this, we use a command: logger =
tf.get_logger() to create a special logger that is directed to take care of TensorFlow activities.
K.clear_session() is called to clear the session if there are conflicts from previous models or
layers to prevent memory leaks so that it’s safe to reset the model for another
comparison.Also, irrelevant warning messages are filtered out with Python’s
warnings.filterwarnings('ignore') command so things important can be focused on or the data
outputs. A couple of text preprocessing techniques are applied in the preprocessing stage:
stopwords removal (using the Natural Language Toolkit (NLTK)). Commonly, noise in data
is reduced by removing stopwords such as "and," "the," or "is." It is then made sure the
stopword list is updated using nltk.download('stopwords') so that the dataset can be cleaned
before processing further. Those are the steps which help to design a clean and productive
framework, which tests and trains the text summarization models in the best way.

3.3 Importing Libraries

Libraries that can handle streaming data, model and model evaluation, have been imported to
text summarization. Most basic operations on files use OS and re for regular expressions;
reading and writing CSV use csv. It provides the tools for natural language processing:
nltk.tokenize.word_tokenize,—for tokens, nltk.tag.pos_tag,—for parts of speech,
nltk.WordNetLemmatizer,—for lemmatization and nltk.corpus.stopwords,—for stopwords
removal. Models built using layers such as LSTM, Bidirectional, Embedding, and Dense are
all built for deep learning using Keras and TensorFlow. Plots of the data distributions and of
the model performance metrics are done using Matplotlib and Seaborn visualization tools.
The frequent words are visualized using WordCloud from the wordcloud package and NLTKs
STOPWORDS. Pickle and load_model from TensorFlow makes saving and loading models
for model persistence easy. Moreover, text tokenization and padding are handled by
TensorFlow’s tokenize, and pad_sequences, respectively. Early Stopping along with
ReduceLROnPlateau techniques prevent overfitting reduce the learning rate. To evaluate

9

model, rouge_scorer from rouge_score package has been used and train_test_split has been
used for performance analysis from sklearn.model_selection. It offers comprehensive set of
libraries for effective training of the model and the evaluation of model.

3.4 Data Loading and Initial Processing

The first process of preprocessing data for the task of abstractive text summarization on the
CNN/DailyMail dataset is data loading using the pandas library. The dataset is read from
CSV file placed at train. csv data by using the function pd. read_csv(csv file,
numberOfRowsInSection: 11000 for efficiency’s sake. Evaluating the models and training the
models with minimal burden to computational resources can be done with subsets of this.
Since the only content data that matter to us is the textual content, we can simply drop all
unnecessary columns during the data processing. For example id column containing SHA1
hash of the articles’ URL doesn’t help us in delimiting the given articles for summarization
and can be removed 21 using the drop() function with axis=”columns” just like below. The
resulting DataFrame consists of two critical columns: Two distinct signs of the new cultural
identity are noted and emphasized in detail. The high point of this project is the 27 summaries
written by the authors of the original articles and the full text of the news articles that are
embedded with the CA News. Input text and desired output text are the summarization
models that train on these columns. Because data loading and preprocessing was carried out
in such a structured manner, every data set should be in the right format in order for it to pass
through the text cleaning processes, tokenization and the data be ready for training of the
models. Therefore filtering from the pointless columns makes a path to profound and sharp
division of authentic profitable information for recognizing just as scale summary so it
increases the chances of the model.

3.5 Text Cleaning

Preparation of data for abstractive text summarization requires a very crucial step of text
cleaning. class Util: The Python function clean_text() allows to perform effective text
preprocessing using NLTK and regex. First of all, it converts the input text to lowercase so as
to normalize differently capitalized text. Then, the text is tokenized and contractions are
expanded with a pre defined dictionary. But regex functions can be used to remove unwanted
elements such as URLs, HTML tags, punctuation and special symbols. That means that
among other things, it strips away the non-impactful characters to make a cleaner version of
the text. The function also deals with apostrophes and other punctuation marks which could
break up words, replacing them by a space. If remove_stopwords True, remove stopwords
(example; articles, conjunctions), an optional step for the model to concentrate on more
relevant content. These are stored in separate lists: clean_texts and clean_summaries. This
guarantees that the articles and its highlights both underwent preprocessing to be used in later

10

tokenization and model training. This process greatly cleanses the data the good results of
text summarization models.

3.6 Data Preparation for Model Training

As the first step, texts need to be cleaned and then formated to fit text summarization models.
A new DataFrame called dataframe1 is created with the cleaned articles under the 'text' column
and their corresponding summaries under the 'summary' column. NaN values denote
incomplete summaries, which are replaced with the mean value (representative to all articles)
before using the dropna() function in order to remove any null values from the dataset, leaving
every article with a valid summary. Special tokens (e.g. <start> and <end>) are added to each
summary to preserve the structure of summaries for sequence to sequence models. By
including these tokens, the model is able to figure out the start and end of each of the
summaries, which is central for creating accurate text. This is done using the apply function
with a little modification on each entry in the "summary" column. After cleaning, the
DataFrame contains 11,000 rows of an article along with its summary with start and end
tokens. Finally structured data pipelined to tokenization and model training that can be given
as the well defined input for text summarization models. To be able to generate coherent and
accurate summaries the data needs to be carefully prepared.

3.7 Data Visualization

Figure 2 is the histogram of text lengths in the dataset, where horizontal axis is the number of
characters in each text from 0 to 14,000, and the vertical axis is the frequency of texts in each
character range.e. The distribution is positively skewed and peaks at around 2,000—a couple
2,500 characters—meaning that lots of the texts in the dataset are that long or longer. For
shorter texts the frequency rises very steeply, and then decreases slowly for longer texts,
implying that texts below 1000 characters and beyond 6000 characters are quite rare.

The majority (97%) of the texts are between 1000–4000 characters; the shortest 3% of texts
fall within this range. A very small number of longer texts is responsible for the rightward
extension of the curve — as text length increases, the frequency of these texts decreases. This
histogram provides useful info about the text size is in the dataset which is very helpful for
things like natural language treatment and substance examination since the size of the content
can affect the execution of the model and the strategies utilized for handling it.

11

 Figure 2: Histogram of Distribution of Text Lengths

As shown in Figure 3, the summary length histogram of the dataset is in the form of a
histogram of the summary lengths (0–1000 characters) on the x axis and the frequency of the
summary lengths at each certain length on the y axis. Moreover this distribution is positively
skewed and there is a sharp peak around 250-300 characters which implies that most of the
summaries in dataset are of this length or near this length. A second peak is visible around
350-400 characters, which again shows a commonly held summary length. Only 4% of
summaries get longer than 600 characters, we are seeing pretty rare summaries longer than
500 characters. About this distribution, it concentrates on shorter summaries, outlining the
usual length and verbosity of summaries that can be used for checking whether an automated
summarization model is sufficiently efficient and describes it well.

Figure 3 : Histogram of Distribution of summary lengths

4. Design Specification

The last stage of data processing converts the data to the form friendly to deep learning
models, in particular, the tokenization, one hot encoding, padding the sequences and
preparing pre trained vector matrix of the tokenized data. First approach: Initially, the articles
text is tokenized using Keras's Tokenizer class which maps each word with a distinct integer

12

index according to their count in the dataset. This data is set up for on hot encoding, setting
up the data to a MAXIMUM of 110,788 unique tokens. This converts the tokenized words to
numerical sequences of integers, and then 1-hot encoded vectors so the data is ready to be
given to a model. Secondly, padding is applied to make the sequences of same lengths,
critical to a deep learning model taking batches. Keras pad_sequences function pads
sequences shorter than 800 tokens by zeros at the end. And this means training, validation
and testing data sets stay consistent. The training data has 110,788 unique tokens, the number
of which increases to 246,031 after padding.

The summary data faces a smaller vocabulary size of 36,688 tokens as the summaries are
shorter and less diverse; thus, a similar tokenization and encoding process is used. Summaries
are padded to a constant length of 150 tokens. A semantic similarity between words is
captured by setting embedding dimensions equal to 300, so that they match the pre trained
GloVe embeddings. Subsequently, tokenization, one hot encoding, and padding is done on the
entire dataset (training, validation and testing) to make the data ready to be used in building
and training sequence to sequence models with attention mechanism, necessary for
abstractive text summarization.

Figure 4: Architecture of proposed workflow

5. Results And Discussion
This section of the report discusses the implementation of the models and presents the results
obtained for the experiments conducted. The implementation of the system is done using the
Python development language using Google Colab. Google Colab is used for its access to the
powerful CUDA GPUs. The dataset used in the study is first uploaded on the Google Drive.
The dataset then can be accessed by mounting the Google Drive in the Colab environment. We
have subscribed to Google Colab pro account and used High Ram A100 as our hardware
accelerator to execute our model faster. Keras is the primary library used for the
implementation of the deep learning models.

13

5.1 Case Study 1:
Sequence-to-Sequence LSTM model: It is an encoder and a decoder, Sequence to Sequence

LSTM without embedding model, with the aim of performing abstractive text summarization.

The model consists of two main components: The most familiar of the two models were the

encoder and decoder.

Encoder: The encoder begins with an input layer that takes as input sequences of text with a

length less than 800 tokens at most. The embedding layer, which is non trainable, assigns a 300-

dimensional vector to each token, using a matrix of pre trained embeddings. This layer into

convert the input sequences into dense vectors. The input to the embedding layer is passed

through LSTM layer with the latency of 128. This LSTM layer takes the sequences and gives

both the sequence of outputs and the last hidden and cell states which are very important when

initializing the decoder.

Decoder: The decoder is built to include an input layer that can take as input sequences of

tokens of any length to help start decoding. As in case of the encoder the decoder also consists

of an embedding layer which is pre trained to embed tokens to dense vectors. Then these are fed

into LSTM layer that has latent dimension 128 and returns sequences of outputs and updated

hidden and cell states. This LSTM layer uses Dropout and a recurrent Dropout to help reduce

the overfitting problem. Then output of the decoder LSTM passes through TimeDistributed

Dense layer that does the dense transformation on each time step to get the probability

distribution of vocabulary for each token. In cases of a single framework, encoder and decoder

are incorporated into the whole structure developed using the Keras Model API.

Model summary: 49,200,348 parameters total, of that number 5,107,548 parameters are

trainable and 44,092,800 parameters are not trainable. Basically nt parameters are the pre

trained embeddings used used in case of training encoder and decoder. The proposed approach

is sequence to sequence learning for summarization and use LSTMs to capture temporal

information from the input text.

Table 5 : LSTM without embedding

Metric Training Validation

Loss 5.6213 2.7141

Accuracy 0.6850 0.6818

14

5.1.1 Model Training and Model Inference

For abstractive text summarization, the Sequence to Sequence LSTM model without embedding
was used for implementing the model. A sparse categorical cross entropy at a loss with an
RMSprop optimizer and accuracy as the metric as trained. For execution of this training, 30
finite epochs were used and a batch size of 32, with training and validation datasets used to
measure the performance. x_train_padded and y_train_padded had a preceding token, shifted
from the summaries, to enable learning. From the previous strings of words the model learned
to generate the next word in a sequence and synthesized summaries from encodings of the input
strings. A different model enc_model has also been developed for the inference, for getting
encoder hidden and cell state required to initialize decoder.

For sequence generation, the states were designed to be utilized by the decoder model
(dec_model). First, it was incorporated with start token and then it predicted the next tokens
sequentially until either it predicted the encoding of stop token or prediction of the maximum
number of tokens was reached. Test article summaries were produced over this process. The
original summaries in the collection were then matched with the auto generated summaries. The
full articles, the summary produced by the tool on each article, and the summary generated by
the present model were then written to a CSV file for further analysis with the outcome.

Table 6 : Rough Score

Sample Inputs Precision Recall F-Measure

0 0.090909 0.075472 0.082474

1 0.136364 0.093750 0.111111

2 0.045455 0.058824 0.051282

3 0.045455 0.046512 0.045977

4 0.000000 0.000000 0.000000

5 0.113636 0.096154 0.104167

6 0.113636 0.128205 0.120482

7 0.022727 0.020833 0.021739

8 0.045455 0.044444 0.044944

9 0.159091 0.088608 0.113821

15

5.2 Case Study 2: Sequence-to-Sequence BiLSTM model

There is a strong and reliable Basic Bidirectional Long Short Term Memory (BiLSTM)
Encoder-Decoder model that is appropriate for sequence to sequence problems and works with
no pre-trained embedding. The encoder starts with taking an input layer where sequences of
length max_text_len are taken from the following: These sequences are fed into an embedding
layer which has each word embedded into a vector of size ‘embed_dim’ and this layer is also
trainable. Subsequently, there is a BiLSTM layer having the capacity to process the received
word embeddings in the forward and backward mode, so that it gives out the outputs as well as
states. Bidirectional processing enhances the identification of context from the left and right of
the sequence to the model. Just like the case of BiLSTM; the output is summarized to form
enc_h and the decoder_h which serve as the first state for the decoder. Decoder also has the
word embedding layer which maps the tokens in input to the high dimensional vector, which is
also optimized with rest of the parameters.

In the next step, a conventional LSTM layer processes these embedding, while using ‘fused’
hidden and cell states of the encoder as ‘self’ initial states. This LSTM layer generates
sequences of the output vectors which are then passed through a TimeDistributed Dense layer
with softmax activation function for making the next word of sequence prediction at each time
step. The model is compiled to accept sparse categorical cross entropy loss with rmsprop
optimizer to explain the ability of the model in predicting a sequence. This model includes
54,402,780 total parameters – all of which are trainable – and affords you end-to-end learning
from your training data, making it suitable for tasks where you’ll need to capture subtleties of
contextual information and apply sequential processing.

Table 7: BiLSTM without embedding

5.2.1 Model Training and Model Inference

A Sequence to sequence Bidirectional LSTM without embedding was developed and trained
using sparse categorical cross entropy as the loss function, RMSprop optimizer and sought for
accuracy. In this case the model was fit on the paddle sequences 36 x_train_padded and
y_train_padded where y_train has its last token removed and reshaped to input and output
format. The training step was as follows: Training was carried out using 30 epochs with a batch
size of 32 while validation was performed using the same epoch of the validation data.

Metric Training Validation

Loss 4.3357 2.6389

Accuracy 0.7002 0.6946

16

The encoder was configured to be used with model inference to generate hidden states (enc_h)
and cell states (enc_c). The predictions are obtained by the decoder, which was initiated by the
encoder’s states. generate_summary was the fluid EH AR sequence generation function which
initially forecasted the initial states from the encoder and thereafter purely forecasted the tokens
using current token and current states in a loop. Generation loop continued till an EOS token
were generated or till the limit of maximum number of tokens were generated.

Table 8: Rough Score

5.3 Case Study 3: Sequence-to-Sequence LSTM model with
attention and embedding

With pre-trained word vectors of GloVe embeddings, the improved Sequence-to-Sequence
LSTM with attention performs the best. First, word embeddings are pre trained and are
imported and stored in vectors t_embed and s_embed that are the source and target vocabulary.
Then, the Embedding layers for the encoder and decoder are used by these embeddings as
shown in Fig 3. Here an LSTM layer is used with L2 regularisation of 0.001 and output size of
128 latent dimensions per time step which will give sequences of hidden states and cell states to
encode in input sequences. In the other hand, the encoder is an LSTM layer with similar
dimensions as the one in the decoder that emits outputs from the salutatory states from the
encoder. A specific class, 37 AttentionLayer, is needed to implement the attention techniques,
computing a matching between the encoder’s outputs and decoder’s states, and obtaining
context vectors that point to useful portions of the input sequence. The attention mechanism of
this model pays attention to a large part of the inputs when generating every word of the
sequence of the output words.

Sample Inputs Precision Recall F-Measure

0 0.074074 0.075472 0.074766

1 0.166667 0.140625 0.152542

2 0.055556 0.088235 0.068182

3 0.055556 0.069767 0.061856

4 0.018519 0.016949 0.017699

5 0.092593 0.096154 0.094340

6 0.092593 0.128205 0.107527

7 0.018519 0.020833 0.019608

8 0.055556 0.066667 0.060606

9 0.148148 0.101266 0.120301

17

The output of this decoder and this attention layer is passed to the next layer, which is
TimeDistributed dense layer with ReLU activation at each step of the decoding sequence (as the
decoder is giving us one output at each step) then we have softmax activation function which
gives another output, a probability for each word in the dictionary at each step during decoding.
The model has in total 53,865,308 parameters spread over input embedding layer that has
70,000 parameters and 53,795,308 parameters in the output MLP layers; with 9,772,508 of
these trainable, and the rest froze and pre-trained indices assumed embeddings that won’t be
learnt during the training. The model plot file presents the visualisation of this architecture by
showing the layers and how they are connected and the shapes of the layers. Integrating
attention enables the model to make use of long range dependencies, be more focused at
specific parts of input sequences, and might help improve sequence generation in these
downstream applications of, for example, text summery or translation.

Table 9: LSTM with attention and embedding

5.3.1 Model Training and Model Inference

Seq2Seq includes some attention and pre trained embedding and trained by loss of
sparse_categorical_crossentropy with optimizer of rmsprop, with main criterion of accuracy.
Training the model works well with the fact that the input sequences are padded and the targets
are reshaped (reshaped) correctly to the output dimensions. After this a model can be trained for
several iterations with epochs to equal 5 and batch size to equal to 32 after which the model is
evaluated on the validation data. The hidden states and contextvector, produced from the input
sequence, are computed in the encoder model for infererence. It takes the states from the
encoder it is initialized with, and generates output sequences. An attention layer is used to
calculate context vectors to guide the decoding process according to information from the input
sequence and to concatenate these vectors to the decoder outputs. Finally these concatenated
vectors are used to make the last layer dense layer that becomes our final output. To acquire the
summaries, the model keeps spitting out the next token until hits the eos token or whatever the
chosen max 38 length. By computing summary it stores for the later comparison with the
original so test inputs can be evaluated.

Metric Training Validation
Loss 4.6510 2.6754

Accuracy 0.6859 0.6820

18

Table 10: Rough Score

5.4 Case Study 4: Sequence-to-Sequence BiLSTM model with
attention and embedding

For this work, Bidirectional LSTM, attention mechanism, and the GloVe pretrained embeddings
were adopted to handle some complicated text summarization tasks in a Seq2Seq model. The
model uses word embedding from GloVe which uses only word that has 300 dimensional
vectors. First these embeddings are read from a file, they are converted to a dictionary and used
to initialize matrices that are used for embedding the encoder and the decoder. In particular,
t_embed and s_embed are matrices obtained from GloVe embeddings of respective source and
target vocabulary, which in this case refers to word embeddings of the considered layers of the
model that are pre trained on syntactic aspects. In particular, the encoder consists of an input
layer and an embedding layer which is initialized with t_embed. A Bidirectional LSTM Layer is
used which is contextual layer, it does take forward as well as backward information of the
sequences. The two hidden states from either direction are stacked into one vector of context,
enc_h and enc_c (from encoder). The same model is used to insert input into the decoder and it
is then fed to LSTM layer with dropout to prevent overfitting. The attention mechanism,
realised through a user-defined AttentionLayer, calculates attention scores: to produce the
product of the prior, from the encoder, and the current from the decoder. It’s done with trainable
weight matrices that compute alignment scores and hence context vectors. Decoder’s LSTM
outputs are connected to the context 39 vectors, and the resulted vectors are final inputs for the
dense layer.

Sample Inputs Precision Recall F-Measure

0 0.049505 0.094340 0.064935

1 0.069307 0.109375 0.084848

2 0.029703 0.088235 0.044444

3 0.019802 0.046512 0.027778

4 0.029703 0.050847 0.037500

5 0.049505 0.096154 0.065359

6 0.049505 0.128205 0.071429

7 0.009901 0.020833 0.013423

8 0.029703 0.066667 0.041096

9 0.089109 0.113924 0.100000

19

In the end, before returning the sequence of the final hidden state to really predict some more
on the vocabulary, we have the final layer of our model which is a TimeDistributed Dense layer.
However, the learning and the generation of the summaries is proper with the mechanism of
attention and the GloVe embeddings; the model parameters; total parameters 63,798,236
(include trainable parameters 30,561,836).

Figure 11: Sequence-to-Sequence BILSTM model with attention and Embedding

Table 12: BiLSTM with attention and embedding

5.4.1 Model Training and Model Inference

This is the complete model used to train; the Sequence to Sequence BiLSTM model with
attention and embedding, Adam optimizer and sparse categorical cross entropy was used to
train the model. Sequence prediction was used in training the model and inputs and outputs,
embedding dimension set at 300 and GloVe pre trained word vectors were applied. These will

Metric Training Validation
Loss 3.7042 2.6380

Accuracy 0.8277 0.7029

20

output our encoder sequences and hidden states in our encoder model which we used BiLSTM
layers; while our decoder was the LSTM using attentions in 40 (hopefully this will increase
context relevancy). Encoder and decoder models were trained with a batch size of 32 up to a
fixed number of epochs and the encoder model that had been trained had subsequently been
saved for inference. In case of model inference, the generate_summary function is used where
the input sequences are encoded which results in the fixed length vector, and decoder then
generates the summary. The decoder keeps predicting tokens in sequence from startof-sequence
token till end-of-sequence token is reached or maximum tokens is achieved.

Table 13: Rough Score

And then, by appling pre-trained GloVe embeddings with 300 dimensions in each of the words
in the input sequence that are dense (i.e semantic meaningful) representations for the words.
The alignment score, which is computed by the attention layer between the encoder and the
decoder states enhances the model to give different weights to different parts of the input
sequence and thus can summarize a text more accurately. By introducing attention, embedding
and improvement to the model, the Sequence-to-Sequence BiLSTM model has demonstrated
some practical benefits in summary creations due to the model's advanced structure able to find
more detailed information and produces the smooth text that makes sense given the context.

Sample Inputs Precision Recall F-Measure

0 0.1875 0.056604 0.086957

1 0.2500 0.062500 0.100000

2 0.1875 0.088235 0.120000

3 0.1875 0.069767 0.101695

4 0.0625 0.016949 0.026667

5 0.2500 0.076923 0.117647

6 0.2500 0.102564 0.145455

7 0.1250 0.041667 0.062500

8 0.1875 0.066667 0.098361

9 0.3750 0.075949 0.126316

21

Figure 14: Comparison of Article Summaries - Original vs. Model Output

6. Conclusion and Future Work

This paper provides a novel robust approach based on the sequence-to-sequence models
combining the BiLSTM with attending mechanisms and the Glove embeddings to generate
abstractive news summarization in this study. In addition, our strategy tries to minimize the
shortcomings pointed out in earlier work, such as varying quality summaries and inability to
handle contextual information issues. These bidirectional LSTM units and attention processes
accurately learn the relationship between words and phrases and therefore supply a richer
contextual summary. The second benefit of the selected model is based on using the
pretrained Glove embeddings to expand the semantic dimension of the incoming data.

Finally, the results of the evaluation that have been computed using ROUGE analyses show
that the proposed Fuzzy-Based text summarization method is both more precise, more recall
and less erroneous than traditional text summarization methods. This confirms that this
proposed method of embedding BiLSTM, attention mechanism and pretrained embeddings
together produce better quality summaries, which are closer to the source content. These are
our major conclusions and contributions: The studies showed that the potential of improving
text summarization task can be achieved by enhancing development of the more and more
sophisticated neural network structures. The findings also reflect how using advanced
approaches and effective resources for model improvement favorably boosts the results, and
thus becomes a guideline for future research in this field.

 6.1 Future Works

There are several roads in terms of future research and implementation of text summarization
models especially for the news articles. Further studies could be conducted on the continued
improvement of model performance such as by extending the scope of the application of the
suggested model or solving the remaining problems. To begin with the new, more
sophisticated word embeddings customizing text context might help to makes the quality of
the summary better. Better semantic properties of transformer-based embeddings (eg: BERT,
GPT) enable more research to be done with recent advances in transformer based
embeddings.

Furthermore, it may be interesting to see 44 how these embeddings can be made as potential
additions or replacements for existing 36 systems and frameworks, and whether hybrid
systems (adding these embeddings to the existing methods as a whole) may be more fine
grained and/or more coherent in other situations. The second direction of future research
deals with the improvement of applied attention structures of the summary generation

22

problem models. The current experiment uses basic attention procedures, however, using
more complex forms of attention like multihead or selfattention may help the model try
focussing to different parts of the text at one time, which can yield better quality of
summaries. It has also been expanded to include further data in further news sources and
further domains, which would contribute to the creation of more general models. At present,
the dataset that the work is based on is one ; however, it will be meaningful to include data
from other news sources and genres for the model to apply well to the other contexts and
topics.

Additionally, as the model is fine tuned to carry out shorter summarization tasks similar to the
summarization of the news article where the focus topic or summarizing of key events is
stated, the model becomes finer to the user's needs. Further directions include creating real
time summarization options, utilizing incremental learning more, and producing convenient
interfaces for live summarizing. Lastly, the models will be compared to other higher
standards, and participation of real users in the feedback for improving upon the model will
help and ensure that the summarization tool would remain effective, even if we see shifting in
the information landscape.

References

Zhong, M., Liu, P., Chen, Y., Wang, D., Qiu, X. & Huang, X. (2020) ‘Extractive summarization
as text matching’, arXiv preprint arXiv:2004.08795.

Xiao, W. & Carenini, G. (2019) ‘Extractive summarization of long documents by combining
global and local context’, arXiv preprint arXiv:1909.08089.

Gupta, A., Chugh, D., Anjum, & Katarya, R. (2022) ‘Automated news summarization using
transformers’, in Sustainable Advanced Computing: Select Proceedings of ICSAC 2021.
Singapore: Springer Singapore, pp. 249–259.

Zhong, M., Liu, P., Wang, D., Qiu, X. & Huang, X. (2019) ‘Searching for effective neural
extractive summarization: What works and what's next’, arXiv preprint arXiv:1907.03491.

Fabbri, A.R., Li, I., She, T., Li, S. & Radev, D.R. (2019) ‘Multi-news: A large-scale multi-
document summarization dataset and abstractive hierarchical model’, arXiv preprint
arXiv:1906.01749.

Shi, T., Keneshloo, Y., Ramakrishnan, N. & Reddy, C.K. (2021) ‘Neural abstractive text
summarization with sequence-to-sequence models’, ACM Transactions on Data Science, 2(1),
pp. 1–37.

Gliwa, B., Mochol, I., Biesek, M. & Wawer, A. (2019) ‘SAMSum corpus: A human-annotated
dialogue dataset for abstractive summarization’, arXiv preprint arXiv:1911.12237.

Gupta, S. & Gupta, S.K. (2019) ‘Abstractive summarization: An overview of the state of the
art’, Expert Systems with Applications, 121, pp. 49–65.

23

Zhang, J., Zhao, Y., Saleh, M. & Liu, P. (2020) ‘Pegasus: Pre-training with extracted gap-
sentences for abstractive summarization’, in International Conference on Machine Learning.
PMLR, pp. 11328–11339.

Gehrmann, S., Deng, Y. & Rush, A.M. (2018) ‘Bottom-up abstractive summarization’, arXiv
preprint arXiv:1808.10792.

Joshi, A., Fidalgo, E., Alegre, E. & Fernández-Robles, L. (2023) ‘DeepSumm: Exploiting topic
models and sequence-to-sequence networks for extractive text summarization’, Expert Systems
with Applications, 211, p. 118442.

Solanki, S., Jain, S. & Bandhu, K.C. (2024) ‘Fusion of word embedding and encoder-decoder
model for text summarization’, in 2024 IEEE 13th International Conference on Communication
Systems and Network Technologies (CSNT). IEEE, pp. 1146–1150.

Kumar, S. & Solanki, A. (2023) ‘An abstractive text summarization technique using
transformer model with self-attention mechanism’, Neural Computing and Applications,
35(25), pp. 18603–18622.

Sultana, M., Chakraborty, P. & Choudhury, T. (2022) ‘Bengali abstractive news summarization
using Seq2Seq learning with attention’, in Cyber Intelligence and Information Retrieval:
Proceedings of CIIR 2021. Springer Singapore, pp. 279–289.

Pan, H.X., Liu, H. & Tang, Y. (2019) ‘A sequence-to-sequence text summarization model with
topic-based attention mechanism’, in Web Information Systems and Applications: 16th
International Conference, WISA 2019, Qingdao, China, September 20–22, 2019, Proceedings
16. Springer International Publishing, pp. 285–297.

	MSc Research Project MSc in Data Analytics
	Student ID: X22241965
	Supervisor: Abdul Shahid
	Introduction
	3. Research Methodology
	3.1 Dataset Description
	3.2 Data Preparation and Setup
	3.5 Text Cleaning
	3.6 Data Preparation for Model Training
	As the first step, texts need to be cleaned and then formated to fit text summarization models. A new DataFrame called dataframe1 is created with the cleaned articles under the 'text' column and their corresponding summaries under the 'summary' column. NaN values denote incomplete summaries, which are replaced with the mean value (representative to all articles) before using the dropna() function in order to remove any null values from the dataset, leaving every article with a valid summary. Special tokens (e.g. <start> and <end>) are added to each summary to preserve the structure of summaries for sequence to sequence models. By including these tokens, the model is able to figure out the start and end of each of the summaries, which is central for creating accurate text. This is done using the apply function with a little modification on each entry in the "summary" column. After cleaning, the DataFrame contains 11,000 rows of an article along with its summary with start and end tokens. Finally structured data pipelined to tokenization and model training that can be given as the well defined input for text summarization models. To be able to generate coherent and accurate summaries the data needs to be carefully prepared.
	3.7 Data Visualization
	Figure 2 is the histogram of text lengths in the dataset, where horizontal axis is the number of characters in each text from 0 to 14,000, and the vertical axis is the frequency of texts in each character range.e. The distribution is positively skewed and peaks at around 2,000—a couple 2,500 characters—meaning that lots of the texts in the dataset are that long or longer. For shorter texts the frequency rises very steeply, and then decreases slowly for longer texts, implying that texts below 1000 characters and beyond 6000 characters are quite rare.
	The majority (97%) of the texts are between 1000–4000 characters; the shortest 3% of texts fall within this range. A very small number of longer texts is responsible for the rightward extension of the curve — as text length increases, the frequency of these texts decreases. This histogram provides useful info about the text size is in the dataset which is very helpful for things like natural language treatment and substance examination since the size of the content can affect the execution of the model and the strategies utilized for handling it.
	Figure 2: Histogram of Distribution of Text Lengths
	Design Specification
	Figure 4: Architecture of proposed workflow
	Results And Discussion
	Conclusion and Future Work
	References

