

Configuration Manual

MSc Research Project
MSc Data Analytics

Ebin Sujin
Student ID: x23205814

School of Computing
National College of Ireland

Supervisor: Christian Horn

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

 EBIN SUJIN

Student ID:

 x23205814

Programme:

 MSc Data Analytics

Year:

 2024

Module:

 MSc Research Project

Lecturer:

 Christian Horn

Submission Due
Date:

 12-12-2024

Project Title:

 Configuration Manual

Word Count:

 592 Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

 EBIN SUJIN

Date:

 12-12-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Configuration Manual

Ebin Sujin
x23205814

1 Introduction

This configuration guide will present the following required hardware, software, and libraries
in order to run deep learning or simple machine learning models in the project. It elaborates
on settings and instruments that incorporate the pre-processing of the datasets, feature
selection and the optimization of the model applied to discover DDoS attacks.

2 Hardware Specifications

The below figure shows the overview of the hardware of the laptop device used for the
project.

Hardware Overview

3 Software and Language

Software:

• Google Colab for training and testing the models.
• Jupyter Notebook for some local experiments.

Programming Language:

• Python

2

4 Python Libraries Used

• File Handling & Data Management: Pandas & Numpy
• Data Visualization: Matplotlib, Seaborn, Ploty
• Machine Learning Utilities: Scikit-learn, Synthetic Minority Oversampling

Technique (SMOTE).
• Deep Learning Libraries: TensorFlow, Keras

5 Dataset Collection

The project utilized the UNSW-NB15 dataset, which includes normal and malicious network
traffic data. The dataset comprises 2.5 million records across nine attack types and normal
traffic, making it suitable for intrusion detection studies.

Link: https://www.kaggle.com/datasets/mrwellsdavid/unsw-nb15

6 Coding Implementation
6.1 Mounting Google Drive:

6.2 Importing Libraries:

6.3 Data Loading:

3

6.4 Data Analysis (EDA)

The	figure	shows	the	distribution	of	attack	categories,	with	“Normal”	traffic	having	the	highest	count	
and	categories	like	“Backdoor”	and	“Worms”	having	the	fewest.	

6.5 Data Pre-processing

This	code	prepares	the	dataset	by	splitting	it	into	features	(X)	and	target	labels	(y).	It	identifies	non-
numeric	 categorical	 columns	 and	 applies	 label	 encoding	 to	 convert	 them	 into	 numeric	 values,	
making	 the	 data	 suitable	 for	 machine	 learning	 models.	 This	 step	 ensures	 all	 features	 in	 X	 are	
numeric,	while	y	contains	the	target	attack	categories,	ready	for	training	and	classification	tasks.	

4

This	code	normalizes	the	feature	dataset	X	using	MinMaxScaler,	scaling	all	values	to	a	range	of	0	to	
1.	This	ensures	all	features	are	on	the	same	scale,	improving	model	training	efficiency	and	accuracy	
by	preventing	larger	features	from	dominating	the	learning	process.	

The data extracted from the repository are imbalanced in nature; so we need to balance the
data, as all the respective algorithm can be performed on them. For this purpose, SMOTE is
applied which is a naive method of duplicating minority example. In the dataset, the dataset is
sampled by oversampling the smaller classes, so that the problem of data imbalance is solved.

7 Machine Learning Models

Case Study 1: Logistic Regression Model

5

Classification Report:

Output of Logistic Regression Model
Accuracy Score: 0.63

Case Study 2: Decision Tree Classifier

Classification Report:

Output of Decision Tree Classifier
Accuracy Score: 0.68

6

8 Deep Learning without Autoencoder Feature Extraction

Case Study 3: Long Short Term Memory (LSTM)

Classification Report:

Output of LSTM without Autoencoder
Accuracy Score: 0.82

Case Study 4: Bidirectional Long Short Term Memory (Bi-LSTM)

7

Classification Report:

Output of Bi-LSTM without Autoencoder
Accuracy Score: 0.83

9 Deep Learning with Autoencoder Feature Extraction

Training Autoencoder Model for Feature Extraction

8

	
We	have	created	this	encoder_smote.h5	file	to	store	the	model	for	the	Autoencoder.	Whenever	the	
Autoencoder	performs	feature	reduction	and	selection,	1-2	features	shuffle	because	the	data	in	the	
train-test	split	is	randomized	every	time	during	selection.	So,	we	have	stored	the	features	selected	by	
the	Autoencoder	in	an	encoder_smote.h5	file	to	ensure	they	remain	the	same	in	every	execution.	If	
the	features	keep	changing	every	time,	the	accuracies	of	the	models	were	changing.	Hence,	we	stored	
it	in	an	encoder_smote.h5	file.	
		
Case Study 5: Long Short Term Memory (LSTM)

Classification Report:

Output of LSTM with Autoencoder
Accuracy Score: 0.81

9

Case Study 6: Bidirectional Long Short Term Memory (Bi-LSTM)

Classification Report:

Output of Bi-LSTM with Autoencoder
Accuracy Score: 0.86

