

Configuration Manual

MSc Research Project

Data Analytics

Sammam Sohail

Student ID: X23256800

School of Computing

National College of Ireland

Supervisor: Anu Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

……. Sammam Sohail……………………………………………………………………………

Student ID:

………23256800……………………………………………………………………………...……

Programme:

…………MSc Data Analytics………

Year:

…2024...…………….

Module:

…………MSC Research Project……………………………………………………….………

Lecturer:

…………Anu Sahni…………………………………………………………………………….………

Submission

Due Date:

…………12/12/24…………………………………………………………………………….………

Project Title:

……Innovative Study on Popular Approaches Used in Gaze Prediction

Word Count:

………1451………………… Page Count: ………………14…………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

………Sammam Sohail…………………………………………………………………………

Date:

………11/12/24………………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Sammam Sohail

Student ID: X23256800

1 Introduction

This configuration manual walks through the different stages of code development for the

gaze prediction research project. These stages include:

• Data Collection

• Data Preprocessing

• Implementation of Gaze Prediction System

• Evaluation of Systems

2 System Configuration

2.1 Hardware Specifications

The traditional system of this study was implemented on the local machine, whereas the

advanced system was implemented on Kaggle Cloud. The detailed specifications of the

resources are highlighted in Figure 1.

Figure 1, Hardware Specifications

2.2 Software and Libraries

The list below contains the libraries and software tools used for this research.

• Python 3.12.1

• OpenCV

• Mediapipe

• Dlib

• Sklearn

• Tensorflow

• Visual Studio Code

2

• Kaggle Cloud with P100 Hardware Accelerator

• Numpy

• Pandas

• 68 point facial landmarks dat file

• VGG Face model weights

Facial landmark file download link:

https://www.kaggle.com/datasets/sajikim/shape-predictor-68-face-landmarks

VGG-Face weights file link:

https://www.kaggle.com/datasets/acharyarupak391/vggfaceweights

3 Data Collection

For this research, the Columbia Gaze Dataset was utilised, which was downloaded on the

local machine as a zip file. The dataset has an approximate size of 1.61 GB uncompressed.

Dataset link: https://ceal.cs.columbia.edu/columbiagaze/

Figure 2, Dataset Structure

 Figure 2 shows the file structure of the unprocessed dataset. Each folder contains images

for different head-pose and gaze angles.

4 Dataset Preprocessing

To train the different systems of this research, various techniques were used on the dataset to

extract further information. These implemented techniques are highlighted in Figure 3 and

include face region extraction, left eye region, and right eye region extraction performed

using the Media pipe library.

 These techniques follow a stepwise execution before the final eye regions are extracted,

therefore a separate function shown in Figure 4 is implemented that performs the following

functions:

• Traversing the images in the directories of the dataset for processing.

• Image gaze angle extraction.

• Left eye region coordinates extraction.

• Right eye region coordinates extraction.

• Accumulating the results in an array for storing in a CSV file named “_annotations”.

• Transfer of images and the CSV file to a new directory named “Columbia Dataset”.

https://www.kaggle.com/datasets/sajikim/shape-predictor-68-face-landmarks
https://www.kaggle.com/datasets/acharyarupak391/vggfaceweights
https://ceal.cs.columbia.edu/columbiagaze/

3

 Due to the face inference limitations of the Mediapipe library, such as the inability to

detect faces from images having extreme head-pose angle, the size of the dataset was reduced

to 3197 images (originally 5880 images).

Figure 3, Facial feature extraction functions

Figure 4, Preprocessing function

5 System Implementation and Results

5.1 Traditional System Implementation

Figure 5 shows the code snippet for loading the processed dataset. The load_data function

stores the images and labels from the directory into two separate arrays. This function also

performs image resizing, conversion to grayscale, and conversion of gaze angles to 3 gaze

classes.

4

Figure 5, Loading dataset for traditional system

 The implementation for predicting the gaze direction is shown in Figure 6, containing the

stepwise working of the system

Figure 6, Traditional Gaze Detection system code snippet

 To produce the predictions from the system, the code in Figure 7 is used. The test data is

input to the system and the consecutive predictions are stored in an array.

5

Figure 7, Code snippet for producing predictions

 Lastly, the code in Figure 8 is used to evaluate the system, which produces metrics such as

precision, recall, accuracy, f1-score, and confusion matrix.

Figure 8, Evaluation of the Traditional System

5.2 Advanced System Implementation

5.2.1 Direct Approach CNN Model

Figure 9 shows the code for loading, normalizing, and resizing the images for the direct

approach CNN model.

Figure 9, Dataset loading for Direct CNN Model

6

 The code snippet in Figure 10 shows the code for expanding the dimensions of the images,

applying a label encoder to the gaze directions, and splitting the dataset for training and

testing.

Figure 10, Code for stacking and splitting the dataset

 After the dataset processing, the model is set up with the VGG-Face as the base model

shown in Figure 11.

Figure 11, Model Setup for direct CNN

 The rest of the structure of the model is shown in Figure 12.

Figure 12, Direct CNN Model Architecture

 The code for training the model is highlighted in Figure 13.

7

Figure 13, Direct CNN Model Training

 Finally, for evaluating the model, the code snippet in Figure 14 is used to produce the

accuracy and loss plots for the training phase.

Figure 14, Direct CNN evaluation

5.2.2 Pipelined CNN Model

For this model, two separate CNN modules are developed, which are then pipelined together

to produce the gaze predictions. In these modules, some steps, such as data splitting and

dimension expansion, are the same as they were in the direct CNN model.

5.2.2.1 Eye Localization Module

The code shown in Figure 15 is used to load the images and bounding box coordinates for the

eye regions from the pre-processed dataset directory.

Figure 15, Data loading for Eye Localisation Module

 Figure 16 shows the custom function for IoU evaluation metric developed for this model.

8

Figure 16, Eye localization module IoU function

 The code for building the architecture for this module is shown in Figure 17.

Figure 17, Eye localisation module architecture

Figure 18 shows the code used for training the eye localisation module.

9

Figure 18, Eye localisation model training

 To evaluate and save the module file, the code snippet shown in Figure 19 is used.

Figure 19, Evaluating and saving the eye localisation module

5.2.2.2 Gaze Detection Module

The code shown in Figure 20 is used to load the eye images and gaze directions from the pre-

processed dataset directory.

Figure 20, Loading data for the gaze detection module

10

 Figure 21 shows the code containing the architecture of the gaze detection module.

Figure 21, Architecture for the gaze detection module

 To train the model, the separate eye images were concatenated into a single vector and

passed to the model for training, as shown in Figure 22.

Figure 22, Gaze detection module training

 The code used for creating the accuracy plot, loss plot, and saving the model is shown in

Figure 23.

Figure 23, Gaze detection module evaluation and saving

11

5.2.2.3 Pipelined Gaze Detection Model

This is the stage where the previous two CNN models are combined to form a pipeline for

gaze prediction. To start with the implementation, Figure 24 shows the code to extract the

gaze directions and images into separate arrays.

Figure 24, Data preparation for the pipeline

 Figure 25 shows the code that imports the individual model files created in the previous

steps.

Figure 25, Importing individual modules

 Figure 26 shows the core of the pipeline in which a Lambda layer is used to concatenate

the two models. The lambda layer uses the crop_eyes_single function to crop the eye region

using the eye region coordinates.

Figure 26, Structure of the pipeline model

12

 These coordinates are provided the first model and are used to strip down the original

image into two separate eye images. These eye images are then resized to match the input

dimensions of the next module.

Figure 27, Pipelined Model Evaluation Metrics

 Figure 27 shows the metrics that are used to evaluate the model, whereas Figures 28 and

29 highlight the code used for plotting the confusion matric and ROC respectively.

Figure 28, Code for plotting the Confusion Matrix

Figure 29, Code for plotting the ROC

	1 Introduction
	2 System Configuration
	2.1 Hardware Specifications
	2.2 Software and Libraries

	3 Data Collection
	4 Dataset Preprocessing
	5 System Implementation and Results
	5.1 Traditional System Implementation

	The implementation for predicting the gaze direction is shown in Figure 6, containing the stepwise working of the system
	5.2 Advanced System Implementation
	5.2.1 Direct Approach CNN Model

	The code snippet in Figure 10 shows the code for expanding the dimensions of the images, applying a label encoder to the gaze directions, and splitting the dataset for training and testing.
	The rest of the structure of the model is shown in Figure 12.
	Finally, for evaluating the model, the code snippet in Figure 14 is used to produce the accuracy and loss plots for the training phase.
	5.2.2 Pipelined CNN Model
	5.2.2.1 Eye Localization Module
	5.2.2.2 Gaze Detection Module
	5.2.2.3 Pipelined Gaze Detection Model

