
Configuration Report 

1. Introduction 

1.1. Objective 

The primary goal of this project is to leverage Machine Learning (ML) and Deep Learning (DL) techniques for 

breast cancer diagnosis using two datasets: the Breast Cancer Wisconsin (Diagnostic) dataset and the 

BreakHis Image dataset. The project involves preprocessing the datasets, training multiple ML and DL models, 

hyperparameter tuning, and evaluating their performance to identify the best-performing models for binary 

and multiclass classification tasks.  

The document provides step-by-step instructions for running the code, including setting up the environment, 

preprocessing the data, training the models, evaluating them using test data, and generating results. 

2. Hardware and Software Configurations 

2.1 Hardware 

• Processor: 12th Gen Intel(R) Core(TM) i5-1235U @ 1.30 GHz 

• Installed RAM: 16.0 GB (15.7 GB usable) 

• System Type: 64-bit Operating System, x64-based Processor 

• Storage: 512 GB SSD 

2.2 Software 

• Operating System: Windows 11 

• Programming Language: Python 3.10 

• IDE: Jupyter Notebook (Anaconda Distribution) 

• Libraries: 

3. Installing Modules and Libraries 

Libraries that need to be installed are: 

!pip install numpy; pandas; matplotlib; seaborn; sklearn; tensorflow; ucimlrepo 

Then import the following libraries: 

 

 

 

 

 

 

 

 

 



4. Step-by-Step Workflow 

4.1 Data Preparation 

4.1.1 Wisconsin Dataset 

Download and Load Data: 

The Breast Cancer Wisconsin (Diagnostic) Dataset was downloaded from the UCI Machine Learning 

Repository. The dataset is provided in .csv format and contains 569 records with 32 columns, including 

one target column (diagnosis) and 31 numerical features. 

Run the code mentioned in Fig 2 to import the dataset: 

 

Figure 2: Import Wisconsin .csv dataset 

Preprocessing: 

1. Check for any Missing Values (null) 

2. Feature Extraction 

 

Select the top features for the machine learning models, to reduce the dimensionality from 30 

features. Following feature selection methods have been carried out: 

• Correlation: is fast and easy but limited to linear relationships. 

 

Figure 3: Feature Selection - Correlation 

• RFE: works well for recursive elimination but can be slow on large datasets. 

 

Figure 4: Feature Selection - Recursive Feature Elimination 

 

 

https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic


• Random Forest: captures non-linear interactions. 

Figure 5: Feature Selection – Feature Importance from Random Forest 

• Lasso: performs regularization and selects fewer but important features. 

 

Figure 6: Feature Selection – Lasso Feature Selection 

• Mutual Information: captures non-linear dependencies not handled by traditional correlation metrics. 

 

Figure 7: Feature Selection – Mutual Information 

The selected features were a combined as per Fig 8: 

 

Figure 8: Selected Features 

3. Encoded the independent variable (B:0, M:1) 
4. Standardize the data (Fig 9): 

 

Figure 9: Standardize data 

5. Splitting the Data 

The dataset was split into training, validation and testing subsets using a 60-20-20 split ratio (as per 
Fig 10) while ensuring class balance with stratification: 

Figure 10: Dataset Split 

 



4.1.2 BreakHis Dataset 

Dataset Description:  

The BreakHis dataset is a medical image dataset widely used for classifying breast cancer histopathological 

images. It is structured as follows: 

• Binary Classification: Images are divided into benign and malignant categories. 

• Multiclass Classification: Malignant and Benign images are further categorized into eight distinct 

cancer types: 

1. Adenosis 

2. Fibroadenoma 

3. Tubular Adenoma 

4. Phyllodes Tumor 

5. Ductal Carcinoma 

6. Lobular Carcinoma 

7. Mucinous Carcinoma 

8. Papillary Carcinoma 

The dataset provides a comprehensive base for both binary and multiclass classification tasks, with the 

challenge of handling class imbalances. 

Download and Load Dataset 

The Breast Cancer Histopathological Database (BreakHis) can be accessed from the Laboratório Visão 

Robótica e Imagem website and alternatively, can be downloaded from BreakHis-Kaggle. The dataset is 

composed of 9,109 microscopic images of breast tumor tissue collected from 82 patients using different 

magnifying factors (40X, 100X, 200X, and 400X). Load the dataset by running the code in Fig 11. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Import BreakHis dataset 

https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://www.kaggle.com/datasets/ambarish/breakhis


Visualization:  

Class distributions were analyzed to understand data imbalance: 

• Binary Classification: 

The total count of benign and malignant images was visualized using a bar plot to highlight the data skew. 

Figure 12: Visualize Binary Class Distribution 

• Multiclass Classification: 

The counts of images for each of the eight cancer types were plotted to reveal imbalances across classes. 

Figure 13: Visualize Multi Class Distribution 

These visualizations helped identify augmentation needs to balance the dataset. 

Augmentation: 

Binary Classification 

To balance the dataset for binary classification (refer fig 14): 

• A combination of image augmentation techniques such as rotation, horizontal/vertical flipping, 

cropping, and zooming was applied. 



• The original dataset of 7,909 images was expanded to 20,778 images by merging the original and 

augmented images. 

• This augmentation ensured the counts of benign and malignant images were approximately equal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Data Augmentation for Binary Class 



Multiclass Classification 

For multiclass classification: 

• Target Size Calculation: The class with the highest count, Ductal Carcinoma (~3,500 images), was 

set as the target size. 

 

 

 

 

 

 

 

 

 

 

Figure 15: Multi Class – Augmentation Count 

• Augmentation Factors: 

o Each class was analyzed, and an augmentation factor was calculated to scale the count of 

images to match the target size. 

o For example, if a class had 1,000 images, a factor of 3.5 was applied to generate ~3,500 

images. 

After augmentation, all eight classes had a similar image count (~3,000+ images), achieving a balanced 

dataset. 

 

 



Figure 16: Multi Class – Data Augmentation 

4.2 Tensor Preparation 

Binary and Multiclass: Image Flattening and Tensor Conversion 

To process the image datasets for both binary and multiclass classification, the image files were organized 

into respective class-specific directories. Each class was assigned a unique label to ensure seamless 

conversion into Tensor format. 

Flattening the Directory: 

• For binary classification, the original and augmented images of benign and malignant classes were 

merged into a single directory for each class (Fig 17). 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Binary Class – Merge Original and Augmented Images 

• For multiclass classification, the images from all eight classes (e.g., ductal carcinoma, lobular 

carcinoma, etc.) were similarly flattened into individual directories. 

Figure 18: Multi Class – Merge Original and Augmented Images 



• This structured approach ensured that the tensor processing package recognized the data 

hierarchy correctly. 

Tensor Conversion: 

• The images were loaded as NumPy arrays using a custom preprocessing pipeline and converted into 

tensors using TensorFlow's image_dataset_from_directory() function. This method automatically 

assigned labels based on the directory structure. 

• The images were resized to a standard size (e.g., 224x224 pixels) to maintain consistency. 

Dataset Splitting: Train (70%), Validation (15%), Test (15%) 

After the tensor conversion, the dataset was split into three subsets to ensure robust training and 

evaluation of the models. The splitting process ensured class balance by using the stratified split method. 

The split ratios were consistent across both binary and multiclass datasets to maintain uniformity in the 

evaluation process (Fig 19). 

Figure 19: Split BreakHis Dataset to Train, Validation and Test Set 



5. Model Development 

5.1 Machine Learning Models (Wisconsin Dataset) 

Wisconsin Dataset is trained with 8 different conventional machine learning models and chose the best 

performing one. 

Algorithms Used: 

1. Logistic Regression 

Figure 20: Model Training – Logistic Regression 

2. Random Forest 

 

 

 

 

 

 

 

 

 

 

Figure 21: Model Training – Random Forest 



3. XGBoost 

 

 

 

 

 

 

 

 

 

 

Figure 22: Model Training - XGBoost 

4. Gradient Boosting 

 

 

 

 

 

 

 

 

 

Figure 23: Model Training – Gradient Boosting 

5. K-Nearest Neighbours 

 

 

 

 

 

 

 

 

Figure 24: Model Training – K-Nearest Neighbours 



6. Naïve Bayes 

 

 

 

 

 

 

Figure 25: Model Training – Naïve Bayes 

7. Stochastic Gradient Decent 

Figure 26: Model Training – Stochastic Gradient Decent 

8. Decision Tree 

 

 

 

 

 

 

 

 

Figure 27: Model Training – Decision Tree 



In each of the models, we have used Grid Search hyper parameter tuning and K-fold cross validation. 

5.2 Deep Learning Models (BreakHis Dataset) 

For the BeakHis Image dataset, we create conventional neural networks from scratch and train these for 

both binary (benign or malignant) and multiclass (8 subclasses) classification problem. 

5.2.1 Binary Classification 

CNN Architecture:  

 

Figure 28: CNN Model Architecture for Binary Class Classification 

Training Configuration: 

• Early stopping and learning rate scheduler. 

 

 

 

 

 

Figure 29: Early Stopping and LR Scheduler for Binary and Multiclass Models 

• Epochs: 20. 

• Model saved as .keras. 



 

 

 

 

 

 

Figure 30: Train Binary Class Model 

Testing and Evaluation: 

• Testing the binary model with unseen data. 

 

Figure 31: Testing of Binary model 

• Precision-recall curve for threshold optimization. 

• Optimum threshold calculation (best F1-score) (Fig 34). 

• Confusion matrix and classification report (Fig 35). 

5.2.2 Multiclass Classification 

CNN Architecture:  

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: CNN Model Architecture for Multiclass Classification 



Training Configuration: 

• Early stopping and learning rate scheduler (Fig 29). 

• Epochs: 50. 

 

 

 

Figure 33: Training Multi Class Model 

Testing and Evaluation: 

• Predicting the multiclass model with test dataset. 

 

 

 

 

 

 

Figure 34: Testing and Predicting Output using Multi Class Model 

• Classification report and confusion matrix. 

6.  Results and Analysis 

5.1 Wisconsin Dataset 

Model Comparisons: 

• A table comparing accuracy, precision, recall, F1-score for all ML models. 

 

 

 

Figure 35: Model Comparison Table for Wisconsin Data 

• Testing the best model of Random Forest using test dataset. 

 

 

 

 

 

 

Figure 36: Random Forest Model Prediction 



• Highlighting the Random Forest as the best-performing model. 

    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Results of best performing Random Forest model i) Confusion Matric, ii) ROC Curve                                           

iii) Precision-Recall Curve iv) Feature Importance plot 

5.2 BreakHis Dataset 

Binary Classification Results: 

• Training vs. Validation Loss and Accuracy. 

 

 

 

 

 

 

 

 

 

 

Figure 38: Plotting Training and Validation Accuracy and Loss for Binary Model 



• Precision-Recall Curve. 

 

 

 

 

 

 

 

Figure 39: Precision-Recall Curve against Threshold after Testing and Prediction of Binary Model 

• Optimum threshold confusion matrix using the best threshold. 

 

 

 

 

 

 

Figure 40: Optimum Threshold Calculation    Figure 41: Confusion Matrix 

Multiclass Classification Results: 

• Training vs. Validation Loss and Accuracy (plot). 

 

 

 

 

 

 

 

 

 

 

Figure 42: Plotting the training and validation accuracy and loss for Multi Class Model 

 

• Final classification report and confusion matrix for 8 classes. 



 

 

        Figure 43: Classification Report     Figure 44: Confusion Matrix 

6. Running the code: 

The code needs to be run in the same order as it has been provided, to avoid the errors being raised for 

non-declaration of any variables. It is advised run the code in same order, which mean the first cell should 

be run first followed by the second one. 

7. Instructions for Reproducing Results 

• Step-by-step guide to execute the project: 

1. Open the .ipynb file and install dependencies 

2. Load datasets. 

3. Run preprocessing scripts. 

4. Train models. 

5. Evaluate models and generate outputs. 

 


