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Abstract 

Among all health issues in the world, breast cancer is one of the most critical, and so there is a 

dire need for effective and timely diagnostic tools that support treatment and prognosis. This 

work explores the use of machine learning and deep learning methods for the classification of 

breast cancer using two benchmark datasets: the Wisconsin Breast Cancer Diagnostic Dataset 

and the BreakHis Histopathological Images Dataset. The Wisconsin dataset utilized structured 

data in machine learning models, whereas BreakHis focuses on the classification of 

histopathological images with the use of Convolutional Neural Networks. 

The preprocessing techniques performed on this Wisconsin dataset include feature scaling and 

selection using RFE and Random Forest feature importance. This is done in preparing the dataset 

for training. A total of seven different machine learning models explored in this study involve 

Logistic Regression, Random Forest, and XGBoost. Random Forest came to be the best model, 

with an accuracy of 97.37% and very high F1-score, precision, and recall. 

The BreakHis dataset consists of images from eight varieties of tumors, with four of them being 

benign and four malignant, hence requiring both binary and multiclass classification. The images 

were resized as a pre-processing step and for introducing more variation. The Conventional 

Neural Network (CNN) resulted in a test accuracy of 99.94% in binary classification. In 

multiclass classification, the CNN did well and gave an accuracy of 90.98%. Certain key 

performance indicators that proved the efficiency of the models were confusion matrices, 

precision-recall curves, and classification reports. 

The present work underlines the efficiency of integrating machine learning on structured data 

with CNNs on image data with regard to the diagnosis of breast cancer. Results confirm the 

potentiality of computational models as a means to improve diagnostic performance by early 

diagnosis, thus assisting clinical decision-making. 

1 Introduction  

1.1 Background  

Breast cancer is one of the leading causes of cancer-related deaths worldwide, making early 

and accurate diagnosis crucial for effective treatment and improved survival rates (Spanhol et 

al., 2016). Traditional diagnostic techniques, such as mammography, biopsies, and 

histopathological analysis, rely heavily on expert interpretation, which can be time-consuming 

and prone to subjectivity (Quinlan, 1996). The increasing availability of digital 

histopathological images and structured clinical data has led to significant advancements in 
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automated diagnostic approaches using machine learning (ML) and deep learning (DL) 

methods (He et al., 2016). 

With the rise of computational methods, ML algorithms have demonstrated their potential in 

analysing structured clinical datasets, such as the Wisconsin Breast Cancer Diagnostic Dataset, 

by extracting meaningful patterns that aid in classification (Breiman, 2001). Similarly, deep 

learning techniques, particularly Convolutional Neural Networks (CNNs), have been highly 

effective in image-based medical diagnostics, allowing automated feature extraction from 

histopathological images (Szegedy et al., 2017). By integrating structured data analysis with 

CNN-based image classification, a more robust and accurate breast cancer diagnosis system 

can be developed (Sumathi et al., 2023). 

1.2 Motivation 

Some of the major challenges and opportunities that exist in the diagnosis of breast cancer have 

been reasons for this research. First, histopathological datasets such as BreakHis provide a 

considerable number of images-7,909 in all-,but the dataset is highly imbalanced. For example, 

there are many more malignant samples compared to benign ones; this may lead models to be 

biased toward the dominant class and thus not generalize effectively on all classes. Besides, 

different staining, magnification, and sample preparation methods bring more noise in the data 

points, which further develops difficulties in creating robust and generalizable models. 

The Wisconsin dataset provides structured clinical data with rich numerical features but is 

relatively small compared with image datasets; hence, it can be challenging to train machine 

learning models due to overfitting concerns. Therefore, feature selection methods should be 

used to select major predictors, which will enhance the interpretability and performance of the 

models. 

While CNNs are really good to go with unstructured image data, structured data from clinical 

measurements carry complementary information on tumor characteristics that can considerably 

increase diagnostic precision. This solution can be more robust, combining the strengths of 

CNNs in feature extraction from images with the traditional machine learning methods of 

handling structured data. 

Finally, the success of automated diagnostic systems is not solely dependent on achieving high 

accuracy but also on interpretability and reliability to gain confidence among physicians. 
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Hence, this work will dwell on some of the key challenges in the implementation of explainable 

and effective AI-driven diagnosis into clinical practice related to the diagnosis of breast cancer. 

1.3 Research Objectives 

This paper presents a framework for diagnosing breast cancer using machine learning 

techniques on clinical and histopathological data. More precisely, the objectives are: 

1. The data should be pre-processed, cleaning and balancing it using both the Wisconsin 

Diagnostic and BreakHis datasets. 

2. The implementation of CNN models for histopathological image classification on 

binary and multiclass classifications is realized in the BreakHis dataset. 

3. The following code chooses the most important features for the Wisconsin dataset with 

different feature selection methods: Recursive Feature Elimination and Random Forest 

Importance. 

4. Comparing the performance of all machine learning models on structured clinical data 

and CNN on unstructured image data by their accuracy, precision, recall, F1 score, and 

ROC-AUC performance metrics. 

5. Visualize model predictions and provide intuition on model deficiencies, thereby 

informing the direction of next steps in creating explainable AI breast cancer diagnosis. 

2   Related Work 

The application of machine learning to breast cancer diagnosis has been very well explored, 

with significant developments related to image classification and structured data analysis. This 

section summarizes some of the relevant research contributions within three major domains: 

histopathological image classification, structured clinical data models, and hybrid approaches 

that merge these methodologies. 

2.1 Histopathological Image Analysis 

Histopathological images basically stand for a detailed microscopic view of the breast tissue, 

necessary in distinguishing benign and malignant tumors. Their analysis is presently dominated 

by convolution neural networks since they may do the complex features automatically instead 

of being hand-designed. 

He et al. introduced in 2016 a deep learning architecture called ResNet with residual 

connections that alleviate the problem of vanishing gradient. Because the deeper networks 
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would have an easier time learning meaningful representation from images, ResNet is 

especially fit to extract fine-grained features in histopathological images. In fact, many 

achieved state-of-the-art performance in the dataset of BreakHis at various magnifications such 

as 40x, 100x, 200x, and 400x by applying this architecture. 

Szegedy et al. in 2017 developed the model Inception-ResNet by combining inception modules 

with residual connections. This hybrid design will optimize the computational efficiency along 

with accuracy in feature extraction, making this network ideal for histopathological image 

classification. Their study thus demonstrated significant improvements in various medical 

imaging tasks, which speaks to the flexibility of an inception-based architecture. 

BreakHis has been a standard reference benchmark for breast cancer image classification. 

Spanhol et al. (2016) have conducted work involving the application of CNN to BreakHis, 

where the maximum accuracy achieved was 95%. Variability in staining techniques, 

magnification, and related issues introduce noise into the dataset. Data augmentation by 

rotating, flipping, and making adjustment for contrast was employed; however, it highlighted 

further interests for big data with a balanced situation. 

Further improvements in image analysis have been achieved by the use of super-resolution 

techniques. Ledig et al. (2017) proposed the Super-Resolution Generative Adversarial Network 

(SRGAN) to enhance image quality. Applied to histopathological images, SRGAN enhanced 

the input resolution and allowed CNNs to extract more detailed features, thus achieving higher 

classification accuracy. 

2.2 Structured Clinical Data Models 

Clinical datasets, such as the Breast Cancer Wisconsin Diagnostic Dataset, consist of structured 

numerical features describing properties of a tumor, including radius, texture, and compactness. 

Many such datasets have been well explored with the help of traditional machine learning 

models, which perform well on numerical data because of their interpretability and efficiency. 

Breiman proposed, in 2001, the Random Forest ensemble technique, which builds multiple 

decision trees combined to enhance accuracy and reduce overfitting. The Random Forest 

technique is very effective for high-dimensional structured data and has therefore been widely 

used for diagnostic analysis of breast cancer by yielding reliable results. 

Quinlan (1996) developed the C4.5 decision tree algorithm that generates readable models 

useful in showing the relevance of the features considered. C4.5 was also applied to the 



6 
 

Wisconsin dataset with considerable success and produced an understandable diagnostic 

process which is especially important in a clinical context. 

Another impactful algorithm is XGBoost introduced by Chen and Guestrin in 2016. XGBoost 

is a scalable and efficient gradient boosting framework that has shown an excellent 

performance on structured data. On the Wisconsin dataset, this XGBoost outperformed other 

traditional models in both accuracy and speed, therefore, is preferred for clinical data 

classification. 

Hybrid models leverage the power of CNNs for feature extraction from unstructured data with 

the predictive strength of traditional machine learning models on structured data. Such models 

have recently been quite popular because they can integrate complementary data types that give 

a more holistic view of the problem. 

Sumathi et al. (2023) demonstrated such hybrid approaches; they coupled CNN-extracted 

features with CatBoost-a gradient-boosting algorithm optimized for categorical data-and 

achieved higher accuracy in ovarian cysts detection compared with standalone CNN 

approaches, thus illustrating added value from a combination of image-based with structured 

data. 

Purnama et al. (2015) proposed a more simplistic hybrid model for breast cancer diagnosis by 

combining statistical features with the K-nearest neighbour algorithm. Their results look very 

promising, but the drawbacks in terms of scalability and generalization on larger datasets have 

been-discussed. 

Subramani et al. (2023) presented a hybrid model that combined CNN with multilayer 

perceptron for diagnosing PCOS. The results proved that hybrid architectures improve the 

diagnostic accuracy with low computational overhead. 

3   Research Methodology 

This section is meant to detail the structured methodological approach adopted for the pre-

processing, analysis, and modeling of datasets used in this work. In this work, the methodology 

is performed by using the CRISP-DM framework to ensure coherence and structuring of data 

preparation, modeling, and evaluation. The two diverse datasets were: Breast Cancer 

Wisconsin Diagnostic Dataset and BreakHis Histopathological Images Dataset, aimed at 

different classification issues. This section describes the datasets, preprocessing steps taken, 

and general workflow. 
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3.1 Datasets 

The study leveraged two publicly available data sets: 

1. Breast Cancer Wisconsin Diagnostic Dataset: The dataset utilizes original data from 

the measurement of a breast tumor biopsy with numeric attributes and classification as 

either benign or malignant, presenting 569 samples with 30 features each. 

2. BreakHis Dataset: It consists of 7,909 histopathological images of breast tissues that 

were captured under different magnifications. It falls into binary classification, divided 

into benign and malignant cases, and extended to eight classes-four benign and four 

malignant-for multiclass classification tasks. Though rich in size, the dataset suffers 

from significant class imbalance problems; hence, balancing techniques like data 

augmentation must be considered 

3.2 Preprocessing 

Both were pre-processed by the requirements of the model used in machine learning or deep 

learning: 

1. Breast Cancer Wisconsin Diagnostic Dataset: 

• Checked and confirmed that missing values were absent. 

• This was feature normalizing by z-score normalization to scale all the attributes alike. 

• Dimensionality reduction of the features used was done with the methods of RFE, 

Random Forest Importance, and Lasso Regression for better performance by the 

models. 

• The sub-sets required were as follows: 60% training, 20% validation, and 20% testing. 

2. BreakHis Dataset: 

• All images were resized to the size of 224x224 pixels, as most of the CNN architecture 

requires this size. 

• Flipping, rotation, and zooming are a part of augmentation in order to balance the 

classes and generally improve model performance. 

• The data were then divided into binary tasks of classification: benign versus malignant 

and multiclass classification, namely eight subcategories. Further, it was divided into 

training, validation, and test subsets in the ratio 70:15:15. 

3.3 Workflow 
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The steps to be followed in this workflow, for this study, were: 

1. Data Understanding: Went through both the datasets on an exploratory basis to see 

problems such as class imbalance, feature correlations, etc. 

2. Data Preprocessing: Normalization, feature selection, and augmentation of data were 

performed successively as preprocessing steps for the datasets. 

3. Model Training: 

• Applications of traditional machine learning models were performed. These are, among 

others, logistic regression, random forest, and XGBoost. On the Wisconsin dataset, 

hyperparameters tuning using Grid Search was performed. 

• BreakHis dataset used a solution which implemented CNN for binary and multi-class 

classification. 

4. Model Testing: Accuracy, precision, recall, F1-score, and ROC-AUC were performed to 

evaluate the model's performance concerning the test sets. 

5. Visualization: Confusion matrices, precision-recall curve, and training-validation plots to 

interpret and evaluate the performance of models 

Architectural Flow Diagram 

4   Design Specification 

This section shows how the methodology is to be implemented in performing the classification 

of breast cancer, using two datasets, namely the Breast Cancer Wisconsin Diagnostic Dataset 

and the BreakHis Histopathological Images Dataset. This section looks at data preparation, 

model architecture, evaluation metrics, and some used computational resources, all directed 

toward the realization of project deliverables. 
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4.1 Wisconsin Diagnostic Dataset 

Overview and Objectives  

The Breast Cancer Wisconsin Diagnostic Dataset consists of 569 samples, which are classified 

into two classes consisting of benign and malignant tumors. In relation to the latter, the main 

objective was to apply and compare different machine learning models in classifying the 

tumors, mainly based on computational efficiency and maximum accuracy. 

Data Preprocessing 

Missing values were checked in the dataset, and it was found to be absent. Each feature was 

normalized using z-score standardization in order to bring all attributes to a uniform scale, 

ensuring the model's unbiased performance. The target variable, Diagnosis, was encoded as 

binary values: 0 for benign cases and 1 for malignant cases. The dataset was divided into 

training (60%), validation (20%), and testing (20%) sets. 

Unlike some approaches, feature engineering to aggregate metrics (e.g., mean, standard error, 

worst) was not performed, as the original features were directly used in their provided form.  

Feature Selection 

To enhance model performance and interpretability, feature selection techniques were 

applied: 

• Correlation: Measures how strongly each feature correlates with the target variable. 

High correlation indicates a potentially important feature. 

• Recursive Feature Elimination (RFE): Identified and selected the most important 

features contributing to classification. 

• Random Forest feature importances: Returned feature rankings, sorted by their 

importance score as related to the predictive strength of a model. 

• Lasso Regression: Penalised irreverent features, giving a smaller feature set. 

• Mutual Information: Presented non-linear relationships between features and the target 

variable. 

Model Selection and Implementation 

To classify tumours eight machine-learning models are deployed. 

• Logistic Regression 



10 
 

• Random Forest 

• XGBoost 

• Gradient Boosting 

• Decision Tree 

• k-Nearest Neighbors 

• Naive Bayes 

• Stochastic Gradient Descent 

Hyperparameter tuning for each model was performed using a grid search method to find 

good settings. For example: 

• Random Forest: Number of trees and maximum depth were optimized. 

• XGBoost: The learning rate, maximum depth, and number of estimators were tuned. 

Cross-validation was performed in order to make the model more robust and reduce overfitting. 

The evaluation metrics for each model were accuracy, precision, recall, F1-score, and AUC-

ROC. Of those, Random Forest had the best performance in terms of accuracy with 97.37%, 

precision with 97.62%, and F1-score with 96.47%. 

Evaluation Metrics 

Models were evaluated based on the following metrics: 

• Accuracy represents the overall correctness of the prediction, which is a measure of the 

ratio of correctly predicted cases out of all cases. 

• AUC-ROC basically plots true positives against false positives and gives, for the 

models, some sort of capability with respect to class distinction. 

• Precision and Recall: Although precision is the ratio of true positives predicted out of 

the total number of positives predicted, recall refers to the ability of the model at finding 

every actual positive. 

• F1 Score: This is the harmonic mean of precision and recall. Thus, it gives a balanced 

measure for model accuracy in cases of dataset imbalance. 

Below are the mathematical formulations for each metric: 

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
) 

• 𝑅𝑒𝑐𝑎𝑙𝑙: (𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
)                                                     

• 𝐹1 − 𝑆𝑐𝑜𝑟𝑒: (𝐹1-𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
) 
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4.2 BreaKHis Dataset  

Overview and Objectives 

The BreakHis dataset is a collection of 7,909 histopathological images of breast cancer tissues 

divided into two classes: benign and malignant. It has four subclasses for each category, 

resulting in an eight-class problem. Our aim was to classify images using CNN models for 

binary and multiclass classification tasks (benign vs. malignant and the eight tumor types). 

Data Preprocessing 

Images were resized to 224x224 pixels to standardize input dimensions for CNN models. The 

following data augmentation techniques were used to handle class imbalance and improve 

generalization: 

• Binary Classification Augmentation: A few techniques such as flipping, rotation, and 

zooming are performed to balance the number of benign and malignant images. 

• Multiclass Classification Augmentation: The same procedures were followed to maintain 

class balance for all eight classes. 

After augmentation, the dataset is expanded to 25,844 images, balanced between the classes. 

Then, the data is divided into training (70%), validation (15%), and test (15%) sets. 

Model Architectures 

1. Binary Classification Model: 

The model with binary class is built using the following architecture. 

• Three convolutional blocks, each consisting of a double convolutional layer with 32, 64, 

and 128 filters, accordingly, followed by a max-pooling and batch normalization layer. 

• A flattening layer to transform spatial features into a 1D vector. 

• A dense, fully connected layer of size 256, followed by dropout to perform regularization. 

• A final dense output layer with the sigmoid activation function for binary classification. 

It is compiled with an Adam optimizer, binary cross-entropy loss, and accuracy as the metric.  

2. Multiclass Classification Model 

For multiclass classification, the architecture was more complex: 
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• Three convolutional blocks with 64, 128, and 256 filters, respectively, each followed by a 

max-pooling and batch normalization layer.  

• A global average pooling layer to reduce feature dimensions right before the dense layers.  

• A fully connected dense layer with 512 units, batch normalization, and dropout to apply 

regularization. The last is a dense output layer, with softmax activation for multi-class 

classification. 

The model was compiled with the Adam optimizer, categorical cross-entropy loss, and 

accuracy as the evaluation metric. 

Training Methods 

Early stopping and learning rate scheduling were used to avoid overfitting and to find out the 

best point of training. Among them, in both, the batch size, learning rate, and type of optimizer 

were tuned. 

Evaluation Metrics 

Models were evaluated against: 

• The best model performance for the binary classification was 99.94% and for the multiclass 

classification was 90.98%.  

• Precision, recall, and F1-score were the balancing factors for the false positives and false 

negatives, respectively. The performance visualization of the model contains confusion 

matrices and training-validation accuracy-loss curves. 

4.3 System Architecture and Tools 

These systems used an architecture with two different pipelines for each data set. While in the 

Wisconsin dataset, machine learning was put into practice, for BreakHis, CNNs were adopted. 

At the end of the testing chain, a comparison among the various results was possible. 

Tools/libraries used: 

• Python: Data preprocessing and implementation in Python. 

• scikit-learn: Provides machine learning models along with feature selection. 

• TensorFlow and Keras: for CNN models and transfer learning.  

• Matplotlib, Seaborn: for the visualization of results. 

4.4 Hardware and Software Requirements 
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The computational resources included: 

• A GPU-enabled system to train CNN models. 

• Python 3.8, libraries of TensorFlow, Scikit-learn - software. 

• Hardware: NVIDIA RTX 3090 GPU, 64GB RAM, 2TB SSD storage for handling large 

datasets and intensive computations. 

5   Implementation 

5.1 Wisconsin Breast  

Preprocessing and model training were done in several phases to get robust classification 

results on the Wisconsin Breast Cancer dataset. 

Data Preprocessing 

The preprocessing was based on quality and usability of the dataset, confirmation that no values 

were missing-as it was indicated during the first observation of data-standardization of features 

on the same scale to increase the performance of the machine learning model, and splitting of 

the dataset into training 60%, validation 20%, and testing 20%. Dimensionality reduction was 

done by feature selection methods, including Recursive Feature Elimination and Random 

Forest Importance, where only highly important predictors were retained to reduce the dataset 

to retain relevant information for the classification. 

Model Abb Accuracy Precision Recall F1-Score AUC-ROC 

Logistic Regression lr 0.9649 0.9535 0.9535 0.9535 0.9627 

Random Forest rf 0.9737 0.9762 0.9535 0.9647 0.9697 

XGBoost xgb 0.9474 0.9111 0.9535 0.9318 0.9486 

Gradient Boosting gb 0.9474 0.9302 0.9302 0.9302 0.944 

K-Nearest 

Neighbours 

knn 0.9474 0.9512 0.907 0.9286 0.9394 

Naive Bayes nb 0.9474 0.9512 0.907 0.9286 0.9394 

Stochastic Gradient 

Descent 

sgd 0.9123 0.9231 0.8372 0.878 0.8975 

Decision Tree dt 0.9649 0.9756 0.9302 0.9524 0.9581 

   Table 1: Model Performance Comparison for Accuracy, Precision, Recall, F1-Score, and AUC-ROC. 

Model Training 

The pre-processed data was then used to train the following seven machine learning models: 

Logistic Regression, Random Forest, XGBoost, Gradient Boosting, K-Nearest Neighbors, 

Naive Bayes, and Stochastic Gradient Descent. To evaluate the performance of the developed 
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models, standard performance metrics like accuracy, precision, recall, F1-score, and AUC-

ROC were employed. Table. 1 shows the summarized performance metric of all the models, 

among which the best performance is given by Random Forest with an accuracy of 97.37% 

and yields the highest F1-score of 96.47%. 

Performance Analysis. 

The Random Forest model's performance was further analyzed to confirm its superiority using 

various metrics and visualizations: 

Model Training and Validation: 

• Training and validation accuracy plot is shown in Table. 1, which shows improvement in 

accuracy over the epochs. The final training accuracy reaches 97.37%, while the validation 

accuracy is very close at 96.76%. 

• To provide additional context, a comparison graph of accuracy across the seven 

implemented models is shown in Fig. 2. This graph highlights Random Forest as the top- 

• performing model, achieving the highest accuracy of 97.37%, with Logistic Regression and 

XGBoost following closely behind. 

Fig. 2: Comparison of Accuracy Among the Eight Models. 

Precision-Recall Curve: 

• Fig 3: shows the precision-recall curve, which demonstrates how well the Random Forest 

model has performed in finding a balance between precision and recall. It resulted in a 
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precision of 97.62% and recall of 95.35%, meaning it was good at avoiding false positives 

and false negatives. 

Confusion Matrix: 

• Confusion matrix (Fig. 4) shows in detail how the model made predictions: 

• 72 benign cases were correctly classified. 

• 39 malignant cases were correctly classified. 

• malignant cases were misclassified as benign. 

 

           Fig. 3: Precision-Recall Curve for Random Forest.                                  Fig. 4: Confusion Matrix for Random Forest. 

Feature Importance: 

• The Random Forest model used feature importance metrics to rank predictors. The best 

features—the ones with the highest contributions to the model's decision-making process—

were radius_mean, texture_mean, perimeter_mean, and smoothness_mean.  

• Notably, by exploiting these key features, the model attained strong classification 

performance while reducing the noise from less relevant predictors. Fig. 6 

These in-depth analyses identify the Random Forest as the best model for the Wisconsin Breast 

Cancer dataset, with exceptionally good classification accuracy and a guarantee of giving 

reliable predictions for diagnostic purposes. 

5.2 BreakHis Dataset (Binary Classification) 
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The BreakHis dataset was employed for binary classification, distinguishing between benign 

and malignant breast tumor images using deep learning techniques. 

Data Preprocessing 

In total, the dataset had 7,909 histopathological images, all resized to 224x224 pixels to 

standardize the input dimensions for the CNN models. To handle class imbalance and increase 

generalization, data augmentation was used that included rotation, flipping, and zooming. After 

preprocessing, the dataset was split into training, validation, and testing sets in a ratio of 70%, 

15%, and 15%, respectively. 

 

     Fig. 5: Training and Validation Accuracy/Loss for Binary Model.                                  Fig. 6 Feature Importance for Wisconsin Dataset 

Binary Model Training 

 A Convolutional Neural Network was designed for binary classification, with convolutional 

layers to extract the feature and dense layers for classification. The optimizer used was Adam, 

which was trained with binary cross-entropy loss. It gave a test accuracy of 99.94% and a test 

loss of 0.6683. It can be clearly seen that the plots of training and validation accuracy/loss in 

Fig. 5 are converging. It is clearly evident that the validation accuracy is always above that of 

training accuracy, while the validation loss is always less than the training loss, which indicates 

that generalization is going strong due to probably regularization techniques and augmentation 

and effective preprocessing, that keeps overfitting in check hence enables to generalize well on 

unseen data  

The precision-recall curve (Fig. 7) highlights the model's ability to balance precision and recall, 

achieving high performance in both metrics. The confusion matrix (Fig. 8) shows near-perfect 
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classification results, corroborating the model's robustness in distinguishing between benign 

and malignant classes 

   

   

  Fig. 7: Precision-Recall Curve for Binary Model               Fig. 8: Confusion Matrix for Binary Model 

5.3 BreakHis Dataset (Multiclass Classification) 

For the multiclass classification task, the BreakHis dataset was divided into eight distinct tumor 

classes: four benign and four malignant. The goal was to classify these tumor types using a 

modified CNN architecture. 

Data Preprocessing 

Similar to binary classification task, images were resized to 224x224 pixels. Data augmentation 

techniques such as flipping, rotation, and zooming were applied to introduce variability and 

balance the classes. The dataset was then split into training (70%), validation (15%), and testing 

(15%) sets. 

Multiclass Model Training 

The CNN model for multiclass classification used a softmax activation function in the output 

layer, to handle the multiple classes. The model is trained using the loss function of categorical 

cross-entropy. It achieved an accuracy of  90.98% and the test loss of 1.5174 on the test set. 

Training and validation accuracy/loss plots are shown in Fig. 9; this shows consistent 

improvement up to 50 epochs, with validation accuracy higher than training accuracy and 

validation loss lower than training loss. Similar to the binary model, this behavior indicates 

good generalization owing to regularization and augmentation techniques. 
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The confusion matrix in Fig. 10 gives a more granular view of the classification performance 

across the eight classes. The model showed high accuracy in most classes but misclassified 

slightly, which could be improved further with some more fine-tuning. This clearly proves that 

the model can handle multiclass classification problems of this complexity. 

 

      Fig. 9: Training and Validation Accuracy/Loss for Multiclass Model.                  Fig 10: Confusion Matrix for Multiclass Model. 

6   Evaluation 

The results of the experiments conducted to study the Wisconsin Diagnostic Dataset, and the 

BreakHis Dataset are analyzed in detail in this section. The findings are supported by visual 

aids, and statistical comparisons are performed; hence, strengths and limitations of each model 

are highlighted. 

6.1 Experiment 1: Evaluation of Machine Learning Models on Wisconsin 

Dataset 

Wisconsin dataset was run on seven machine learning models and evaluated by the criteria of 

accuracy, precision, recall, F1-score, and AUC-ROC. 

Model Comparison  

The comparative performance of models is visualized in Table. 1, in which Random Forest 

emerges as the best-performing model considering its accuracy of 97.37%, precision of 

97.62%, and F1-score of 96.47%. Other good performers are Logistic Regression and 
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XGBoost; however, Random Forest consistently led the performance across all criteria 

compared to other models. 

The confusion matrix for Random Forest (Fig 4) shows that: 

• 72 benign cases were correctly classified. 

• 39 malignant cases were correctly classified. 

• malignant cases were misclassified as benign. 

Validation Metrics 

• Accuracy: The overall accuracy of the model is 97.37%, which proves its high reliability 

in distinguishing between benign and malignant cases. 

• Precision and Recall: Random Forest yielded the best performance with 97.62% precision 

and 95.35% recall, hence very few false positive or false negative. 

• Confusion Matrix Analysis: Fig. 4 reveals the confusion matrix, wherein the model can 

rightly identify most of the benign and malignant cases with a few misclassifications. This 

confirms that Random Forest is robust against imbalanced data. 

• Feature Importance: The feature importance from the Random Forest showed that 

concave_points1, peremeter3, radius3 and area3 were the strongest predictors that 

contributed most to the classifier's performance. 

6.2 Experiment 2: Binary Classification on BreakHis Dataset 

Model Performance 

The binary CNN model was able to achieve 99.94% test accuracy with a test loss of 0.6683. 

The performance shows the capability of the model in classifying the images with minimum 

errors. 

Validation Metrics 

The training vs. validation accuracy/loss plots - Fig. 5 depict the following: 

• Validation accuracy was always higher than training accuracy and reached a higher final 

value. 

• Validation loss was lower compared to the training loss, which depicts good generalization. 

This behaviour shows the consequence of regularization and data augmentation not to overfit. 



20 
 

Precision-Recall Curve 

The precision-recall curve of Fig. 7 is a balance between precision and recall, with a minimum 

number of false positives and false negatives. The model has kept a high precision with a good 

recall rate to prove its reliability in distinguishing the images as either benign or malignant. 

Confusion Matrix Analysis 

The confusion matrix in Fig. 8 confirms the model's performance. No major misclassifications 

happen, thus showing the model's accuracy across the dataset. 

6.3 Experiment 3: Multiclass Classification on BreakHis Dataset 

The BreakHis dataset was also used for multiclass classification, categorizing images into eight 

tumor types 

Model Performance 

The multiclass CNN model yielded a test accuracy of 90.98% and a test loss of 1.5174. This 

suggests excellent performance, though a little worse than the binary model due to increased 

difficulty in distinguishing eight classes. 

Validation Metrics 

Training and validation accuracy/loss plots (Fig. 9) are presented below: 

• Validation accuracy outperformed training accuracy throughout the training. 

• Validation loss was always lower than the training loss, which shows good generalization. 

Confusion Matrix Analysis 

Fig. 10 shows the confusion matrix that represents the classification performance for each of 

the eight classes in detail. Overall, the model performed well, though slight misclassifications 

can be observed between closely related classes, such as some subtypes of benign and 

malignant classes. These results indicate possible further improvements using advanced 

architectures or extra data augmentation. 

6.4 Comparative Analysis Across Experiments 

Overall Performance 

Comparative analysis shows that: 
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The Random Forest algorithm behaved the best on structured data, classifying 97.37% of 

Wisconsin data. The binary CNN model presented perfect results, achieving an accuracy of 

99.94%. Multiclass CNN performance was at 90.98, yet it is quite good as far as the task was 

complex enough. 

Challenges and Insights 

These are the main challenges: class imbalance in the BreakHis dataset and the complexity of 

multiclass classification. These issues have been mitigated by using regularization and 

augmentation, thus ensuring strong generalization 

7   Conclusion and Future Work 

Conclusion 

The given research was focused on the development of a machine learning framework for the 

classification of breast cancer using two of the most studied datasets: the Wisconsin Breast 

Cancer Dataset and the BreakHis dataset. Among other objectives, this included the pre-

processing of these datasets, implementing machine learning models for structured data, 

designing and training deep learning models for histopathological images, and evaluating their 

performances using standard metrics. Throughout the study, we effectively addressed these 

objectives and achieved major results. 

Key results of this analysis are: 

• Random Forest was identified as the top model for Wisconsin with 97.37% accuracy, 

97.62% precision, and 95.35% recall. The nature of the classes can be seen through the 

confusion matrix, which revealed very few misclassifications in this study between benign 

and malignant, adding weight to its robustness on structured data classification. 

• In the case of the BreakHis dataset, binary classification with a CNN achieved a test 

accuracy of 99.94%, which showed that the model could tell the difference between benign 

and malignant cases. 

• Multiclass classification of the BreakHis dataset into eight tumor subtypes using a CNN 

architecture was done, with an accuracy of 90.98% on test data. In fact, the model was able 

to perform such a complex task with an accurate detailed classification of the various tumor 

classes, as shown by confusion matrix and precision-recall analysis. 
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These findings emphasize how effective machine learning and deep learning techniques are in 

improving the accuracy of diagnosis concerning breast cancer. This could significantly 

improve early detection and treatment planning if integrated into clinical workflows. 

Implications 

The findings of the present study have significant implications for theoretical and practical 

perspectives: 

• Academic Contribution: The findings add to the literature on machine learning and medical 

image analysis, especially in the field of diagnosis of breast cancer. The insights gained 

from this research will help guide future studies on how structured and image data are 

combined to obtain robust diagnostic models. 

• Practical Implications: The models developed, especially the CNN regarding the 

classification of histopathological images, will help pathologists identify malignancies 

more accurately and with more speed. Feature importance analysis from Random Forest 

may also be used to glean further insight into the important factors contributing to the 

diagnosis of breast cancer. 

Limitations 

Despite these promising results, certain limitations were faced during the study: 

1. Class Imbalance Problem: Even though data augmentation was done to reduce class 

imbalance, originally such imbalance present in the BreakHis dataset did create some 

problem during model training. 

2. Computational Resources: Most deep learning-based models, if big datasets are considered, 

require high computational power; hence, scaling this research may be restricted. 

3. Generalizability: All the models are trained and tested on particular datasets; whether they 

generalize well on other datasets or even in the real clinical world remains to be seen. 

Future Work 

The present research opens several avenues for further investigation: 

1. In corporealization of Advanced Methods: Future studies can be done by using state-of-

the-art architectures based on either a ViT-based or hybrid CNNs model combined with an 

attention mechanism to improve the classification performances. 
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2. Explainability and Interpretability: Developing explainable AI methods with embedded 

visual explanations for the AI model predictions assists in gaining trust and further 

enhances usability among the healthcare professional fraternity. 

3. Real-World Validation: Generalisability and strength of the models need to be tested in 

various and larger clinical trials using real-world datasets. 

4. Clinical Workflow Integration: Needless to say, the development of complete diagnostic 

solutions that integrate the models into clinical workflows will enhance value by way of 

real-time analytics and decision-making. 

5. Multimodal Approach: Integrating different data from other modalities, including genetic 

and radiological imaging, will offer a comprehensive diagnosis.  

The study has identified how machine learning and deep learning can be used to improve 

diagnostics of breast cancer. Further research into the identified limitations, following the 

proposed future directions, will go a long way in the development of more useful, interpretable, 

and impactful diagnostic tools in the struggle against breast cancer. 
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