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1 Introduction

This Research Project Aims at developing a Deep learning model using Resnet-50 and
MobileNetV2 Architectures. Additionally, to get away from the problems of Black box
Nature of the these models the author has developed Explainable Al Techniques like Grad
CAM++ that will explain the reasons behind the models predictions. All the possible
replication-related procedures are enumerated in this setup guide. A justification of the flow
of project design from data collecting to model assessment. As necessary, Model
implementation and code examples from several parts have also been included.

2 System Requirements

Hardware: GPU (e.g., NVIDIA Tesla T4)
Software: Python 3.x

Libraries: torch, torchvision, matplotlib, numpy, lime, pytorch-grad-cam, Pillow, scikit-learn, TensorFlow,
cv2, scikit-learn.

Installation command for library
Ipip install torch torchvision lime pytorch-grad-cam
Ipip install tf-keras-vis

Platform: Google Colab or local environment supported by GPUs.

Research have made a use of Python 3.11.5 as the Programming language for local
executions to build the model. Since Google Collab (GPU with 16 GB VRAM) provided
faster execution and has a convenient and easily accessible environment for creating a Python
notebook, this was used to create the environment necessary for the execution of the corn
disease classification models. Google Collab having ready to use libraries from Google, the
data was stored in Google Drive hence organization of data and code execution plus the
means of storing the results were already organized. Simplicity of this system environment,
and the scalability and capabilities to incorporate GPU for faster model training contributed
to guiding the design of this.

3 Dataset Preparation

e Download the dataset zip files from the below link.

https://drive.google.com/drive/folders/196zmDkZqbs5LIQ8DgG0ZRkIJC2vaQUHP-?usp=sharing

The Dataset of corn leaf was originally taken from Kaggle which is an open-source platform.
The Dataset was stored on the Google drive in our case and below is the code to mount
Google Drive and access dataset files stored in it.
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https://drive.google.com/drive/folders/196zmDkZqbs5LJQ8DqG0ZRkJC2va0UHP-?usp=sharing

1 ## Conection with Drive ## Load and extract the dataset
from google.colab import drive input_path = "/content/drive/MyDrive/dataset.zip"
; ) o
drive.mount('/content/drive') R 2 o ST
zip_ref = zipfile.ZipFile(local_zip, 'r')

Drive already mounted at /content/drive; zip_ref.extractall('/content/drive/MyDrive/")
emount=True). zip_ref.close()
Fig 1. Mount to Google Drive. Fig 2. Unzip the dataset.zip file

e If the dataset is zipped use the below python code to unzip it in the desired location.

## Load and extract the dataset
input_path = "/content/drive/MyDrive/dataset.zip". # Path to your zipped folder

local zip = input_path

zip_ref = zipfile.ZipFile(local zip, 'r')

zip_ref.extractall('/content/drive/MyDrive/'). # Path to your Destination folder to unzip
zip_ref.close()

TestingRandomelmages

Splitted_data2

SavedModels

dataset
Fig 2.1 Datasets & Important Folders

Make sure you have these datasets saved and folders created(for example. SavedModels) as
shown in Fig 2.1. located in your environment or google drive before execution of the codes.

3.1 Data Imbalance

Since there was class imbalance present in the dataset there was a need to manage this
imbalanced class to avoid biased predictions.
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Fig 4 Class Distribution

3.2 The Dataset was then split using Split Folders package.

| divided the data into Train, Validation, and Test sets by 70%, 20%, and 10%, respectively,
using the splitfolders package.

In [6]: splitfolders.ratio("/content/drive/MyDrive/dataset",output="/content/drive/MyDrive/splitted_data",
|seed=42, ratio=(.7, .2, .1),group_prefix=None, move=False)

Fig S Split the dataset.



3.3 Transformation using Data Augmentation

# to create training and validation data generators for image data preprocessing.
def train_val_test_data(img_dims, batch_size):
## Training data generator with augmentationa
train_datagen = ImageDataGenerator(rescale = 1./255,
rotation_range = 40, # Randomly rotate images by up to 40 degrees.
width_shift_range = .2,
height_shift_range = .2,
shear_range = .2,# Apply random shearing transformations.
zoom_range = 0.3,
horizontal_flip = True,
vertical_flip=True,
brightness_range=[0.5, 1.5], # Randomly adjust brightness within the specifie
featurewise_center=True,
featurewise_std_normalization=True, # Normalize images based on dataset stand
fill_mode = 'nearest', # Fill missing pixels after transformations with the n

Fig 6 Data Augmentation code

The ImageDataGenerator module was utilized for data augmentation to take place. Pixel
values were rescaled by dividing with 255; adjustments included setting the width and height
shift range to 0.2 at the input layer, rotation range of 40 degrees at the rotation layer. An extra
0.2 of shear range, 0.3 zoom range, and x and y axis flipping were further choices meant to
help diversify them.

4 Model Training Architecture

Base Model:
e ResNet-50 & MobileNetV2- Load pre-trained weights from ImageNet

o Custom Layer: Fully connected layer modified to match the number of classes (4).
o Key Features for Resnet-50:

o Residual blocks for better gradient flow.

o Batch normalization for stable training.

o Key Features for MobileNetV2

o Exclude the fully connected layers at the top.
o Ensured the pre-trained layers are not updated during training

Add a fully connected output layer with softmax activation for multi-class classification
Resnet-50 - Parameters used were : Batch Size: 16, Learning Rate: 0.001, Epochs: 25.

The 25 epochs were chosen, as the model started to overfit after 25 epochs. Extended training
beyond this would cost more computational time as no growth were seen in the learning
curves.

MobileNet-V2 Parameters used were - Batch Size: 128, Learning Rate: 0 .0001,Epochs: 50

Training Loop: The training loop includes monitoring loss and accuracy on both training
and validation datasets.



Resnet50 Model creation and training

# Define the model
model = models.resnet50(pretrained=True)

model.fc = nn.Linear(model.fc.in_features, NUM_CLASSES) # Modify output layer
model = model.to(device)

# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)

history = {'train_loss': [], 'train_acc': [], 'val_loss': [], 'val_acc': []}
EPOCHS = 25

# Training Function
def train_model(model, train_loader, val_loader, criterion, optimizer, epochs):

for epoch in range(epochs):
# Here i am setting the module to the Training mode

model.train() .
train loss = 0 [ Below starts the Validation Phase
I & C model.eval()
total = 0 val_loss = 0
for images, labels in train_loader: Ez:{cf 6 J
images, labels = images.to(device), labels.to(device) with t;rch.no grad():
optimizer.zero_grad() for images, labels in val_loader:
outputs = model(images) inages, labels = inages. to(device), labels.to(device)
loss = criterion(outputs, labels) outputs = model(images)
;::;?:;':Wi;géi) loss = criterion(outputs, labels)
. val_loss += loss.iten()
train_loss += loss.item() _, predicted = outputs.max(1)
# Here below we will Calculate the number of correct predictions total += labels.size(8)
_, predicted = outputs.max(1) # Get class with highest probability correct += predicted.eq(labels).sum().iten()
total += labels.size(@) # Total number of labels

correct += predicted.eq(labels).sum().item() # Count correct predictions val_acc = 100. * correct / total

history['val_loss'].append(val_loss / len(val_loader))
train_acc = 100. * correct / total history['val_acc'].append(val_acc)
history['train_loss'].append(train_loss / len(train_loader))

history['train_acc'].append(train_acc) print(f"Epoch [{epoch+1}/{epochs}], Train Acc: {train_acc:.2f}%, Val Acc: {val_acc:.2f}%")

Fig 7 Resnet-50 Model Training Code

The Fig 8 depicts the code snippet for searching the parameters to retrain and fine tune the
model on best parameters.

# Reload the model

NUM_CLASSES = 4 bestoparams = (1

model = models.resnet50(pretrained=True) for r in [0.0001, 0.001, 0.01]:
model.fc = nn.Linear(model.fc.in_features, NUM_CLASSES) # Match the number of classes for :a,!l;:;j:zzaﬂg:g;r121=
model.load_state_dict(torch.load("saved_models/resnet50_corn_disease_PRECOPY.pth"))

model = model.to(device)

train_loader = Dataloader(train_dataset, batch_sizesbatch_size, shuffle=True, num_workers=4)
val_loader = DatalLoader(val_dataset, batch_sizesbatch_size, shuffle=False, num_workers=4)
# Update optinizer
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
: learning_rates = [0.0001, 0.0005, 0.001, 0.005] # Train Model
train_model(model, train_loader, val_loader, criterion, optimizer, EPOCHS)
# Check Validation Accuracy
val_acc = history['val_acc'][-1] # Get last validation accuracy
: optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE, momentum=0.9) 00 LT o G LD
best_val_acc = val_acc
best_params = {'learning_rate': lr, 'batch_size': batch_size}
torch. save(model.state_dict(), "best_tuned_model.pth")

: batch_sizes = [16, 32, 64] print(“Best Parameters:”, best_params)
-’ print(“Best Validation Accuracy:", best_val_acc)

Epoch [1/1@], Train Loss: 0.2074, Train Acc: 93.62%, Val Loss: 0.0025, Val Acc:
) L X Epoch [2/10], Train Loss: ©. Train Acc: o Val Acc:
: scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1) Epoch [3/10], Train Loss: .1536, Train Acc: » Val Acc
- - Epoch [4/10], Train Loss , Train Acc: Val Acc

Epoch [5/10), Train Loss: Train Acc: val Val Acc:

Epoch [6/10), Train Loss: » Train Acc: 95.09%, Val Loss: 0.0022, Val Acc:

Fig 8. Searching for the Best parameters

EPOCHS = 25

# Update Dataloader and Optimizer

train_loader = DatalLoader(train_dataset, batch_size=16, shuffle=True, num_workers=4)
val_loader = DatalLoader(val_dataset, batch_size=16, shuffle=False, num_workers=4)

optimizer = torch.optim.Adam(model.parameters(), 1r=0.0001)

# Train Model with Best Hyperparameters
train_model(model, train_loader, val_loader, criterion, optimizer, EPOCHS)

# Save the final model

torch.save(model.state_dict(), SavedModels_resnet50+"/final_best_modelV3.pth")
print("Model retrained and saved with best hyperparameters.")

Fig 9. Hyperparameter Tuning code
Hyperparameter was done using learning rate of 0.0001 and a batch size of 16 because this

were found to be the best parameters for our Resnet-50 model. The Model was also saved for
later use as google Collab environment gives free access to GPU for limited time.



def mobilenetv2():
# Load the pre-trained MobileNetV2 model
mobilenet_m = tf.keras.applications.mobilenet_v2.MobileNetV2(input_shape=(
img_dims, ing_dims,3),
include_top = False, # Exclude the fully connected layers at the top
weights = 'imagenet' # Load pre-trained weights from ImageNet

x = mobilenet_m.trainable = False # Ensures the pre-trained layers are not updated during training

# Get the output of the MobileNetV2 base model
X = mobilenet_m.output

# Add a global average pooling layer to reduce the spatial dimensions
x = GlobalAveragePooling2D() (x)

# Add a fully connected output layer with softmax activation for multi-class classification

from math import ceil # Import the ceil function to round up numbers to the nearest integer

# Calculate the number of steps per epoch for training

steps_per_epoch = ceil(train_gen.samples / batch_size)

validation_steps = ceil(val_gen.samples / batch_size)

# ‘val_gen.samples': Total number of validation samples in the dataset

# The same logic as 'steps_per_epoch' applies here to cover all validation samples

out = Dense(4,activation="softmax") (x)

# Train the model using the training and validation data generators

history_1 = mobilenetv2_model.fit(

train_gen,

steps_per_epoch=steps_per_epoch, # Number of batches to process per epoch
epochs=epochs_1,

validation_data=val_gen,

validation_steps=validation_steps # Number of validation batches to process per epoch

# Create the final model by specifying inputs and outputs
nodel = Model(inputs = mobilenet_m.inputs, outputs = out)

# Print the model architecture summary for verification
model. sunmary()

return model )

# Use the distribution strategy scope for efficient computation on the specified device (GPU/CPU)

with strategy.scope():
# Create the MobileNetV2 model using the defined function
mobilenetv2_model = mobilenetv2()
# Compile the model
mobilenetv2_model.compile(loss = 'categorical_crossentropy',
optimizer = Adam(learning_rate = .0001),
netrics = ['accuracy'l)

Fig 10 MobileNet V2 Model Building Code Snippet

5 Evaluation

]: # Calculate precision, recall, and Fl-score
from sklearn.metrics import accuracy_score
cm = confusion_matrix(true_labels, predicted_labels)

def plot_learning_curves(history):
epochs = range(1, len(history['train_loss']) + 1)

# Plot Training and Validation Loss

plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1)

plt.plot(epochs, history['train_loss'], color='orange', label='Training Loss')
plt.plot(epochs, history['val_loss'], color='lightblue', label='Validation Loss')
plt.title('Training and Validation Loss')

plt.xlabel('Epochs")

plt.ylabel('Loss")

plt.legend()

# Example for a single class (class 0)

precision = cm[0, 0] / cm[:, @l.sum() # TP / (TP + FP)
recall = cm[0, 0] / cm[0, :].sum()  # TP / (TP + FN)
f1_score = 2 % (precision * recall) / (precision + recall)
# Calculate overall accuracy

accuracy = accuracy_score(true_labels, predicted_labels) # Plot Training and Validation Accuracy
plt.subplot(1, 2, 2)

plt.plot(epochs, history['train_acc'], color='orange', label='Training Accuracy')
plt.plot(epochs, history['val_acc'], color='lightblue', label='Validation Accuracy')
plt.title('Training and Validation Accuracy')

plt.xlabel('Epochs")

plt.ylabel('Accuracy (%)"')

plt.legend()

print(f"Precision: {precision %100:.2f}% ")
print(f"Recall: {recallx100:.2f}% ")
print(f"F1-Score: {fl_scorex100:.2f}% ")
print(f'Accuracy: {accuracyx100:.2f}% ')

Precision: 94.02%
Recall: 93.22%

F1-Score: 93.62%
Accuracy: 96.36%

plt.tight_layout()
plt.show()

# Call the function to plot the learning curves
plot_learning_curves(history)

Fig 11 Code Snippet for Metrics & Learning Curves

plot_learning_curves(history)

Training and Validation Loss Training and Validation Accuracy
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Fig 12 Learning curves of Resnet-50

This code snippet from Figure 11 has been developed to assess the model performance.



Figures 12 illustrate the train and validation evaluation measures of model: accuracy,
precision, recall and loss. Only the Evaluation Metrics Graph of Resnet-50 model has been
discussed in this setup Manual document.

6 Explainable AI Implementation

The first 2 functions in the Fig 13 code snippet builds a Grad-CAM++ heatmap on a given
image based on the target layer (layer4[-1]) for the model while highlighting the regions in
the image that is of most importance to the model’s prediction. The 3™ function function
visualizes the results of the model prediction by showing the original image. As well as the
Grad-CAM++ heatmap of where the model’s attention is, and a bar chart of the predicted
probabilities for each class.

# Perform Model Inference
# This function performs inference for a single preprocessed image.
def perform_inference(model, img_tensor):
model.eval()
with torch.no_grad():
output = model(img_tensor.to(device))
return output

# The below function generates a Grad-CAM++ heatmap for a given image
# by focusing on the most relevant regions of the image for the model's predictions,
# using the specified target layer (layer4[-1]) of the model

def generate_gradcam(model, img_tensor):
cam = GradCAMPlusPlus(model=model, target_layers=[model.layer4[-1]])
# , use_cuda=torch.cuda.is_available())
grayscale_cam = cam(input_tensor=img_tensor)
return grayscale_cam[@, :] # Return the first heatmap

# The below function visualizes the results of a model's prediction by displaying the original image,
# the Grad-CAM++ heatmap for the model's focus, and a bar chart showing the predicted probabilities for each class.

def visualize_result(img, visualization, output, class_names, image_name, figsize=(15, 5)):
# Convert logits to probabilities
probabilities = torch.softmax(output.squeeze(), dim=0).cpu().numpy()

# Predicted class
predicted_label = probabilities.argmax()

# Create figure with adjustable size
fig, axes = plt.subplots(1, 3, figsize=figsize)

# Plot original image
axes [0].imshow(img)
axes[0].axis('off")
# {class_names[lbl.item()]}
axes[0].set_title(f"Original: {image_name}", fontsize=18)

# Plot Grad-CAM++ heatmap

axes[1].imshow(visualization)

axes[1].axis('off")

axes[1].set_title(f"Predicted: {class_names[predicted_labell}", fontsize=18)

# Plot prediction probabilities
axes[2].bar(range(len(class_names)), probabilities, color="green")
axes[2].set_xticks(range(len(class_names)))
axes[2].set_xticklabels(class_names, fontsize=10)
axes[2].set_ylim(0, 1)

axes[2].set_xlabel("Class")

axes[2].set_ylabel("Probability")

axes[2].set_title("Prediction Probabilities")

plt.tight_layout()
plt.show()

Fig 13 Grad CAM ++ Code snippet

Original: Common_Rust Predicted: Common_Rust Prediction Probabilities
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Fig 14 Results for GradCAM ++
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: def generate_lime_explanations(image_paths, batch_predict_fn, class_names):
explainer = lime_image.LimeImageExplainer(random_state=42)

# Create figure with correct size
num_images = len(image_paths)
fig, axes = plt.subplots(num_images, 3, figsize=(15, num_images * 5))

for i, img_path in enumerate(image_paths):
# Preprocess image
input_img = preprocess_image(img_path)

# Generate LIME explanation

explanation = explainer.explain_instance(
input_img,
batch_predict_fn,
top_labels=1len(class_names),
hide_color=0,
num_samp les=1000

)

# Get prediction probabilities and top label
probs = batch_predict_fn(np.expand_dims(input_img, axis=0)) (0]
top_label = explanation.top_labels[0]

# Visualize LIME explanation
img_boundary = visualize_lime_explanation(input_img, explanation, top_label, class_names [top_labell])

# Ensure axes is a 2D array for consistency
if num_images == 1:

ax = axes
else:

ax = axes[i]

# Plot Original Image

ax[0].imshow(input_img / 255.0)

ax[0].axis('off")

ax[0].set_title(f"Original: {class_names[top_labell}", fontsize=18)

# Plot LIME Highlighted Image

ax[1].imshow(img_boundary)

ax[1].axis('off")

ax[1].set_title(f"Predicted LIME: {class_names[top_label]l}",fontsize=18)

# Plot Prediction Graph for All Classes
ax[2].bar(range(len(class_names)), probs, color='green')
ax[2].set_xticks(range(len(class_names)))
ax[2].set_xticklabels(class_names)

ax[2].set_ylim(0, 1)

ax[2].set_xlabel("Classes")
ax[2].set_ylabel("Probability")
ax[2].set_title("Prediction Probabilities",fontsize=18)

plt.tight_layout()
plt.show()

Fig 15 Lime Code snippet

This function computes and shows LIME (Local Interpretable Model-agnostic Explanations)
explanations for a set of input images including the original image, the image areas that affect
the prediction according to LIME and prediction probabilities for each class.

Original: Blight Predicted LIME: Blight Prediction Probabilities
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Fig16 Result for LIME Explanations



