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Corn Leaf Disease Detection Using Deep Learning 
and Explainable AI 

Focusing on ResNet50 and MobileNetV2 with Grad-CAM++ & LIME 
 

Aniket Shetty,  
x23177861  

National College of Ireland, Dublin, Ireland 

ABSTRACT 

Plant health is crucial for maintaining agricultural productivity & food security and 
automated plant disease diagnostics help us achieving this while benefiting the economy. 
This research work uses advanced deep learning models to analyse early and accurate 
detection of  Maize leaf diseases which include Blight, Common Rust, and Gray Leaf 
Spot. In this work, ResNet-50 and MobileNetV2 architectures are employed, along with 
complex data augmentation and transfer learning to enhance classification capability. 
Namely Grad CAM++ (Gradient weighted Class Activation Mapping++) and LIME 
(Interpretable Model Agnostic Explanations), Explainable AI (XAI) methods enhance 
model interpretability providing graphical visualization of predictions to get away from 
the black-box character of these models. After Hyperparameter Tuning MobileNetV2 
being a light model gave a decent accuracy of 90.16%, to optimize computational power, 
for restricted environments. While Resnet-50 model provided a wonderful performance 
with accuracy of 96%. The complementary application of Grad-CAM++ and LIME 
demonstrates the models’ potential of identifying disease-relevant traits indicating strong 
confidence and applicability among the agricultural sectors. In this work, they contribute 
to bridging the gap between deploying conceptually efficient Deep Learning AI models 
and their functional deployment to promote precision agriculture.  
 
Keywords: CNN (Convolutional Neural Network), Explainable Artificial Intelligence 
(XAI), Deep Learning Interpretability, LIME, Grad-CAM ++, ResNet-50, 
MobileNetV2, Precision Agriculture. 
 

1. INTRODUCTION 
 
Agriculture is considered one of the basic building blocks of food security around the world, 
and among all, corn is one of the most widespread crops in every continent. This crop faces 
significant yield losses due to severe diseases like blight, common rust, and grey leaf spot. 
Undiagnosed, these illnesses can result in significant drops in agricultural productivity and 
quality. This might cause significant financial losses, endangering global food security [1]. 
For any efficient treatment of crops, diagnosis at an early stage and with perfect accuracy is 
quite important. However, conventional diagnosis methods are always lengthy and involves 
manual efforts and massive work and bound to human error. Deep learning methods like 
Convolutional Neural Network have lately been showing a great impact on the detection and 
classification of diseases.[2] With increased deep learning models, how to represent 



 

 

interpretability or model explainability still seems a challenge, mainly concerning the 
stakeholders like farmers or agronomists for whom meaningful trustworthy predictions are 
necessary. 
 
1.1. Research Question 
How well and precisely Deep Learning models can be created for accurate classification of 
corn leaf diseases, and how can XAI techniques enhance model interpretability for better 
usability in agricultural diagnostics? 
 
1.2. Research Objective 
Technology in agriculture is not only creative but compulsory to ensure that we have food 
security and safe food for human consumption as population increases soon. As a result, this 
research seeks to establish a dynamic model with a view of identifying a system that can 
diagnose diseases such as  common rust, blight, as well as grey leaf spot on corn plants and 
set apart from healthy corn plants.  
        The objective of this research is to develop deep learning model; ResNet50 and Mobile 
Net V2 for accurate corn leaf disease identification. Because of the ‘black-box’ characteristic 
of these models the author uses Explainable-AI strategies like LIME and Grad-CAM++ that 
show which parts of the images affect the choices. In this case, we will use these two XAI 
techniques for deep learning model with an aim of providing an interpretative and transparent 
manner of analysing the prediction ability of the deep learning model. 
 
1.3. Research Gap Addressed 
       Classification is well accomplished with deep learning models, but their tendency to act 
as ‘black boxes’ has prevented their adoption. This research work adopts explainable AI 
techniques to interpret and validate predictions in the classification of plant diseases as very 
few studies have done this earlier. Since early disease detection and evidence-based decision 
making in the optimization of crop yields are central to precision agriculture, the proposed 
method will greatly influence this practice. 
        To give more specific details of the related work we carried out, methodology used and 
the overall experiment conducted for our work, the following sections presents a detailed 
overview of them all. We will also be making some explanation on Integration of XAI 
techniques and Developing trust in the end users also. The outcomes once again prove that it 
is possible to train deep learning state of art models with interpretability frameworks for 
entirely new kinds of agriculture diagnostics. 
 

2. Related Work 
Numerous studies have employed a variety of image processing techniques to categorize 
plant diseases using picture datasets from different sources. The relevant techniques 
employed by earlier research that can support or act as a guide for similar work on this 
research is discussed below. 
 
 



 

 

2.1. Deep Learning Architectures & Disease Detection 
Modern agriculture depends much on automated plant disease diagnostics as early and 
efficient identification helps to lower crop loss. Balavani, K et al., & Shankar et al. (2023) [3] 
underlined the shortcomings of the current method and recommended a powerful 
classification system using ResNet-50 design. Using skip connections and transfer learning, 
their study obtains a high validation accuracy of 99.3%. Its resolves significant gaps in the 
problem brought on by vanishing gradients and the inadequacy of earlier deep learning 
models for specific problems. But the important thing that this model lacks is the ability to 
explain the models’ reasons behind the disease prediction. We will implement XAI 
techniques for model interpretability and explainability. 
 
The study by Verma, D et al and Bordoloi, D et al (2021) [4] established a MobileNet V2 
based deep learning model with the objective of ensuring that the model as a good balance 
between speed and accuracy. To address some of the challenges such as gradient vanishing 
and computing cost, their work exploits that fact that MobileNetV2 is specifically designed 
with depth separable convolutions and inverted residual linear bottlenecks. The accuracy of 
the models ranged 99.46% that is as good as other architectures such as InceptionV3. As 
today’s state-of-art models like InceptionV3 or DenseNet cost a lot of computation power 
which makes them inapplicable or nearly impossible to implement within real-life application 
scenarios like mobile or even real time. However, the paper does not explore it under another 
perspective: i.e the decision-making process of the model. This makes be hard to comprehend 
how such models organize their outputs. This is vital and hence this aspect of explainability 
will be focused and applied in our current research. 
An optimized DenseNet-based deep convolutional neural network (CNN) architecture for the 
recognition and classification of corn leaf diseases is proposed by Waheed, A. et al and 
Goyal, M. et al (2020) [5] The proposed model provided an accuracy of 98.06%, the number 
of parameters was only 0.0776 million, which is less than modern architectures such as 
EfficientNet (4.41 million) and VGG19 (20.18 million). It means less training time and 
overall power consumption and makes the developed model suitable for practice. The study 
fulfils significant research questions that are still open in today’s AI and ML research 
domain; specifically, the high computational requirements and parameterization issues that 
exist with current CNN models while offering the ability to scale with large datasets. A few 
limitations were misclassification of diseases particularly when diseases have similar 
symptoms like Cercospora leaf spot and Northern leaf blight diseases. In our research we will 
improve such misclassification issues that were faced by this study 

2.2. Integration of XAI Techniques for Enhanced Transparency 

Rakesh, S. et al and Indiramma, M et al, (2022) [6] has proposed a novel approach in plant 
disease detection through the use of Explainable AI (XAI) methodologies which includes 
Grad-CAM and LIME together with deep learning architectures including ResNet and 
Inception V3. The model developed for ResNet attained 99.2% on the validation accuracy 
and Incepted V3 model 95.46% highlighting the system’s ability to classify 38 diseases on 14 
crops accurately. Thus, utilising XAI tools, the study presents visual interpretations of model 
predictions and key image features contributing to classification choices. This therefore 
enhances interpretability of deep learning models as well as helping users to build trust with 
Artificial intelligence products that make predictions. Some XAI methods such as Grad-CAM 
may be slowed down by a large computational cost preventing real time usage. The model 
performs well which is inspiring for our research. It focuses on 14 crops, but we will focus on 



 

 

1 crop and go deeper in the analysis use the approach of transfer learning and light weight for 
model building to avoid computation overhead. 
Wei, K., (2022) [7] aims to improve the interpretability and accuracy of deep learning models 
for classifying and distinguishing leaf diseases using attention mechanisms and 
interpretability methodologies. Using CBAM, integrated with ResNet architectures, the 
developed models demonstrated successful classification with accurate rates of 99.11%, 
99.4%, and 99.89%, respectively. From the experiments implemented on ResNet50-CBAM, 
significant features like the texture and shape of the leaves were extracted efficiently. 
Contrasting the approaches, the study employed interpretability methods to ensure 
transparency to agricultural professionals and Grad-CAM as the most functional approaches 
among them provides clear visualizations some limitation of the above study is CBAM model 
requires high computation power and with the current research we can solve this issue by 
being computationally efficient as well as by using light weight model interpretability like 
LIME & implementing an advanced version of Grad CAM i.e. Grad-CAM++. 
Nigar et al  and Umar et al (2024) [1] carried out a study with the aim of developing an 
EfficientNetB0: Explainable AI (XAI) based system for identifying plant diseases. Its 
purpose is more definitive and straightforward: enhancing the accuracy, readability, and 
relevance to modern agricultural concerns of plant disease identification models. The model 
has impressive accuracy, precision and recall rate of 99.69%, 98.27% and 98.26% 
respectively out of 38 categories of plant diseases. The feature saves end-user credibility by 
applying Local Interpretable Model-Agnostic Explanation (LIME) to explain the model’s 
reasoning to the end-users. Moreover, the effectively using the system for real life scenarios 
can be seen through the smartphone application called PlantCare which will supply farmers 
with useful information.  
Batchuluun, G. et al, Nam, S. et al & Park, K. et al 2022 [8] proposes PlantDXAI, a plant and 
crop disease classification system that combines CNN and XAI tools including CAM. Their 
study reached the accuracy of 98.55% on the self-collected thermal plant dataset and 90.04% 
on the Paddy crop dataset. Because of the CAM integration, the model gives meaningful heat 
maps that point to the important areas in the image, which makes the model more helpful for 
agriculturists. Relatedly, the study presents a new thermal plant image dataset consisting of 
4,720 images that expand the pool of accessible thermal images considerably. However, the 
environmental sensitivity of thermal imaging to factors such as humidity and temperature, 
dataset imbalance whereby some plants species or diseases may not be covered in the 
collected datasets, and increased computational power needed for the integration of CAM and 
discriminator nets.  

2.3. Deep Learning Advancements for Plant Disease Detection 
In the corresponding work of Chang, C. et al & Lai, C. et al (2024) [9] the approach adapts 
the confronting challenges of detecting potato leaf illnesses by using a lightweight deep 
learning model known as RegNetY-400MF that is designed for functioning under the limited 
resources circumstances. In the experiment, the model achieves 90.68% accuracy on a set of 
seven disease categories with the help of transfer learning and different data augmentation 
techniques. Cross-validation and data augmentation enhance the model’s flexibility further, 
thereby enabling the model to handle a numerous revised environmental condition such as 
light conditions and obstacles. Some of the limitations of the study include imbalance of the 
datasets, and occasional misclassification of related characteristics such as fungi and pests. 
The current study will aim to solve these drawbacks including the ability of the lightweight 
model to explain the reasons behind its predictions. 



 

 

Kumar, S. et al, Ratan, R. et al, & Desai, J.V. et al (2022) [10] have developed a lightweight 
and efficient cotton leaf disease detection system using TensorFlow and Convolutional 
Neural Networks (CNN) which will work in offline mode with iOS devices. They achieved it 
at 90% accuracy, and one super class namely Boll Rot, Fungal Leaf Spot and regular leaves 
were easy to distinguish. The model runs offline with the help of TensorFlow Lite and it 
benefits when there is poor internet connection typical for rural regions. Integrated in a 
standalone, native iOS mobile application with the utility of a simple interface, the presented 
system provides disease detection results as well as the appropriate pesticides for farmers to 
avoid crop loss and improve the quality of the crop yield. However, the research has also 
several limitations that should be discussed. The following are considered in this regard; first, 
the study only focuses on two diseases, second, the experimental results are evaluated on a 
dataset of 825 images and third, the authors propose the framework for iOS operating system 
which is disadvantageous to farmers who use Android operating system on their mobile 
devices. 
Recent advances in machine learning and deep learning have brought-about key changes in 
plant disease detection as they address emergent concerns on efficiency, scalability, and 
accuracy. According to Shoaib, M. et al, & Shah, B. et al [11], the work of the authors 
appreciates that deep learning models especially CNN models are highly effective in, 
handling high resolution images and in detecting disease symptoms especially when 
evaluating state-of -the-art methods. Although such designs as ResNet, Inception, and 
DenseNet give high classification ability, it illustrates that even for the problem like data 
deficiency, augmentation techniques such as transfer learning or data augmentation can offer 
a reliable solution. However, the study has its limitations; for example, it relies on carefully 
chosen datasets, which may not capture the variability in the real world no scalability analysis 
of the method in other agricultural scenarios was conducted.  

2.5. High level of Summary of the Literature Review 
Authors 

 

Year 
 

Methodology 
 

Findings 
 

Balavani, K. et 
al 

2023 ResNet-50, Transfer 
Learning 

 

Obtained higher validation accuracy of 99.3%; solved 
vanishing gradient problem and scalability problem but 
lacked interpretability.  

 

Verma, D. et al 2021 MobileNet V2 
 

Obtained 99.46% accuracy; computationally lightweight 
with real-time applicability, however, the output lacked 
explainability and heavily dependent on the selection of 
datasets. 

Waheed, A. et 
al 

 

2022 DenseNet, Data 
Augmentation 

98.06% accuracy; cuts down the amount of scale time and 
was able to prove scalability but occasionally the diseases 
are misclassified 

Rakesh, S. et al 2022 ResNet, Inception V3, 
Grad-CAM, LIME 

ResNet: 99.2% and Inception V3: 95.46%; was 
interpretably better with Grad-CAM and LIME but had 
computation overhead and was genre specific on XAI 
technique 

Wei, K. et al 
 

2022 CBAM, ResNet, Grad-
CAM, LIME, 
SmoothGrad 

They achieved more than 99 percent accuracy rate; 
improved black-box questions but witnessed high 
computational costs and dependency on many clean 
datasets. 

Chang, C. et al 2024 RegNetY-400MF, 
Transfer Learning 

90.68% accuracy; a flexible and light model, however, it 
was not evaluated concerning substantial applications, and 
had an imbalance of datasets. 

Nigar, N. et al. 2024 EfficientNetB0, LIME Constructed with 99.69% accuracy; LIME provided 



 

 

 interpretability but required curated datasets and could not 
be scaled up. 

Batchuluun, G. 
et al 

2024 PlantDXAI, CNN, 
CAM 

 

Got 98.55% (thermal dataset) and 90.04% (paddy crop 
dataset); gave explainable heatmaps but has problems of 
environment sensitivity, dataset imbalance, and time 
complexity. 

Kumar, S. et al 2022 
TensorFlow, CNN, 
TensorFlow Lite 

 

An accuracy of 90%; offline usage on iOS devices though, 
it only supports two diseases, and the datasets are small 
which makes it unsuitable for Android. 

Stadlhofer, A. et 
al. 

2023 
 

CNN, LIME, SHAP 
 

SHAP offered consistent and detailed visualizations and 
has some drawbacks, that are the task-specific nature of 
the obtained visualization and high computational 
complexity. 

Shoaib, M. et 2023 ResNet, DenseNet, 
Transfer Learning 

Eliminated scalability and efficiency related issues but 
relied on specific and limited datasets  

Hossain, M. et 
al 

2023 ResNet-50, VGG-19, 
MobileNet-V2, Pre-
processing 

ResNet-50 achieved 99.53%, although it had more 
advanced pre-processing, the pre-processing was not 
stressfully tested, and it provided few comparisons on 
architecture. 

Rashid, R. et al 2024 Multi-model Fusion 
Network, IoT, RL and PL 
Blocks 

Obtained 99.23% detection accuracy; tested image plus 
environmental input but had computational and IoT 
dependency issues. 

Tariq, M. et al 
 

2024 VGG16, Layer-wise 
Relevance Propagation 
(LRP) 

Testing was conducted with 94.67% accuracy; while 
interpretable heatmaps enhanced user trust the method 
struggled with dataset imbalance and was only moderately 
accurate relative to other available methods. 

Table 1.1 High-level Summary of Related works 

 

2.6. Conclusion 
It is evident from the literature review that, deep learning, and Explainable AI (XAI) 
technologies have enhanced plant disease diagnosis without revealing some merits and 
demerits of using deep learning networks such as ResNet-50, DenseNet and MobileNetV2 
get it right to classify the illnesses. MobileNetV2, RegNetY-400MF, and other models with 
low complexity were used for transfer learning and real-time calculating. Even to this present 
day, most of these models contain the “black box” nature of deep learning which makes users 
disregard them especially non-specialist agriculturalists.  
What is required is a single and integrated model–high resource, such as the ResNet-50 and 
resource-scarce such as the MobileNetV2 coupled with XAI methods such as Grad-CAM++ 
and LIME. The present study addresses literature limitations: To enhance its effectiveness 
and to produce faster time-driven work, foster a numerically effective forecasting system. 
Thus, use XAI for transparency to assist in receiving the end-users’ trust in the model. 
Enhanced pre-processing, hyper parameter tuning and augmentation programmes that have 
higher overall efficiency and can be applied to real conditions. 
 

 
 

 



 

 

3. Methodology 
The findings of this study will help agriculture experts classify different types of corn 
diseases and increase the effectiveness of treatment. Classification technologies produced 
using Deep Learning and Transfer Learning methodologies and tools may be advantageous to 
farmers and business stakeholders such as agriculture experts. This research project will thus 
employ the methodology known as CRISP-DM, which stands for "Cross-Industry Standard 
Process for Data Mining." The six steps of CRISP-DM, which are used in this research 
project, will be explained in this section. 

 

3.1. Data Understanding  
The data in this work, which was taken from publicly available repositories, comprises of 
maize or corn crop species of both healthy and diseased. It consists of approximately ~5000 
images containing labelled images affected by diseases e.g., Blight, Common Rust, Gray 
Leaf Spot, and healthy leaves. Below are the few images from the dataset. 
 

 
Fig 1.1 Original Dataset of Corn Leaf 

 

3.2. Data Preparation 
The data preparation process was completed by following the steps listed below. 

3.2.1. Data Cleaning 
The image dataset was obtained from sources on Kaggle. The produced dataset is consistent 
throughout the train and test folders in that it contains neither null nor missing values. 

3.2.2. Exploratory Data Analysis 
When there is uneven data, the classification model's performance decreases perhaps 
producing biased results or incorrect ratings. The Original datasets were divided into 70% 
training 20% validation & 10% testing using the pythons split folders package. For Resnet 
Model the Images were resized to 224x224 pixels to match the input size requirement of the 
model. Normalization was performed to scale pixel values between 0 and 1.  When 
developing the model with Mobile Net V2, same pre-processing procedures were used, with a 
focus on lightweight data transformations to guarantee compatibility with the real-time focus 
of MobileNetV2. To maximize the model's input data, depth-wise normalization was also 
incorporated. The Model Architecture & flow is explained in depth in design specification 
section using Fig 1.4. 



 

 

 
Fig 1.2 Class Distribution for Original dataset and Training, Validation & Testing 

datasets 

 

3.2.3. Data Augmentation 
Light variations such as shadows or low light can affect the pictures taken of corn leaves and 
may hide discoloration, rust, or spots in the image. Such images may make disease relevant 
details to disappear. Picture clicked from different angels may also confuse the model. To 
deal with such issues, we have applied data augmentation techniques that copies some of 
these environmental changes for instance, rotating, scaling, flipping, or adjusting brightness. 
Fig 1.3 represents training set after data augmentation. Also, it was helpful to fix the problem 
of data imbalance since there were relatively few samples of class Gray Leaf Spot than the 
other classes.  

 

 
Fig 1.3 Images of Data Augmentation 

This approach contributes to increased variability of the data and the ability to generate new 
data from a single image. The key idea of the increase of the size of the dataset is aimed at 
decreasing the overfitting risk. For data augmentation to occur, the ImageDataGenerator 
module was used. The changes included were normalizing brightness to range [0.5, 1.5] 
enhanced the model’s ability to changes in lighting and angles. Zoom and Shear 
Transformations resemble weak image distortions brought about environmental factors for 



 

 

instance water droplets on the leaves causing a blur, set the width and height shift range to 
0.2 at the input layer, rotation range of 40 degrees at the rotation layer which mimics the 
movement of leaves by wind or angles of natural growth and pixel values were rescaled by 
dividing with 255. Other options included to help diversify them were an additional 0.2 of 
shear range, 0.3 zoom range, and the flipping of both the x and y axis. To normalize the data 
appropriately, values of brightness have been transformed to the range [0.5, 1.5], and the 
feature wise center and scale was applied. If pixels are formed during transformations, then 
smooth interpolation was done using fill_mode parameter. The model adopted this strategy to 
overcome overfitting problems that supported the original dataset to enable generalization.  
 

4. Design Specification 
Figure 1.4 below highlights the process layout of the method used in this study, thus 
highlighting the mapped structure. The complete preprocessing and augmentation process 
were performed on the images before training which includes resizing, rescaling, rotating, 
flipping, and zooming, and shifting along width and height. Feature wise standard 
normalizing and brightness adjustments are also performed. The research uses transfer 
learning techniques like Resnet50 and MobileNetV2 for development of the model. 
GradCAM++ and LIME make sure that the interpretable outputs are open, and it also 
explains the reasons for the forecasts of the models. Based on disease classification that is 
supported by explanatory insights, the system is a potential solution for early disease 
diagnosis as well as for the applications of precision agriculture. The proposed process 
ensures that an optimal balance is achieved in activities related to the categorization of plant 
diseases and assuring excellent performances as well as interpretation. 

 
Fig 1.4 Design Specification for Corn Leaf Disease Classification using XAI. 

 

5. Implementation 
5.1. System Environment 
We used Python 3.11.5 to develop the models, and Google Collab’s Python notebook 
environment made it easy to run the corn disease classification models. Google Collab had 
ready-to-use libraries from Google, data was saved in Google Drive, and data, code 



 

 

execution, and results storage were organized. This system's simplicity, scalability, and GPU 
support for quicker model training guided its creation.  
The implementation mostly relied on several different Python libraries and frameworks. 
Packages of foremost importance were TensorFlow & Pytorch useful in building & training 
the deep learning models, MobileNetV2 & ResNet50. For the visualizing the results and 
create plots we used Matplotlib and for the evaluation indices such as accuracy, precision, 
recall and F1-score we used Scikit-learn. Another Library such as NumPy and Pandas was 
employed in data manipulation and pre-processing. In the final stage, we deployed two pre 
trained architectures, ResNet-50 and MobileNetV2, and further modified these to optimize 
their performance. 
Resnet-50 - ResNet-50 is based on residual learning that is, on a network made of residual 
blocks. These blocks let the network learn residual mappings instead of direct mappings, 
therefore enabling information to bypass some layers as needed. [18] 
MobileNet V2 - The mobileNetV2 is a CNN architecture exploring how it operates on 
mobile devices. The structure is based on an inverted residual in which the residual links 
were between the bottleneck layers. Source of non-linearity is the use of lightweight 
depthwise convolutions in the intermediate expansion layer. Overall, MobileNetV2 has the 
first fully convolution layer with 32 filters and 19 residuals bottleneck layers.[19]  

 

5.2. Model Training and Hyperparameter Tuning 
The training process was divided into two phases, initial training with frozen layers and 
fine-tuning with the entire model.  
In the Initial phase the base layers are frozen and only newly added layers are trained. This 
is done because the model will then focus on learning task-specific features from the current 
dataset without affecting the general features learned during pre-training on a larger dataset 
like ImageNet. The Pretrained models are already good at identifying the patterns from 
images. Fine-Tuning the Entire Model: Even though having the pretrained layers is helpful, 
the number of layers may not have the right features for the specific domain, for example 
disease-specific features on leaves. The adjustment can be performed on the feature 
extraction layers because the dataset will have some unique characteristics that the model 
needs to adapt. During this phase, all layers (including the pre-trained ones) are unfrozen and 
trained with a very low learning rate. 
Resnet 50 - Originally trained for 25 epochs with the default learning rate and batch size, the 
model evaluated its baseline performance and pointed up areas needing work. The 25 epochs 
were chosen as the model started to overfit after 25 epochs. Extended training beyond this 
would cost more computational time as no growth were seen in the learning curves. Training 
histories made it possible to focus on the learning curves and observe the behavior of the 
model. After the first training, a hyperparameter grid search was run looking at various 
learning rates (e.g., 0.0001, 0.001, 0.01) and batch sizes (e.g., 16, 32). By applying the loops 
various combinations of learning rate and batch size we experimented to test and ensure we 
get the best possible combination. In Total we ran 3 (learning rates) × 2 (batch sizes) = 
6 combinations. The model was trained for a fixed number of epochs (10), and the validation 
accuracy was recorded after each epoch. After training with each parameter combination, the 
final validation accuracy was used to find out the performance of the model. Retraining the 
model using the ideal configuration a learning rate of 0.0001 and a batch size of 16 produced 
enhanced accuracy and stability. 



 

 

MobileNetV2- All layers in the MobileNetV2 baseline model were frozen during the first 
phase of training, thus their weights were not changed. This allowed the model to import 
feature extraction from ImageNet weights but train a new classification for the corn leaf 
disease dataset. The model trained for 50 epochs. There was fine-tuning for 25 more epochs, 
thereby totaling 75 epochs for training with lower learning rate of 0.0001. Fine-tuning was 
done with learning rate of 0.0001 for slow updates so to that to avoid forgetting of the pre-
trained information. 
 

5.3. Implementation of XAI Techniques & Its Justification 
GradCam++: The Grad-CAM++ (Gradient weighted Class Activation Mapping++), which 
generates more interpretable heatmaps indicating which parts of an input picture are most 
important for the decision making. Grad-CAM++ proposes a more accurate way of 
performing weighted average based on second-order gradients. It is good for instance in 
allowing for a finer localization of some of the features of the system.  In which an image has 
an overlaps or multiple objects, Grad-CAM++ can better highlight multiple contributing 
regions. Grad-CAM++ is better to handle multi region prediction compared to Grad-CAM. 
When spots or discoloration begin to appear on many leaf sections, plant disease 
categorization is important. Using Grad-CAM++, accurate multi class predictions for Blight, 
Common Rust, and Gray Leaf Spot in leaves are made. Finding which features in the leaf are 
important for disease categorization, Grad-CAM++ generates more precise and localized 
heatmaps, explaining the role of leaf texture, lesions, and rust spots [8] [17]. 

LIME: LIME is one of the explainable (XAI) techniques to produce human understandable 
explanations for the predictions of machine learning models. LIME is model agnostic, 
meaning it can theoretically explain the predictions of any machine learning model e.g. 
black box models such as neural networks, decision trees and so on, with no requirement to 
gain access to the internal workings of the model. We choose LIME because it is versatile 
and can deliver localized, model-agnostic explanations [1] [6] [7]. LIME may be used to any 
machine learning model, making it a strong tool to test ResNet50 and MobileNet V2 choices. 
LIME explains individual predictions by approximating the original model around input 
elements (e.g., picture areas) that influenced the model's conclusion. For corn leaf 
categorization, this helps identify diseased leaf patches. LIME highlights crucial areas or 
characteristics in simple, human-readable forms for simple owners or farmers or 
agronomists who trust AI solutions.  
 

5.4. Justification for Deep learning Models Used. 
The ResNet50 and MobileNetV2 models were selected for this work because of their shown 
performance in image classification challenges [3] [8]. Deep architecture with skip 
connections which solve the vanishing gradient issue and let deeper networks to be trained is 
well-known in ResNet50. This qualifies quite well for challenging classification tasks like 
corn disease detection. ResNet50 is known as to solve complex classification tasks and work 
efficiently as per our literature study. The study in our literature review by Balavani et al. 
(2023) [3] and they got the validation accuracy of 99.3% when using transfer learning 
through ResNet50 and also solving problems like vanishing gradients and scaling. 
In our study, the ResNet50 model showed a high level of classification accuracy of 96.36% 
after fine-tuning, proving its ability to correctly classify samples even challenging samples in 
classes where they might look almost the same such as “Gray Leaf Spot” and “Blight”.  



 

 

Conversely, MobileNetV2 was chosen for its lightweight design, which greatly lowers 
computational cost while preserving great accuracy by means of depth wise separable 
convolutions and inverted residual blocks. This is ideal for real-time applications on low 
resources devices [4] [9]. 
Model, such as DenseNet, InceptionV3, and EfficientNet, were first considered. DenseNet is 
a good performance in terms of feature propagation and its accuracy. However, it consumes a 
lot of memory to compute; hence is costly. InceptionV3 is equipped with an elaborate 
network with different sizes of the filter; however, real-time projects are thereby slowed 
down due to hardware demands. EfficientNet enhances the configurations in terms of 
accuracy and computational complexity while having more significant limitations concerning 
adaptation and utilization on target appliances [1][14][17]. The restrictions made the 
ResNet50 and MobileNetV2 models more appropriate for the parameters of this research. 
The information from Table 1.2 was gather after carefully reading and comparing the 
literature work in our research by the authors Balavani et al. (2023) [3], Rakesh et al. (2022) 
[6], Verma D et al. (2021) [4], Rashid et al. (2024) [15], Tariq et al. (2024)[16] and Wei et al. 
(2022) [7]. 
 
Model Accuracy Computational Efficiency XAI compatibility 

ResNet-50 High Moderate Excellent 

MobileNetV2 Moderate High Good 

VGG16 High Low Moderate 

InceptionV3 High Low Moderate 

Table 1.2 Comparison of Models 

6. Evaluation  
Since no statistic may meet all model needs, various metrics are used to characterize model 
performance. In classification jobs, this part defines several measures and computes the most 
important metrics to understand the best model with exact predictions for larger-scale 
deployment. This part will focus especially on the ratings for accuracy, recall, f1 score & 
precision value. 
 
6.1. Experiment 1: RESNET-50 
The Resnet 50 Model was initially executed with 50 & 30 epochs since it was seen a 
overfitting issue after 25 epochs and no increase in accuracy curves the model was trained for 
25 epochs 

 
Fig 1.5 Results of Resnet-50 Prediction on Test Data Set 

Initial Evaluation Before Hyperparameter Tuning: From the confusion matrix Fig 1.6, 127, 
128 are correctly identified samples respectively; the confusion matrix further showed high 
accuracy of the model for classes as ‘Common Rust’ and ‘Healthy’. But 9 samples are 



 

 

misclassified as “Gray Leaf Spot” and another 3 as “Common Rust” for “Blight” and it has 
106 correct samples identified. Likewise, the “Gray Leaf Spot” class has low performance of 
56 right samples but 8 as “Blight.” This underscores the fact that at micro levels the model 
finds it hard in differentiating these two diseases. The author notes that these results may be 
perceived as the starting point from which performance can be increased. 
 

 
Fig 1.6 Confusion Matrix for Resnet-50 Before & After Hyperparameter Tuning. 

After Hyperparameter Tuning: The "Blight" class has 110 correctly classified samples, with 
only minor misclassifications: 3 Common Rust and 5 Gray Leaf Spot. The “Common Rust” 
accurately predicts 130 samples with only one misclassified as “Blight”. From “Gray Leaf 
Spot” class it increased to 57 correct classification and 6 from it were misclassified as 
“Blight” and 1 as “Common Rust”. The model tested gives better performance than the pre-
tuned model. 

Learning Curves 
Before Hyperparameter Tuning: Fig. 1.7 shows that training accuracy grows with epoch and 
reaches approximately 94%. This suggests that the present model matches the study's training 
data well enough to forecast accurately. Validation accuracy oscillates with generalization 
precision, causing significant swings. At some epochs, the curves climb to the training 
accuracy range, but the oscillations show the model's instability on fresh inputs. 

 

 
Fig 1.7 Learning Curves for Resnet-50 Before Hyperparameter tuning. 

 
Starting from epochs 1 to the last epoch, the training loss descends in values and thus the 
training is effectual, and the model does deliver good returns from the training data set. 
Especially in the latter stages, the high fluctuations of the validation loss indicate the subject 
matter might have been overtrained on the train set. The model will not be very useful if 
applied to the raw data. 



 

 

 
Fig 1.8 Learning Curves for Resnet-50 After Hyperparameter tuning. 

After Hyperparameter Tuning: From Fig 1.8 validation loss is not very consistent in the 
initial epochs to reach a rhythm which shows that the model is learning along with 
generalization afterwards. Again, the validation accuracy jumps around in the first epochs, 
but from 25 epochs on, the validation accuracy is constant at about 95%. This means that the 
model of regression has good generalization ability to predict accurate values from unseen 
datasets, without overfitting. These results are clear indications that hyperparameter tuning is 
a sure way of enhancing the model’s effectiveness. The low learning rate of 0.0001 ensured 
that weights were updated slowly to and did not overshoot optimal weights while a relatively 
high batch size of 16 ensured that gradients were updated commonly for stable learning. 

6.1.1. Evaluation Metrics 
Before Fine Tuning: This model gives an accuracy of 95% in generic classification which, 
though reliable, isn’t the best for specific categories such as “Gray Leaf Spot.”  Originally, 
precision averaged at 0.94 with each class having above-average results, though slightly 
worse in terms of recall for the “Gray Leaf Spot” class; F1-score followed the trends of both 
metrics at 0.94. Weighted precision, recall, and F1-score are at 0.95; it learned more on 
familiar classes such as “Common Rust” and “Healthy.” 

 
Fig 1.9 Classification Report for Resnet-50 Before Hyperparameter tuning. 

 
Fig 1.10 Classification Report for Resnet-50 After Hyperparameter tuning 

After Fine Tuning: The proposed model gets overall accuracy of 96.36%, which is greater 
than the results obtained using the pre-tuned model. Macro Average: Average precision 
equals 0.95 and average recall equals to 0.96 hence average of F1-score is also around 0.95 
giving balance score to all classes. Weighted Average: For all three metrics, the weighted 



 

 

mean is 0.96 for precision, recall, and F1-score thanks to higher accuracy in classes that are 
better represented such as ‘Common Rust’ and ‘Healthy.’ 
These results show how well fine-tuning hyperparameters like learning rate and batch size 
raises model performance. While the batch size of 16 gave a balance between gradient 
stability and computing efficiency, the learning rate of 0.0001 let the model converge 
gradually, hence avoiding overshooting ideal weights. 

6.1.2.  Applying Explainable AI in Resnet-50 Model 
 
The Grad-CAM++ heatmaps in Fig 1.11 show that the model can effectively spot significant 
leaf areas matching illness symptoms. These may be associated with the condition 
discoloration, patches, or odd texture. For instance: In the “Blight” prediction, the heatmap is 
pointed on the damaged, discolored area of the leaf which shows that our model can identify 
the features. In the case of “Common Rust,” the circled area provides the model’s properly 
selected aspect of the lesion on the leaf and its dependence on disease features. 
From the heatmaps it is easy to infer that the model also has the distinction of distinguishing 
between diseases based on different discriminable features. For example: The heatmap of the 
“Gray Leaf Spot” shows multiple spot regions that identify scattered lesions inherent to the 
disease. The “Healthy” prediction is named so because it concentrates on the areas of the leaf 
which are not distorted in any way. 
 
The bars represent the confidence values for the correct class closest to 100%, according to 
the model based on three selected samples. This leads to improvement of the ability of the 
model in determining the right disease of diagnosable diseases as expected if the wrong 
disease was diagnosed.  
Validation of Model Learning: From the heatmaps we can also see that the model is paying 
attention at the right areas of the images and not the peripheral details. This supports the 
conclusion that the decision-making process of the model is to certain degree compatible with 
domain specific knowledge of plant diseases. 
 

GradCAM++ Visualization 
 

 

 



 

 

 

 
 

Fig 1.11 GradCAM ++ results for Resnet-50 Model   
 

The LIME analysis of "Blight" In Fig 1.12 emphasizes the core damaged area of the leaf 
where lesions and discoloration abound. This shows the model has learnt to concentrate on 
the most important disease-relevant aspects. Characteristic of "Common Rust," the LIME 
output emphasizes several tiny, rust-like patches over the leaf surface. This confirms that the 
model can identify fine-grained characteristics suggestive of this condition. Typical 
symptoms of "Gray Leaf Spot," the LIME explanation points up scattered little patches and 
discolorations on the leaf. The focus on these areas shows that the model considers features 
different to this state. LIME focuses on the uniformity and continuity of ‘Healthy’ region 
hence there is no spot or blotch of imperfection. 

LIME Visualization 

 

 

 



 

 

 
Fig 1.12 LIME Visualization for RESNET50 

 

Overall Takeaways 

Grad-CAM++ is interested in heatmaps that generally reveal larger areas associated with the 
disease on the leaf surface, blotches, or staining. LIME generated more detailed information 
because it works on feature-specific, low spatial areas of the image (like the lesions or spots). 
It is noticed from the yellow surrounds to certain features in the LIME outputs. 

 

6.2. Experiment 2: MobileNet-V2 
The Training data was increased from 70% to 80% to have more training data in this case as 
the accuracies and classification were very low initially. 
Before Hyper Parameter Tuning: This model is pretty much comfortable while 
differentiating between “Common Rust and Healthy” category, further confirmation can be 
derived from high true positive results that are 243 and 218. Rates of misclassification of 
these categories remain negligible, meaning the model is effective in differentiating these 
diseases even before any attempts at tuning the model. 

 
Fig 1.13 Confusion Matrix for MobileNet-V2 Before & After Hyperparameter Tuning. 

One can observe high interclass confusion between the “Blight” and “Gray Leaf Spot” 
classes; for example, there are 29 pictures of “Gray Leaf Spot” mistaken for “Blight.” he 
same can be observed for the ”Gray Leaf Spot” category for which the overall 
misclassification errors are higher and only 78 samples in this case are classified correctly. 
This means that the model tends to confuse diseases with closely related symptoms, features 
which could simply mean that there is inadequate sampling of features. 
After Hyper Parameter Tuning: The “Blight” class is demonstrated to have a much-
improved model, with the true positives rising from 183 to 186 and misclassifications 
reducing. However, even here, the minority of “Gray Leaf Spot” category still has relatively 



 

 

high misclassification errors, and therefore, other methods, such as advanced augmentation or 
attention mechanisms could be useful in improving performance in this case. 

 
Fig 1.14 Learning Curves for MobileNetV2 Before Hyperparameter tuning. 

 
Learning Curves 

Before Fine-Tuning: Both training and validation accuracy are on the rise but oscillate, 
primarily for validation, due to overfitting or general instability. 
In the loss curves, we observe a decreasing trend in the losses over epochs with a possibility 
of overfitting since the training loss is far smaller than the validation loss. 
After Fine-Tuning: The training and validation accuracy get closer and get stable, while the 
validation accuracy increases and achieve a similar value to the training accuracy. 
The loss curves eliminate high oscillations, and the difference between training and 
validation loss is more consistent, implying better generalization and model fine-tuning. 

 

 
Fig 1.15 Learning Curves for MobileNetV2 Before Hyperparameter tuning. 

6.2.1. Metrics  
After Fine Tuning: The accuracy for the respective models cumulatively increased from 
88% to 90,16%, which could be associated with an increase in the generality of the model. 
Precision and recall for “Blight’ enhanced and F-score that was previously 0.83 enhanced to 
0.84. 
For “Common Rust” and “Healthy” categories, the performance is the same and is highly 
satisfactory with F1-scores of 0.94 and 0.99 respectively which proves the stability of our 
built classification model. The improvement for "Gray Leaf Spot" in precision (from 0.71 to 



 

 

0.84) is slight while recall (0.68) is at the same level, and F1 score (0.75) also indicates that 
misclassification continues for this class. 

 
Fig 1.17 Classification Report for MobileNetV2 Before Hyperparameter tuning. 

 

6.2.2.  Applying Explainable AI in MobileNetV2 Model 
GRADCAM ++ Visualizations: From 1.18 the heatmap, three regions of leaves are 
concerned for each case, illustrating how the features of the image are associated with the 
respective disease classes. If the model is wrong such as the “Gray Leaf Spot” class for the 
“Blight” image, Grad-CAM captures attention on areas that bear no similarity to the actual 
diseases. 
LIME Visualizations:  These results further support the utility of LIME in making 
MobileNet-V2 predictions interpretable, but also show few weaknesses in handling the 
difference in symptoms to the point of blurry distinctions between sometimes close classes 
such as Grey Leaf Spot.  

GradCAM++ Explanation 

 

 

 



 

 

 
Fig 1.18 GradCAM ++ results MobileNet-V2 

 
LIME Explanation  

  

  

  
Fig 1.18 LIME results for MobileNet-V2 model & the contribution pixels 

 

7. Discussion 
7.1. Broader Implications of the Findings 
This disease detection system enables farmers and other agricultural specialists identify 
diseases and embark on early measures that can prevent crop loss, optimize usage of 
pesticides, among other preventive measure to increase yields. Through use of XAI 
technologies, it is easy for the users to understand the decisions that the models make, 
therefore foster understanding and acceptance of the farm AI tools. 
 



 

 

7.2. Critical Analysis  
When working with both the models Resnet-50 & MobileNet-V2 initially they attributed 
results of misclassifying for few test cases like Blight and Gray Leaf Spot, to the visual 
similarity of disease symptoms. To address this issue, the author tuned both the models, 
searched for appropriate learning rates and batch sizes, as well as applied more advanced data 
augmentation techniques.  After Hyper parameter tuning Resnet-50 performed well in 
classifying images with 96% accuracy. Also, when the XAI techniques like LIME was 
applied it provided better explanations correctly marking the boundaries of the diseased 
parts as shown in the Fig 1.19. But in the case of Grad Cam++ the heatmap for few images 
as shown in Fig 1.20 although the prediction was accurate it didn’t highlight correct 
pixels during predictions for few images.  

                          
Fig 1.19 LIME Explanation     Fig 1.20 Grad CAM++ Explanation 

MobileNetV2 being lightweight even after fine tuning there were few misclassifications 
present with accuracy of 90%. This performance could be uplifted furthermore by adding 
extra steps of preprocessing like feature extraction, and giving more epochs of training which 
would probably increase the classification rate even more.  The XAI techniques like LIME 
& GradCAM++ was applied, it provided better explanations and correct pixels during 
predictions for almost all the images. In our results Grad-CAM++ accurately highlighted 
regions of the diseased leaves such as the lesions, rust spots, and discolorations and this was 
achievable even when there existed environmental factors which include lighting or the 
changes in angle.  For example, it could still focus on rust patches in "Common Rust" or 
damaged areas in "Blight" under poor lighting or slight rotations. Under environmental 
conditions, such as shadows or partial occlusions, LIME allows the model to focus on 
specific disease-relevant regions, isolating these features from irrelevant background noise. 
This helps ensure that even subtle changes due to lighting or dust does not mislead the model. 
Different corn leaf disease categories e.g., gray leaf spot, common rust, blights may exhibit 
unique patterns that affect how Grad-CAM++ and LIME explain the model's behavior. 
Heatmaps created by Grad-CAM++ focuses on vast areas related to symptoms of blight. 
They are also reliable for the identification of this disease because they highlight blotches and 
lesions found in Blight disease. LIME gives more detailed information about the damaged 
part where the lesions and discoloration exist in detail for blight. 
 
Gray Leaf Spot poses more challenges for Grad-CAM++, as the heatmaps often overlap with 
features of other diseases, such as Blight. This leads to some difficulty in accurately 
distinguishing the disease in certain cases. Unlike LIME, which does a good job in this 
category offering more specific and precise explanations regarding some rare distinctly 
circled patterns and irregular brown blotches linked to Gray Leaf Spot. 
 
Grad-CAM++ produces heatmaps that are accurate to the rust like patches observed on the 
surface of the leaf. Since small, circular spots representing this disease are highlighted, Grad-
CAM++ is beneficial for representing both the general distribution and density of the rust. 



 

 

LIME goes one step further in that it identifies these very specific, rust-like, granular areas in 
its explanations. One advantage that LIME has is that it shows individual regions that affect 
the prediction more clearly 
 
This study fills the gap between very accurate deep learning models and interpretable AI 
solutions by situating these findings within the literature. ResNet-50, Mobile Net v2 and XAI 
in combination provide a scalable, affordable, and practical means of agricultural disease 
management and a roadmap for future smart farming technologies. To address the "black 
box" nature of deep learning models, Gradient CAM++ highlighted critical image regions 
influence prediction while LIME provides localized explanations.  
As the prior research (by Rakesh et al., Wei et al.) employed explainable artificial 
intelligence techniques including Grad-CAM, this work expanded upon it by performing 
Grad-CAM++ an advanced version of it and LIME. It provided a better overview of what 
model interpretability actually means and detailed information about the pros and cons of 
models. 
From the research and above discussion, the author interprets that the Resnet-50 as the best 
model in terms of accurately predicting between the disease classes and healthy corn leaves. 
And in terms of Model Explainability the LIME performs better with granular output in a 
way that will easily be understandable by farmers or agriculturists the reasons behind models’ 
prediction. 
Like previous studies, this research was faced by confusions between visually similar 
diseases (such as Gray Leaf Spot and Blight). But it tackled these difficulties by stressing 
explainability tools, something not seen as often across much previous research concentrating 
only on accuracy.   

 

8. Conclusion 
This work aimed to improve prediction performance and the explainability of decision-
making procedures that deep learning models could offer through the investigation and 
improvement of accuracy and explanation. Our goal was to discover how using Explainable 
AI (XAI) approaches such as GradCAM++ and LIME can reduce the black box character of 
deep learning models while maintaining computational efficiency and accuracy of the model. 
This work achieved its goal of effectively proving via extensive testing that using fine tuning 
of ResNet-50 and MobileNetV2 models and implemented with XAI, they reach classification 
accuracy greater than 90% to 96%. Using Grad-CAM++ and LIME, interpretability was 
improved by providing perceptive representations of the important characteristics 
contributing to the predictions of the models. 
However, these achievements still constitute some for our problems. Both models used well 
selected datasets which may be biased and to which the model was not exposed to all possible 
combinations of variables that the model could encounter in real world conditions. 

8.1. Future studies and uses in Real World Context  
Subsequently, a course for future studies will be to build an improved version of ResNet-50 
with the characteristics of MobileNetV2 in terms of efficiency and real-time XAI. Another 
meaningful direction to expand this work lies in commercial research itself, such as electronic 
platforms, especially in the form of smartphone applications, or IoT-based agricultural 
control systems. The results provide a foundation for the development of user-friendly mobile 



 

 

apps for suggestions on illness diagnosis and treatment in practical environments. As an 
illustration: these models allow low power devices or the cloud to perform in real time illness 
diagnosis.  
 

REFRENCES 
[1] Nigar, Natasha & Faisal, Hafiz & Umer, Muhammad & Oki, Olukayode & Lukose, Jose. (2024). Improving 
Plant Disease Classification With Deep-Learning-Based Prediction Model Using Explainable Artificial 
Intelligence. IEEE Access. PP. 1-1. 10.1109/ACCESS.2024.3428553.  

[2] Thakur, P.S., Khanna, P., Sheorey, T., & Ojha, A. (2022). Explainable vision transformer enabled 
convolutional neural network for plant disease identification: PlantXViT. arXiv preprint arXiv:2207.07919. 

[3] Balavani, K., Sriram, D., Shankar, M.B., & Charan, D.S. (2023) 'An optimized plant disease classification 
system based on ResNet-50 architecture and transfer learning', Proceedings of the 4th International Conference 
for Emerging Technology (INCET), Belgaum, India, May 26-28, pp. 1-5. IEEE. doi: 
10.1109/INCET57972.2023.10170368. 

[4] Verma, D., Bordoloi, D., & Tripathi, V. (2021) 'Plant leaf disease detection using MobileNetV2', Webology, 
18(5), pp. 3241–3246. doi: 10.29121/WEB/V18I5/60. 

[5]  Waheed, A., Goyal, M., Gupta, D., Khanna, A., Hassanien, A.E., & Pandey, H.M. (2020) 'An optimized 
dense convolutional neural network model for disease recognition and classification in corn leaf', Computers 
and Electronics in Agriculture, vol. 175, p. 105456. doi: 10.1016/j.compag.2020.105456. 

[6] Rakesh, S. & Indiramma, M. (2022) 'Explainable AI for Crop Disease Detection', Proceedings of the 4th 
International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 
IEEE, pp. 1601–1607. doi: 10.1109/ICAC3N56670.2022.10074303. 

[7] Wei, K., Chen, B., Zhang, J., Fan, S., Wu, K., Liu, G., & Chen, D. (2022) 'Explainable Deep Learning Study 
for Leaf Disease Classification', Agronomy, vol. 12, no. 5, p. 1035. doi: 10.3390/agronomy12051035. 

[8] Batchuluun, G., Nam, S.H., & Park, K.R. (2022) 'Deep learning-based plant classification and crop disease 
classification by thermal camera', Journal of King Saud University – Computer and Information Sciences, vol. 
34, pp. 10474–10486. doi: 10.1016/j.jksuci.2022.11.003. 

[9] Chang, C.-Y. & Lai, C.-C. (2024) 'Potato Leaf Disease Detection Based on a Lightweight Deep Learning 
Model', Machine Learning and Knowledge Extraction, vol. 6, pp. 2321–2335. doi: 10.3390/make6040114. 

[10] Kumar, S., Ratan, R., & Desai, J.V. (2022) 'Cotton disease detection using TensorFlow machine learning 
technique', Advances in Multimedia, vol. 2022, article ID 1812025. doi: 10.1155/2022/1812025. 

[11] Shoaib, M., Shah, B., EI-Sappagh, S., Ali, A., Ullah, A., Alenezi, F., Gechev, T., Hussain, T., & Ali, F. 
(2023) 'An advanced deep learning models-based plant disease detection: A review of recent research', Frontiers 
in Plant Science, 14, p. 1158933. doi: 10.3389/fpls.2023.1158933. 

[12] Stadlhofer, A. & Mezhuyev, V. (2023) 'Approach to provide interpretability in machine learning models for 
image classification', Industrial Artificial Intelligence, vol. 1, p. 10. doi: 10.1007/s44244-023-00009-z. 

[13] Sagar, S., Javed, M., & Doermann, D.S. (2023) 'Explainable AI for plant disease detection: A case study 
with LIME and Grad-CAM', Frontiers in Artificial Intelligence, vol. 3, pp. 1-12. doi: 10.3389/fai.2023.1158933. 

[14] Hossain, M.I., Jahan, S., Al Asif, M.R., Samsuddoha, M., & Ahmed, K. (2023) 'Detecting tomato leaf 
diseases by image processing through deep convolutional neural networks', Smart Agricultural Technology, vol. 
5, p. 100301. doi: 10.1016/j.atech.2023.100301. 

[15] Rashid, R., Aslam, W., Aziz, R., & Aldehim, G. (2024) 'An Early and Smart Detection of Corn Plant Leaf 
Diseases Using IoT and Deep Learning Multi-Models', IEEE Access, vol. 12, pp. 23149-23162. doi: 
10.1109/ACCESS.2024.3357099. 

[16] Tariq, M., Ali, U., Abbas, S., Hassan, S., Naqvi, R.A., Khan, M.A., & Jeong, D. (2024) 'Corn leaf disease: 
Insightful diagnosis using VGG16 empowered by explainable AI', Frontiers in Plant Science, vol. 15, p. 
1402835. doi: 10.3389/fpls.2024.1402835.  



 

 

[17] Alami, A., Boumhidi, J., & Chakir, L. (2024) 'Explainability in CNN-based deep learning models for 
medical image classification', Proceedings of the International Conference on Intelligent Systems and Computer 
Vision (ISCV), IEEE, pp. 1-8. doi: 10.1109/ISCV60512.2024.10620149. 

[18] Agrawal, S.A., Rewaskar, V.D., Agrawal, R.A., Chaudhari, S.S., Patil, Y.V. & Agrawal, N.S., 2023. 
Advancements in NSFW Content Detection: A Comprehensive Review of ResNet-50 Based Approaches. 
International Journal of Intelligent Systems and Applications in Engineering, 11(4), pp.41-45.  

[19] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted 
Residuals and Linear Bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 4510–4520. DOI: 10.1109/CVPR.2018.00474 

[20] Singh, V. & Misra, A.K., 2017. Detection of plant leaf diseases using image segmentation and soft 
computing techniques. Information Processing in Agriculture 

 
 


