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Abstractive Summarization Using Neural Networks 
with Attention Mechanisms 

Kruthika Surendrakumar 
X22241965 

Abstract 

In the present world where a huge quantity of information is available, text 
summarization especially news articles text summarization has gained higher 
importance. Previous approaches to performing traditional extractive 
summarization appear to work well but fails in terms of providing precise and 
meaningful summaries. Previous methods and researched tended to suffer from 
low performance of generating coherent and informative summaries that would 
capture content of news articles. In contrast to the earlier works done in this area 
and to overcome the shortcomings, this study presents an improved abstractive 
summarization model for news articles using advanced sequence to sequence 
model framework. This study explores the methods of news text summarization 
with sequence-to-sequence models. Using the CNN/DailyMail dataset that offers 
more than 300,000 articles, the following piece of work focuses on the 
performance of basic and extended models to create ‘compressed’ and ‘cohesive’ 
summaries. The study evaluates two baseline models: LSTM and Bidirectional 
LSTM both Random Search regimen exclusion, and No-Attention paradigm. It 
then generalises this assessment to models with attention and learnt pretrained 
GloVe word vectors, namely Sequence to Sequence LSTM with attention and 
embedding, and BiLSTM with attention and embedding. The overall objective is 
therefore to evaluate the impact of these enhancements to the quality of 
summaries via ROUGE scores. It brings out an all round collection of data, 
cleaning and preprocessing of text data before proceeding to the final stages of 
model building. The performance is highly guarded and measured through the 
ROUGE metrics that allow the assessment of the quality of the generated 
summaries between the models. 

Keywords: News text summarization, Sequence-to-sequence models, 	
BiLSTM ,Attention Mechanism, Glove Embeddings, Abstractive 
Summarization.  
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1. Introduction 

The process of taking large text and making it smaller retaining the important, useful details 
is called summarization.. Automating text summary has been of interest due to the potential 
to speed up the traditionally cumbersome task of generating a short summary of natural 
language processing (NLP) applications text. A few of those are text categorization, data 
retrieval, news summarizing, legal text summarization and headline generation (Gliwa et al. 
(2019)). Text summarization techniques are categorized under these two types: Abstractive 
and extractive summarization. Extractive summarizing involves picking out key lines or 
phrases directly from the original text using a scoring system; while, abstractive 
summarization reads through the content and paraphrasing it as hummanized summary 
(Zhang et al., (2020)). 

The increase in information volume in our news feeds today poses a challenge to us readers 
filtering out the critical insights in each news article flooded in our news feeds in a timely 
and effective way. In order to meet this demand, businesses and content aggregators have 
started looking for automated solutions that can create short, informative summaries. Current 
techniques in summarization struggle to retain existing semantic depth of long articles, 
limiting the utility of created summaries. These shortcomings have given rise to research that 
is focused on augmenting sequence to sequence models by incorporating pretrained 
embeddings such as GloVe and additionally augmenting them using attention mechanisms. 
The results of these improvements are summarized with ROUGE scores. Specifically, the 
study analyzes whether the attention layers in combination with GloVe embeddings yield 
improved models for LSTM and BiLSTM models compared to baseline models lacking these 
features. The research then discusses the implications of these advanced models by focusing 
on a subset of the CNN/DailyMail dataset. 

 

Figure 1: Types of Text Summarisation 
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2. Related Work 

This article is the in-depth analysis of techniques used for automatic text summarization using 
several Deep Learning models. The review is divided into sub-sections as follows: 

2.1. Extractive Summarization. 

Text summary is broadly categorized into Two kinds of extractive and abstract approaches. In 
text extractive summarization relevant sentences are taken from the text, preserving the 
original content, in contrast abstractive summarization produces new sentences reformulating 
content from the source, more flexibly and fluently. Whilst being fluent, abstractive 
summarization struggles with content selection and coherence. To deal with these challenges, 
recent advancements integrate both techniques especially when it comes to summarizing long 
documents; Xiao and Carenini (2019) propose the use of a neural model to improve long 
document summarization by combining modeling of global and local context, and evaluated 
on the PubMed and arXiv dataset. Specifically, local context modeling is shown to be 
essential, and in fact even more important than capturing global context.  

Liu et al. (2019) investigated the neural extractive models especially focusing on their 
architecture and learning strategies. Using methods such as BERT and reinforcement 
learning, they improved their performance on CNN/Daily Mail dataset with ROUGE scores 
of 42.69, 19.60 and 38.85. In addition, the large scale multi news dataset was introduced and 
the HiMAP model was used to tackle multi document summarization (MDS) by Fabbri et al. 
(2019). In turn, their hybrid framework combined single‑document summarization (SDS) 
with extractive and abstractive methods and resulted in significant improvements. Extractive 
summarization was redefined by Zhong et al. (2020), as a similarity problem in semantic 
space. Enhanced performance on data sets like CNN/Daily Mail and WikiHow was 
demonstrated and further refinements are possible. Gupta et al. (2022) discuss transformer 
based models to summarize large text datasets, their differentiability between extractive and 
abstractive summarization methods and present them using a few examples. The study 
compared models trained on the BBC news dataset and compared their ability to produce 
natural and accurate summaries and looked at challenges of scalability and efficiency. 
Together, these studies emphasize the centrality of looking at text summarization as a 
combination of techniques (algorithmic and neural), architectures, and datasets to push the 
state of the art. 

2.2  Abstract Summarization 

Unlike extractive, which selects their own passages in the original text, abstractive 
summarization creates new sentences to represent what the text says. Currently, recent 
advancements concentrates in improving the content selection, coherence, and fluency. While 
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a Bottom Up attention mechanism was proposed by Gehrmann et al. (2018) to integrate a 
content selector to highlight key phrases. This method enhances efficiency, retraining ease, 
and performance yielding ROUGE-1, ROUGE-2, and ROUGE-L scores of 47.38, 31.23 and 
41.81 on CNN-DM and NYT datasets. 

For dialogue summarisation, Gliwa et al. (2019) introduced the SAMSum Corpus, a 
manually annotated dataset. The results indicate that summarizing dialogues are more 
challenging than doing so with news and show lower ROUGE scores on dialog tasks. All in 
all, this work highlights the necessity for creative models and evaluation metrics specifically 
designed for conversation data. Gupta & Gupta (2019) provide a survey of abstractive 
summarisation, tackling the generation of fluent summaries and evaluation. Exploring future 
directions, they gave a categorization comparing techniques, tools, and evaluation methods, 
and stressed the complexity of the task by the sheer inherent properties of language. Pegasus, 
a transformer based pre training method for abstractive summarisation, was first introduced 
by Zhang et al. (2020). It cuts out or muzzles the main sentences, then rebuild these sentences 
as continuos sequences. PEGASUS excels in 12 summarisation genres and sets the new state 
of the art on six benchmarks while also working well in low resource scenarios. Among 
seq2seq based neural abstractive models, Shi et al. (2021) classified the models based on 
saliency, fluency and readability. Techniques were categorized into network topology, 
parameter estimation, and decoding improvements. The authors benchmarked them on 
datasets like Newsroom and Bytecup and find that both models perform significantly better 
than an extractive model baseline and achieve strong ROUGE scores, demonstrating the 
model's applicability to different types of datasets. Together, these studies contribute towards 
abstractive summarisation by improving content selection, using pre-training objectives, and 
handling problems specific to summarising dialogue. 

Study Proposed 
Approachh

Challenges 
Faced

Results Key Metrices

Xiao and 
Carenini, (2019)

Combined global 
and local context 
for long 
document 
summarization.

Benefits 
primarily from 
local context 
modeling.

Outperformed 
previous work on 
Pubmed and 
arXiv.

ROUGE-1, 
ROUGE-2, 
METEOR 
(specific scores 
not provided)

Liu et al., (2019) Analyzed 
different model 
architectures, 
transferable 
knowledge, and 
learning schemas 
for extractive 
summarization.

Need to 
understand why 
neural models 
perform well and 
how to improve 
them.

Improved state-
ofthe-art on 
CNN/DailyMail 
by a large 
margin.

ROUGE-1: 
42.69, 
ROUGE-2: 
19.60, ROUGE-
L: 38.85
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Fabbri et al., 
(2019)

Introduced 
MultiNews 
dataset and a 
combined 
extractiveabstract
ive 
summarization 
model.

Limited datasets 
for 
multidocument 
summarization.

Achieved 
competitive 
results on Multi-
News dataset.

ROUGE-1: 
43.47, 
ROUGE-2: 
14.89, ROUGE-
SU: 17.41

Zhang et al., 
(2020)

Proposed 
pretraining 
Transformers 
with a new 
selfsupervised 
objective; 
masked 
important 
sentences to 
generate 
summaries.

Need for 
effective 
pretraining 
objectives and 
systematic 
evaluation.

Achieved state-
ofthe-art on 12 
summarization 
tasks; performed 
well in 
lowresource 
settings.

ROUGE scores 
(specific scores 
not provided)

Shi et al., (2021) Reviewed 
various seq2seq 
models for 
abstractive 
summarization 
and evaluated 
different neural 
network 
components.

Challenges in 
network 
structure, 
parameter 
inference, and 
decoding 
efficiency.

Benchmarked 
models on CNN/
Daily Mail, 
Newsroom, and 
Bytecup datasets.

ROUGE-1, 
ROUGE-2, 
ROUGE-L 
(specific scores 
not provided)

Gliwa et al., 
(2019)

Introduced 
SAMSum 
Corpus for 
abstractive 
dialogue 
summarization; 
compared 
performance with 
news corpora.

Dialogue 
summarization 
challenges and 
non-standard 
quality measures

Model-generated 
dialogue 
summaries 
achieved high 
ROUGE scores 
but lower human 
judgment 
compared to 
news.

ROUGE-1: 0.32, 
ROUGE-2: 0.30, 
ROUGE-L: 0.32 
(correlation with 
human 
judgment)

Xiao and 
Carenini, (2019)

Combined global 
and local context 
for long 
document 
summarization.

Benefits 
primarily from 
local context 
modeling.

Outperformed 
previous work on 
Pubmed and 
arXiv.

ROUGE-1, 
ROUGE-2, 
METEOR 
(specific scores 
not provided)

Gupta and 
Gupta, (2019)

Reviewed recent 
papers on 
abstractive 
summarization; 
categorized 
methods and 
discussed 
challenges.

Complexities of 
natural language 
text; varying 
methods and 
tools.

Provided a 
thorough 
understanding of 
the field, listed 
methods, tools, 
and evaluation 
techniques.

No specific 
metrics provided
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2.3 Pretrained Embeddings: GloVe in Seq2Seq Models 

GloVe (GloVal Vectors for Word Representation) word vectors offer high dimensional, 
semantically rich representations and improve Seq2Seq models for the problem of text 
summarization. The pretrained embeddings are obtained from co occurrence statistics in large 
scale corpora, and outperform simpler representations, capturing structural word semantics. 
Other approaches using GloVe to refine the meaning of input data as well as enrich 
summaries semantically are described. DeepSumm (Joshi et al. (2023)) mounted topic 
models and word embeddings for single document summarization. RNNs with probabilistic 
topic distribution and an attention mechanism are used in DeepSumm to rank sentences on 
based of novelty, content, and position. It is tested on DUC 2002 and CNN/DailyMail 
datasets and reports ROUGE-1, ROUGE-2 and ROUGE-L scores of 53.2, 28.7 and 49, 
surpassing other existing approaches. The decoder qualitéé, to improve the performance of 
extractive summarization over the baseline, Solanki et al. 2024 applied a GloVe embedding 
with an LSTM based encoder-decoder model. To model the ontological relationships, 
embeddings were used which enhanced textual context understanding. The model was 
evaluated on the Kaggle news dataset and achieved BLEU score of 59.4% and cosine 
similarity of 50.2%, which is substantial increase in model quality. First, these works show 
that incorporating features from GloVe embeddings can help improve both extractive as well 
as abstractive summarization by obtaining better semantic and contextual representation. 

2.4 Attention Mechanisms in Seq2Seq Models 

It was found that attention mechanisms in Seq2Seq models are essential for improving 
abstractive text summarization. In Kumar and Solanki (2023), the authors proposed a 
Transformer based model with a self-attention mechanism, denoted T2SAM. T2SAM 
outperformed baseline models by addressing coreference identification as well as improving 
textual cohesion. It was trained on multiple datasets and decreased training loss from 30.58 to 
1.82 in 30 epochs, achieving 48.5% F1-Score accuracy indicating substantial improvements 
in summary quality and coherence. A Seq2Seq model with attention architecture has been 

Xiao and 
Carenini, (2019)

Combined global 
and local context 
for long 
document 
summarization.

Benefits 
primarily from 
local context 
modeling.

Outperformed 
previous work on 
Pubmed and 
arXiv.

ROUGE-1, 
ROUGE-2, 
METEOR 
(specific scores 
not provided)

Gupta et al., 
(2022)

Compared 
transformer-
based pre-trained 
models with 
various 
selfsupervised 
objectives.

Lack of tailored 
pre-training 
objectives for 
abstractive 
summarization; 
limited 
systematic 
evaluation

Achieved state-
ofthe-art 
performance on 
12 downstream 
datasets; excelled 
in low-resource 
settings.

ROUGE scores 
(specific scores 
not provided)
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developed by Sultana et al. (2022), for Bengali news summarization by applying 
Bidirectional RNN and LSTM. Further, with preprocessing and word embedding on a dataset 
of 30 Bengali newspapers, model parameters such as training loss reduced to 0.001 and 
accuracy improved from 44.48% to 56.19%. This work successfully addressed the problems 
of Bengali language summarization, producing summaries that are more succinct and better 
than baseline models. Pan et al. (2019) understood how implicit and contextual informations 
are handled in text summarization. In order to incorporate scene and topic context into 
Seq2Seq models, they introduced an external attention mechanism using Latent Dirichlet 
Allocation (LDA) based word topic distribution. This approach is tested on CNN and Daily 
Mail datasets and outperforms baselines as a strongly robust approach to uncover hidden 
context and advance sentence summarization. In addition to these, the versatility of attention 
mechanisms to improve contextual understanding and ensure that the summary is accurate 
was shown. 

3.     Research Methodology 

In this section of the report we will explore the approach taken for conducting the study that is 
being presented.  

3.1    Dataset Description 
         Among the most popular datasets for text summarizing model training and testing in 
particular for extractive and abstractive summarization tasks are CNN/DailyMail. Over 300K 
news items are included from CNN and the Daily Mail, plus brief, human written summary 
highlights that serve as synopses of the articles. These features make the dataset very useful 
for training algorithms that generate summaries. The dataset, initially used for abstractive 
question answering and machine reading comprehension, is challenging because it requires 
summarization and contextual information.  

The story's content, associated highlights and a unique integer id (SHA1 hash of the story's 
url) are in every dataset item.Although widely used, the database possesses problems such as 
the incorrect factual correctness, coherence, and fluency; and suited adjectives in the 
summaries.an 300,000 news items from CNN and the Daily Mail are included, along with 
succinct, human-written highlights that act as synopses of the pieces. Because of these 
features, the dataset is very useful for training algorithms that create summaries. The dataset, 
which was initially created for abstractive question answering and machine reading 
comprehension, is difficult since it calls for both summarization and contextual information.  

Every dataset item contains the story's content, associated highlights, and a unique identifier 
(SHA1 hash of the story's URL). Despite its extensive use, the dataset presents difficulties 
by   including problems with factual correctness, coherence, fluency and the suitability of the 
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summaries adjectives. When preparing the data to train the model, besides cleaning the text, 
reducing interference and creating token and word embedding matrices of them are required. 
The word vectors used within GloVe, and the other pretrained word embeddings, leverages 
word vectors to add to the semantic depth of the summaries. The CNN/DailyMail dataset, 
when used alongside the more complex methods such as attention mechanisms and deep 
learning models, provides a wealth of help for developing text summarization algorithms at 
large. 

3.2    Data Preparation and Setup 

The environment and data preparation is done before model implementation. During model 
training and evaluation the TensorFlow logging API is used to control what is output so that 
only the proper information is displayed. To accomplish this, we use a command: logger = 
tf.get_logger() to create a special logger that is directed to take care of TensorFlow activities. 
K.clear_session() is called to clear the session if there are conflicts from previous models or 
layers to prevent memory leaks so that it’s safe to reset the model for another 
comparison.Also, irrelevant warning messages are filtered out with Python’s 
warnings.filterwarnings('ignore') command so things important can be focused on or the data 
outputs. A couple of text preprocessing techniques are applied in the preprocessing stage: 
stopwords removal (using the Natural Language Toolkit (NLTK)). Commonly, noise in data 
is reduced by removing stopwords such as "and," "the," or "is." It is then made sure the 
stopword list is updated using nltk.download('stopwords') so that the dataset can be cleaned 
before processing further. Those are the steps which help to design a clean and productive 
framework, which tests and trains the text summarization models in the best way. 

3.3    Importing Libraries 

Libraries that can handle streaming data, model and model evaluation, have been imported to 
text summarization. Most basic operations on files use OS and re for regular expressions; 
reading and writing CSV use csv. It provides the tools for natural language processing: 
nltk.tokenize.word_tokenize,—for tokens, nltk.tag.pos_tag,—for parts of speech, 
nltk.WordNetLemmatizer,—for lemmatization and nltk.corpus.stopwords,—for stopwords 
removal. Models built using layers such as LSTM, Bidirectional, Embedding, and Dense are 
all built for deep learning using Keras and TensorFlow. Plots of the data distributions and of 
the model performance metrics are done using Matplotlib and Seaborn visualization tools. 
The frequent words are visualized using WordCloud from the wordcloud package and NLTKs 
STOPWORDS. Pickle and load_model from TensorFlow makes saving and loading models 
for model persistence easy. Moreover, text tokenization and padding are handled by 
TensorFlow’s tokenize, and pad_sequences, respectively. Early Stopping along with 
ReduceLROnPlateau techniques prevent overfitting reduce the learning rate. To evaluate 
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model, rouge_scorer from rouge_score package has been used and train_test_split has been 
used for performance analysis from sklearn.model_selection. It offers comprehensive set of 
libraries for effective training of the model and the evaluation of model.  

3.4    Data Loading and Initial Processing  

The first process of preprocessing data for the task of abstractive text summarization on the 
CNN/DailyMail dataset is data loading using the pandas library. The dataset is read from 
CSV file placed at train. csv data by using the function pd. read_csv(csv file, 
numberOfRowsInSection: 11000 for efficiency’s sake. Evaluating the models and training the 
models with minimal burden to computational resources can be done with subsets of this. 
Since the only content data that matter to us is the textual content, we can simply drop all 
unnecessary columns during the data processing. For example id column containing SHA1 
hash of the articles’ URL doesn’t help us in delimiting the given articles for summarization 
and can be removed 21 using the drop() function with axis=”columns” just like below. The 
resulting DataFrame consists of two critical columns: Two distinct signs of the new cultural 
identity are noted and emphasized in detail. The high point of this project is the 27 summaries 
written by the authors of the original articles and the full text of the news articles that are 
embedded with the CA News. Input text and desired output text are the summarization 
models that train on these columns. Because data loading and preprocessing was carried out 
in such a structured manner, every data set should be in the right format in order for it to pass 
through the text cleaning processes, tokenization and the data be ready for training of the 
models. Therefore filtering from the pointless columns makes a path to profound and sharp 
division of authentic profitable information for recognizing just as scale summary so it 
increases the chances of the model. 

3.5    Text Cleaning 

Preparation of data for abstractive text summarization requires a very crucial step of text 
cleaning. class Util: The Python function clean_text() allows to perform effective text 
preprocessing using NLTK and regex. First of all, it converts the input text to lowercase so as 
to normalize differently capitalized text. Then, the text is tokenized and contractions are 
expanded with a pre defined dictionary. But regex functions can be used to remove unwanted 
elements such as URLs, HTML tags, punctuation and special symbols. That means that 
among other things, it strips away the non-impactful characters to make a cleaner version of 
the text. The function also deals with apostrophes and other punctuation marks which could 
break up words, replacing them by a space. If remove_stopwords True, remove stopwords 
(example; articles, conjunctions), an optional step for the model to concentrate on more 
relevant content. These are stored in separate lists: clean_texts and clean_summaries. This 
guarantees that the articles and its highlights both underwent preprocessing to be used in later 
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tokenization and model training. This process greatly cleanses the data the good results of 
text summarization models. 

3.6    Data Preparation for Model Training 

As the first step, texts need to be cleaned and then formated to fit text summarization models. 
A new DataFrame called dataframe1 is created with the cleaned articles under the 'text' column 
and their corresponding summaries under the 'summary' column. NaN values denote 
incomplete summaries, which are replaced with the mean value (representative to all articles) 
before using the dropna() function in order to remove any null values from the dataset, leaving 
every article with a valid summary. Special tokens (e.g. <start> and <end>) are added to each 
summary to preserve the structure of summaries for sequence to sequence models. By 
including these tokens, the model is able to figure out the start and end of each of the 
summaries, which is central for creating accurate text. This is done using the apply function 
with a little modification on each entry in the "summary" column. After cleaning, the 
DataFrame contains 11,000 rows of an article along with its summary with start and end 
tokens. Finally structured data pipelined to tokenization and model training that can be given 
as the well defined input for text summarization models. To be able to generate coherent and 
accurate summaries the data needs to be carefully prepared. 

3.7    Data Visualization 

Figure 2 is the histogram of text lengths in the dataset, where horizontal axis is the number of 
characters in each text from 0 to 14,000, and the vertical axis is the frequency of texts in each 
character range.e. The distribution is positively skewed and peaks at around 2,000—a couple 
2,500 characters—meaning that lots of the texts in the dataset are that long or longer. For 
shorter texts the frequency rises very steeply, and then decreases slowly for longer texts, 
implying that texts below 1000 characters and beyond 6000 characters are quite rare.  

The majority (97%) of the texts are between 1000–4000 characters; the shortest 3% of texts 
fall within this range. A very small number of longer texts is responsible for the rightward 
extension of the curve — as text length increases, the frequency of these texts decreases. This 
histogram provides useful info about the text size is in the dataset which is very helpful for 
things like natural language treatment and substance examination since the size of the content 
can affect the execution of the model and the strategies utilized for handling it. 
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   Figure 2:  Histogram of Distribution of Text Lengths 

As shown in Figure 3, the summary length histogram of the dataset is in the form of a 
histogram of the summary lengths (0–1000 characters) on the x axis and the frequency of the 
summary lengths at each certain length on the y axis. Moreover this distribution is positively 
skewed and there is a sharp peak around 250-300 characters which implies that most of the 
summaries in dataset are of this length or near this length. A second peak is visible around 
350-400 characters, which again shows a commonly held summary length. Only 4% of 
summaries get longer than 600 characters, we are seeing pretty rare summaries longer than 
500 characters. About this distribution, it concentrates on shorter summaries, outlining the 
usual length and verbosity of summaries that can be used for checking whether an automated 
summarization model is sufficiently efficient and describes it well. 

Figure 3 : Histogram of Distribution of summary lengths 

4.   Design Specification 

The last stage of data processing converts the data to the form friendly to deep learning 
models, in particular, the tokenization, one hot encoding, padding the sequences and 
preparing pre trained vector matrix of the tokenized data. First approach: Initially, the articles 
text is tokenized using Keras's Tokenizer class which maps each word with a distinct integer 
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index according to their count in the dataset. This data is set up for on hot encoding, setting 
up the data to a MAXIMUM of 110,788 unique tokens. This converts the tokenized words to 
numerical sequences of integers, and then 1-hot encoded vectors so the data is ready to be 
given to a model. Secondly, padding is applied to make the sequences of same lengths, 
critical to a deep learning model taking batches. Keras pad_sequences function pads 
sequences shorter than 800 tokens by zeros at the end. And this means training, validation 
and testing data sets stay consistent. The training data has 110,788 unique tokens, the number 
of which increases to 246,031 after padding. 

The summary data faces a smaller vocabulary size of 36,688 tokens as the summaries are 
shorter and less diverse; thus, a similar tokenization and encoding process is used. Summaries 
are padded to a constant length of 150 tokens. A semantic similarity between words is 
captured by setting embedding dimensions equal to 300, so that they match the pre trained 
GloVe embeddings. Subsequently, tokenization, one hot encoding, and padding is done on the 
entire dataset (training, validation and testing) to make the data ready to be used in building 
and training sequence to sequence models with attention mechanism, necessary for 
abstractive text summarization. 

Figure 4: Architecture of proposed workflow  

5.    Results And Discussion 
This section of the report discusses the implementation of the models and presents the results 
obtained for the experiments conducted. The implementation of the system is done using the 
Python development language using Google Colab. Google Colab is used for its access to the 
powerful CUDA GPUs. The dataset used in the study is first uploaded on the Google Drive. 
The dataset then can be accessed by mounting the Google Drive in the Colab environment. We 
have subscribed to Google Colab pro account and used High Ram A100 as our hardware 
accelerator to execute our model faster. Keras is the primary library used for the 
implementation of the deep learning models. 
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5.1 Case Study 1:  
Sequence-to-Sequence LSTM model: It is an encoder and a decoder, Sequence to Sequence 

LSTM without embedding model, with the aim of performing abstractive text summarization. 

The model consists of two main components: The most familiar of the two models were the 

encoder and decoder.   

Encoder: The encoder begins with an input layer that takes as input sequences of text with a 

length less than 800 tokens at most. The embedding layer, which is non trainable, assigns a 300-

dimensional vector to each token, using a matrix of pre trained embeddings. This layer into 

convert the input sequences into dense vectors. The input to the embedding layer is passed 

through LSTM layer with the latency of 128. This LSTM layer takes the sequences and gives 

both the sequence of outputs and the last hidden and cell states which are very important when 

initializing the decoder.  

Decoder: The decoder is built to include an input layer that can take as input sequences of 

tokens of any length to help start decoding. As in case of the encoder the decoder also consists 

of an embedding layer which is pre trained to embed tokens to dense vectors. Then these are fed 

into LSTM layer that has latent dimension 128 and returns sequences of outputs and updated 

hidden and cell states. This LSTM layer uses Dropout and a recurrent Dropout to help reduce 

the overfitting problem. Then output of the decoder LSTM passes through TimeDistributed 

Dense layer that does the dense transformation on each time step to get the probability 

distribution of vocabulary for each token. In cases of a single framework, encoder and decoder 

are incorporated into the whole structure developed using the Keras Model API. 

Model summary: 49,200,348 parameters total, of that number 5,107,548 parameters are 

trainable and 44,092,800 parameters are not trainable. Basically nt parameters are the pre 

trained embeddings used used in case of training encoder and decoder. The proposed approach 

is sequence to sequence learning for summarization and use LSTMs to capture temporal 

information from the input text.  

Table 5 : LSTM without embedding 

Metric Training Validation 

Loss 5.6213 2.7141

Accuracy 0.6850 0.6818
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5.1.1 Model Training and Model Inference 

For abstractive text summarization, the Sequence to Sequence LSTM model without embedding 
was used for implementing the model. A sparse categorical cross entropy at a loss with an 
RMSprop optimizer and accuracy as the metric as trained. For execution of this training, 30 
finite epochs were used and a batch size of 32, with training and validation datasets used to 
measure the performance. x_train_padded and y_train_padded had a preceding token, shifted 
from the summaries, to enable learning. From the previous strings of words the model learned 
to generate the next word in a sequence and synthesized summaries from encodings of the input 
strings. A different model enc_model has also been developed for the inference, for getting 
encoder hidden and cell state required to initialize decoder.  

For sequence generation, the states were designed to be utilized by the decoder model 
(dec_model). First, it was incorporated with start token and then it predicted the next tokens 
sequentially until either it predicted the encoding of stop token or prediction of the maximum 
number of tokens was reached. Test article summaries were produced over this process. The 
original summaries in the collection were then matched with the auto generated summaries. The 
full articles, the summary produced by the tool on each article, and the summary generated by 
the present model were then written to a CSV file for further analysis with the outcome. 

Table 6 : Rough Score 

Sample Inputs Precision Recall F-Measure

0 0.090909 0.075472 0.082474

1 0.136364 0.093750 0.111111

2 0.045455 0.058824 0.051282

3 0.045455 0.046512 0.045977

4 0.000000 0.000000 0.000000

5 0.113636 0.096154 0.104167

6 0.113636 0.128205 0.120482

7 0.022727 0.020833 0.021739

8 0.045455 0.044444 0.044944

9 0.159091 0.088608 0.113821
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5.2 Case Study 2: Sequence-to-Sequence BiLSTM model 

There is a strong and reliable Basic Bidirectional Long Short Term Memory (BiLSTM) 
Encoder-Decoder model that is appropriate for sequence to sequence problems and works with 
no pre-trained embedding. The encoder starts with taking an input layer where sequences of 
length max_text_len are taken from the following: These sequences are fed into an embedding 
layer which has each word embedded into a vector of size ‘embed_dim’ and this layer is also 
trainable. Subsequently, there is a BiLSTM layer having the capacity to process the received 
word embeddings in the forward and backward mode, so that it gives out the outputs as well as 
states. Bidirectional processing enhances the identification of context from the left and right of 
the sequence to the model. Just like the case of BiLSTM; the output is summarized to form 
enc_h and the decoder_h which serve as the first state for the decoder. Decoder also has the 
word embedding layer which maps the tokens in input to the high dimensional vector, which is 
also optimized with rest of the parameters.  

In the next step, a conventional LSTM layer processes these embedding, while using ‘fused’ 
hidden and cell states of the encoder as ‘self’ initial states. This LSTM layer generates 
sequences of the output vectors which are then passed through a TimeDistributed Dense layer 
with softmax activation function for making the next word of sequence prediction at each time 
step. The model is compiled to accept sparse categorical cross entropy loss with rmsprop 
optimizer to explain the ability of the model in predicting a sequence. This model includes 
54,402,780 total parameters – all of which are trainable – and affords you end-to-end learning 
from your training data, making it suitable for tasks where you’ll need to capture subtleties of 
contextual information and apply sequential processing. 

Table 7: BiLSTM without embedding 

5.2.1 Model Training and Model Inference 

A Sequence to sequence Bidirectional LSTM without embedding was developed and trained 
using sparse categorical cross entropy as the loss function, RMSprop optimizer and sought for 
accuracy. In this case the model was fit on the paddle sequences 36 x_train_padded and 
y_train_padded where y_train has its last token removed and reshaped to input and output 
format. The training step was as follows: Training was carried out using 30 epochs with a batch 
size of 32 while validation was performed using the same epoch of the validation data.  

Metric Training Validation 

Loss 4.3357 2.6389

Accuracy 0.7002 0.6946
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The encoder was configured to be used with model inference to generate hidden states (enc_h) 
and cell states (enc_c). The predictions are obtained by the decoder, which was initiated by the 
encoder’s states. generate_summary was the fluid EH AR sequence generation function which 
initially forecasted the initial states from the encoder and thereafter purely forecasted the tokens 
using current token and current states in a loop. Generation loop continued till an EOS token 
were generated or till the limit of maximum number of tokens were generated. 

Table 8: Rough Score 

5.3 Case Study 3: Sequence-to-Sequence LSTM model with 
attention and embedding 

With pre-trained word vectors of GloVe embeddings, the improved Sequence-to-Sequence 
LSTM with attention performs the best. First, word embeddings are pre trained and are 
imported and stored in vectors t_embed and s_embed that are the source and target vocabulary. 
Then, the Embedding layers for the encoder and decoder are used by these embeddings as 
shown in Fig 3. Here an LSTM layer is used with L2 regularisation of 0.001 and output size of 
128 latent dimensions per time step which will give sequences of hidden states and cell states to 
encode in input sequences. In the other hand, the encoder is an LSTM layer with similar 
dimensions as the one in the decoder that emits outputs from the salutatory states from the 
encoder. A specific class, 37 AttentionLayer, is needed to implement the attention techniques, 
computing a matching between the encoder’s outputs and decoder’s states, and obtaining 
context vectors that point to useful portions of the input sequence. The attention mechanism of 
this model pays attention to a large part of the inputs when generating every word of the 
sequence of the output words. 

Sample Inputs Precision Recall F-Measure

0 0.074074 0.075472 0.074766

1 0.166667 0.140625 0.152542

2 0.055556 0.088235 0.068182

3 0.055556 0.069767 0.061856

4 0.018519 0.016949 0.017699

5 0.092593 0.096154 0.094340

6 0.092593 0.128205 0.107527

7 0.018519 0.020833 0.019608

8 0.055556 0.066667 0.060606

9 0.148148 0.101266 0.120301
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The output of this decoder and this attention layer is passed to the next layer, which is 
TimeDistributed dense layer with ReLU activation at each step of the decoding sequence (as the 
decoder is giving us one output at each step) then we have softmax activation function which 
gives another output, a probability for each word in the dictionary at each step during decoding. 
The model has in total 53,865,308 parameters spread over input embedding layer that has 
70,000 parameters and 53,795,308 parameters in the output MLP layers; with 9,772,508 of 
these trainable, and the rest froze and pre-trained indices assumed embeddings that won’t be 
learnt during the training. The model plot file presents the visualisation of this architecture by 
showing the layers and how they are connected and the shapes of the layers. Integrating 
attention enables the model to make use of long range dependencies, be more focused at 
specific parts of input sequences, and might help improve sequence generation in these 
downstream applications of, for example, text summery or translation. 

Table 9: LSTM with attention and embedding 

5.3.1 Model Training and Model Inference 

Seq2Seq includes some attention and pre trained embedding and trained by loss of 
sparse_categorical_crossentropy with optimizer of rmsprop, with main criterion of accuracy. 
Training the model works well with the fact that the input sequences are padded and the targets 
are reshaped (reshaped) correctly to the output dimensions. After this a model can be trained for 
several iterations with epochs to equal 5 and batch size to equal to 32 after which the model is 
evaluated on the validation data. The hidden states and contextvector, produced from the input 
sequence, are computed in the encoder model for infererence. It takes the states from the 
encoder it is initialized with, and generates output sequences. An attention layer is used to 
calculate context vectors to guide the decoding process according to information from the input 
sequence and to concatenate these vectors to the decoder outputs. Finally these concatenated 
vectors are used to make the last layer dense layer that becomes our final output. To acquire the 
summaries, the model keeps spitting out the next token until hits the eos token or whatever the 
chosen max 38 length. By computing summary it stores for the later comparison with the 
original so test inputs can be evaluated. 

Metric Training Validation 
Loss 4.6510 2.6754

Accuracy 0.6859 0.6820
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Table 10:  Rough Score 

5.4  Case Study 4: Sequence-to-Sequence BiLSTM model with 
attention and embedding 

For this work, Bidirectional LSTM, attention mechanism, and the GloVe pretrained embeddings 
were adopted to handle some complicated text summarization tasks in a Seq2Seq model. The 
model uses word embedding from GloVe which uses only word that has 300 dimensional 
vectors. First these embeddings are read from a file, they are converted to a dictionary and used 
to initialize matrices that are used for embedding the encoder and the decoder. In particular, 
t_embed and s_embed are matrices obtained from GloVe embeddings of respective source and 
target vocabulary, which in this case refers to word embeddings of the considered layers of the 
model that are pre trained on syntactic aspects. In particular, the encoder consists of an input 
layer and an embedding layer which is initialized with t_embed. A Bidirectional LSTM Layer is 
used which is contextual layer, it does take forward as well as backward information of the 
sequences. The two hidden states from either direction are stacked into one vector of context, 
enc_h and enc_c (from encoder). The same model is used to insert input into the decoder and it 
is then fed to LSTM layer with dropout to prevent overfitting. The attention mechanism, 
realised through a user-defined AttentionLayer, calculates attention scores: to produce the 
product of the prior, from the encoder, and the current from the decoder. It’s done with trainable 
weight matrices that compute alignment scores and hence context vectors. Decoder’s LSTM 
outputs are connected to the context 39 vectors, and the resulted vectors are final inputs for the 
dense layer.  

Sample Inputs Precision Recall F-Measure

0 0.049505 0.094340 0.064935

1 0.069307 0.109375 0.084848

2 0.029703 0.088235 0.044444

3 0.019802 0.046512 0.027778

4 0.029703 0.050847 0.037500

5 0.049505 0.096154 0.065359

6 0.049505 0.128205 0.071429

7 0.009901 0.020833 0.013423

8 0.029703 0.066667 0.041096

9 0.089109 0.113924 0.100000
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In the end, before returning the sequence of the final hidden state to really predict some more 
on the vocabulary, we have the final layer of our model which is a TimeDistributed Dense layer. 
However, the learning and the generation of the summaries is proper with the mechanism of 
attention and the GloVe embeddings; the model parameters; total parameters 63,798,236 
(include trainable parameters 30,561,836). 
 

Figure 11: Sequence-to-Sequence BILSTM model with attention and Embedding 

Table 12: BiLSTM with attention and embedding 

5.4.1 Model Training and Model Inference 

This is the complete model used to train; the Sequence to Sequence BiLSTM model with 
attention and embedding, Adam optimizer and sparse categorical cross entropy was used to 
train the model. Sequence prediction was used in training the model and inputs and outputs, 
embedding dimension set at 300 and GloVe pre trained word vectors were applied. These will 

Metric Training Validation 
Loss 3.7042 2.6380

Accuracy 0.8277 0.7029
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output our encoder sequences and hidden states in our encoder model which we used BiLSTM 
layers; while our decoder was the LSTM using attentions in 40 (hopefully this will increase 
context relevancy). Encoder and decoder models were trained with a batch size of 32 up to a 
fixed number of epochs and the encoder model that had been trained had subsequently been 
saved for inference. In case of model inference, the generate_summary function is used where 
the input sequences are encoded which results in the fixed length vector, and decoder then 
generates the summary. The decoder keeps predicting tokens in sequence from startof-sequence 
token till end-of-sequence token is reached or maximum tokens is achieved. 

Table 13: Rough Score 

And then, by appling pre-trained GloVe embeddings with 300 dimensions in each of the words 
in the input sequence that are dense (i.e semantic meaningful) representations for the words. 
The alignment score, which is computed by the attention layer between the encoder and the 
decoder states enhances the model to give different weights to different parts of the input 
sequence and thus can summarize a text more accurately. By introducing attention, embedding 
and improvement to the model, the Sequence-to-Sequence BiLSTM model has demonstrated 
some practical benefits in summary creations due to the model's advanced structure able to find 
more detailed information and produces the smooth text that makes sense given the context. 

Sample Inputs Precision Recall F-Measure

0 0.1875 0.056604 0.086957

1 0.2500 0.062500 0.100000

2 0.1875 0.088235 0.120000

3 0.1875 0.069767 0.101695

4 0.0625 0.016949 0.026667

5 0.2500 0.076923 0.117647

6 0.2500 0.102564 0.145455

7 0.1250 0.041667 0.062500

8 0.1875 0.066667 0.098361

9 0.3750 0.075949 0.126316
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Figure 14: Comparison of Article Summaries - Original vs. Model Output 

6. Conclusion and Future Work 

This paper provides a novel robust approach based on the sequence-to-sequence models 
combining the BiLSTM with attending mechanisms and the Glove embeddings to generate 
abstractive news summarization in this study. In addition, our strategy tries to minimize the 
shortcomings pointed out in earlier work, such as varying quality summaries and inability to 
handle contextual information issues. These bidirectional LSTM units and attention processes 
accurately learn the relationship between words and phrases and therefore supply a richer 
contextual summary. The second benefit of the selected model is based on using the 
pretrained Glove embeddings to expand the semantic dimension of the incoming data.  

Finally, the results of the evaluation that have been computed using ROUGE analyses show 
that the proposed Fuzzy-Based text summarization method is both more precise, more recall 
and less erroneous than traditional text summarization methods. This confirms that this 
proposed method of embedding BiLSTM, attention mechanism and pretrained embeddings 
together produce better quality summaries, which are closer to the source content. These are 
our major conclusions and contributions: The studies showed that the potential of improving 
text summarization task can be achieved by enhancing development of the more and more 
sophisticated neural network structures. The findings also reflect how using advanced 
approaches and effective resources for model improvement favorably boosts the results, and 
thus becomes a guideline for future research in this field. 

 6.1 Future Works  

There are several roads in terms of future research and implementation of text summarization 
models especially for the news articles. Further studies could be conducted on the continued 
improvement of model performance such as by extending the scope of the application of the 
suggested model or solving the remaining problems. To begin with the new, more 
sophisticated word embeddings customizing text context might help to makes the quality of 
the summary better. Better semantic properties of transformer-based embeddings (eg: BERT, 
GPT) enable more research to be done with recent advances in transformer based 
embeddings.  

Furthermore, it may be interesting to see 44 how these embeddings can be made as potential 
additions or replacements for existing 36 systems and frameworks, and whether hybrid 
systems (adding these embeddings to the existing methods as a whole) may be more fine 
grained and/or more coherent in other situations. The second direction of future research 
deals with the improvement of applied attention structures of the summary generation 
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problem models. The current experiment uses basic attention procedures, however, using 
more complex forms of attention like multihead or selfattention may help the model try 
focussing to different parts of the text at one time, which can yield better quality of 
summaries. It has also been expanded to include further data in further news sources and 
further domains, which would contribute to the creation of more general models. At present, 
the dataset that the work is based on is one ; however, it will be meaningful to include data 
from other news sources and genres for the model to apply well to the other contexts and 
topics.  

Additionally, as the model is fine tuned to carry out shorter summarization tasks similar to the 
summarization of the news article where the focus topic or summarizing of key events is 
stated, the model becomes finer to the user's needs. Further directions include creating real 
time summarization options, utilizing incremental learning more, and producing convenient 
interfaces for live summarizing. Lastly, the models will be compared to other higher 
standards, and participation of real users in the feedback for improving upon the model will 
help and ensure that the summarization tool would remain effective, even if we see shifting in 
the information landscape. 
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