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1 Introduction

This configuration manual contains a complete guide to setting up, installing, and deploying
predicting arrests due to traffic violation projects. It outlines the system specifications, the
key steps in the installation process, various data pre-processing techniques, issues on model
design, training and testing methods, and framework for various deployment contexts. By
reading this manual and following the directions herein, you will also gain an understanding
of the most basic concepts of developing, training, and evaluating machine learning and deep
learning models for arrest prediction due to traffic violations.

2  System Configuration

2.1 Hardware Configuration

OS Used: Windows 11, version 24H2
Processor Used: 12" GEN INTEL CORE i5
Hard drive Used: SSD(460GB)

RAM: 8GB

2.2 Software Configuration

e Python
e Jupiter Notebook

3 Installation and Setting up Environment
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In order to import the dataset into Jupiter Notebook which is a Python environment, we need
to get the dataset “Traffic and Drugs Related Violations Dataset” (Shubham, 2021) from the
website “https://www.kaggle.com/datasets/shubamsumbria/traffic-violations-dataset/data”.
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This dataset contains around 65k+ traffic-related violation records.
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http://www.kaggle.com/datasets/shubamsumbria/traffic-violations-dataset/data

4.2 Importing Python Libraries
e Python is a high-level programming language that contains several libraries, which
we need to include while programming as shown in the figure below.

e Thereafter, when we require such libraries based on some requirements that we have
then we can go ahead and import them into use in our research.

import pandas as pd
import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_ split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, recall score, precision_score, fl_score, confusion_matrix, classification_report
from sklearn.preprocessing import StandardScaler
import tensorflow as tf

from tensorflow.keras import layers, models

import warnings

import time

import pandas as pd + N
import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split, GridSearchCV

from sklearn.ensemble import RandomForestClassifier

from sklearn.svm import SVC

from sklearn.linear_model import LogisticRegression, LinearRegression

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score, recall_score, precision_score, fl_score, confusion_matrix, classification_report, RocCurveDisplay

import warnings
import time

4.3 Data Preprocessing and Analyzing

4.3.1 Data Import
Dataset Path: This dataset is taken from the source D:/RIC_AK/traffic_violations.csv.

# Load the dataset from the specified path
TnD = pd.read csv('D:/RIC_AK/traffic violations.csv')

4.3.2 Data Cleaning
Several data cleaning steps are applied to ensure the data is ready for modeling:

Step 1: Dropping Irrelevant Columns: Any of the columns that are irrelevant to the analysis
are omitted.

Step 2: Handling Missing Data: The na or empty rows are removed to avoid the presence of
missing values at the time of model formation.

Step 3: Binary Conversion for drugs_related stop: First the drugs_related stop column is
converted to binary values in which True is 1 and False is 0.



Step 4: Extracting Date Features: Features are extracted from stop_date by making year,
month, and day different attributes.

Step 5: Handling stop_time: The stop_time column is then transformed into a numerical
form where the value of each stop time is in terms of an hour and a fraction of an hour.

Step 6: Categorical Data Transformation: Driver gender is transformed into binary variables,
where M is coded as 1, and, F is coded as 0.

Step 7: Dropping Columns: The driver_age _raw and stop_outcome features are omitted from
the analysis as they can be considered irrelevant to the job.

# Perform initial data cleaning and feature engineering

# Remove unnecessary columns

TnD.drop([ 'country_name', 'search_type'], axis=1, inplace=True)

# Drop rows with missing values

TnD = TnD.dropna(how="'any"')

# Convert boolean values in 'drugs_related stop' to integers (1/@)

TnD[ 'drugs_related_stop'] = TnD['drugs_related stop'].apply(lambda x: 1 if x == True else 0)
# Extract year, month, and day from the 'stop date' column and drop it

TnD[ 'stop_year'] = TnD[ 'stop_date'].apply(lambda x: int(x.split('/')[2]))

TnD[ 'stop_month'] = TnD[ 'stop_date'].apply(lambda x: int(x.split('/')[0]))

TnD[ 'stop_day'] = TnD['stop_date'].apply(lambda x: int(x.split('/')[1]))
TnD.drop('stop_date', axis=1, inplace=True)

# Convert 'stop time' into a numerical value representing hours

TnD[ 'stop_time'] = TnD['stop_time'].apply(lambda x: int(x.split(':')[@]) + int(x.split(':')[1])/60)
# Map gender to integers (M: 1, F: 8)

TnD[ 'driver_gender'] = TnD[ 'driver_gender'].map({'M': 1, 'F': 0})

# Remove raw age column as it is not needed

TnD.drop([ 'driver_age_raw'], axis=1, inplace=True)

# Copy the 'violation raw' column into 'violation' for further use

TnD[ 'violation'] = TnD['violation_raw']

TnD.drop([ 'violation_raw'], axis=1, inplace=True)

# Convert boolean columns to integers (1/8)

TnD[ 'search_conducted'] = TnD['search_conducted'].apply(lambda x: 1 if x == True else 0)
TnD[ 'is_arrested'] = TnD['is_arrested'].apply(lambda x: 1 if x == True else 0)

# Drop the 'stop outcome' column as it is not relevant for the analysis

TnD.drop('stop_outcome', axis=1, inplace=True)

Step 8: One-Hot Encoding for Categorical Variables: Categorical variables in driver_race,
violation, stop_duration, and stop_year are encoded using the one-hot encoding algorithm.

# Perform one-hot encoding on categorical columns
TnD = pd.get_dummies(TnD, columns=['driver_race', 'violation', 'stop_duration', 'stop_year'], drop_first=False)

# Ensure all column names are strings (this avoids any potential issues with mixed types)

TnD.columns = TnD.columns.astype(str)

4.3.3 Split Data

The data is then divided into labels features(X) and label (y) followed by the division into
training and testing data (80% training and 20% testing).

5. Modelling



In this section, we use several classification techniques to perform the classification of the
target variable is_arrested.

5.1 Random Forest:

The Random Forest model is tuned using Grid Search with the below hyperparameters:

n_estimators: Density of trees in the forest (set to 200 trees).

min_samples_leaf: Minimum samples needed at the terminal nodes are set in (40, 60, 100,
150, 200).

max_depth: Depth of the trees at which they are optimized (values: 3, 5, 10, 15, 20).
max_features: Number of features to consider for splitting: 0.05, 0.1, 0.15, 0.2, 0.25.

To decide the best model, the result of the grid search is used.

By applying the trained model to the testing data as well as the training data possible results
are obtained.

# Initialize a Random Forest classifier with balanced class weights

Model rf = RandomForestClassifier(random_state=1006, n_jobs=-1, class_weight='balanced')

# Define a parameter grid for GridSearchCV

params_rf = {'n_estimators': [200],
'min_samples_leaf': [40, 60, 100, 150, 200],
'max_depth': [3, 5, 10, 15, 20],
'max_features': [0.05, 0.1, ©.15, 0.2, 0.25

# Perform Grid Search to find the best hyperparameters for Random Forest

start_time = time.time() # Track the time for training

grid_search_rf = GridSearchCV(estimator=Model rf, param_grid=params_rf, verbose=z1l, n_jobs=-1, scoring="accuracy')
grid_search_rf.fit(X_train, y_train)

rf_training_time = time.time() - start_time # Calculate training time

print(f"Time for Random Forest model training: {rf_training_time:.2f} seconds")

# Extract the best model from GridSearchCV

Model rf_best = grid_search_rf.best_estimator_

5.2 Logistic Regression

The Logistic Regression is another linear model used to categorize the results into two
categories. It predicts the likelihood of a categorical dependent variable given one or a set of
independent variables.

Hyperparameters used for this model are as below:

max_iter: The maximum number of times the solver is allowed to run in order to look for the
best solution.



# Model 4: Logistic Regression

# Start tracking time for model training

start_time = time.time()

# Initialize the Logistic Regression model with a maximum iteration Limit

Model_lr = LogisticRegression(max_iter=1000)

# Train the Logistic Regression model using the training data
Model 1lr.fit(X_train, y_train)

5.3 Support Vector Machine (SVM)

Support Vector Machine (SVM) is an elegant classifier that aims at identifying a hyperplane
that is closest to the sets of data points belonging to different classes. This is perfect for data
whose support extends to high-dimensional spaces.

The hyperparameters used are as follows:

C: Regularization parameter.

kernel: Kernel function type (Linear or Radial etc.,).
# Model 3: Support Vector Machine (SVM)

# Start timing the training process for the SVM model

start_time = time.time()

# Initialize the SVM model with a linear kernel and probability estimation enabled

Model svm = SVC(kernel='linear', probability=True)

# Train the SVM model on the training dataset

Model svm.fit(X_train, y_train)

# Calculate and display the time taken for training the model
svm_training_time = time.time() - start_time
print(f"Time for SVM model training: {svm_training_time:.2f} seconds")

5.4 K- Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is another machine learning classification type, which is non-
parametric in nature. The method of classification is done with the help of the nearest-
neighbor rule which categorizes new data points according to the majority class of the nearest
neighbors. Hyperparameter used are as follows:

n_neighbors: The number of neighbors for classification or decision making.



# Model 2: K-Nearest Neighbors (KNN)

# Start measuring time for KNN training

start_time = time.time()

# Create the KNN model with 5 neighbors
Model_knn = KNeighborsClassifier(n_neighbors=5)

# Train the KNN model using the training data
Model_knn.fit(X_train, y_train)

# Calculate the training time and print it
knn_training_time = time.time() - start_time
print(f"Time for KNN model training: {knn_training_time:.2f} seconds")

# Predictions

# Start measuring time for KNN predictions
start_time = time.time()

# Make predictions on both the training and test datasets
y_train_pred_knn = Model_knn.predict(X_train)
y_test_pred_knn = Model_knn.predict(X_test)

# Calculate the prediction time and print it
knn_prediction_time = time.time() - start_time
print(f"Time for KNN model predictions: {knn_prediction_time:.2f} seconds")

5.5 Linear Regression

Linear Regression is used to predict continuous variables although it can be tweaked for
binary classification by setting the probability values.

# Model 5: Linear Regression

# Start timing the overall process

start_time = time.time()

# Initialize the Linear Regression model

Model linreg = LinearRegression()

# Train the model using the training dataset

Model linreg.fit(X_train, y_train)

# Calculate and display the training time
linreg_training_time = time.time() - start_time

print(f"Time for Linear Regression model training: {linreg_training time:.2f} seconds")

5.6 Deep Neural Decision Forest(DNDF)

Deep Neural Decision Forest fuses decision forests and deep learning to obtain the best
result. It is sophisticated from the perspective of ensemble learning and includes the
application of neural networks as well as decision trees.

Libraries: The implementation of this can be done using TensorFlow or Keras. This,
however, is a more advanced technique and needs to be implemented from scratch and not
implemented in scikit-learn.



# Standardize the data for the neural network
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

# Neural network part (feature extractor)
def build_nn_model(input_shape):
model = models.Sequential()
model.add(layers.InputLayer(input_shape=(input_shape,))) # Input shape must be a tuple
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
# Output will be the features passed to the decision forest
return model

5.7LSTM

LSTM is a specific kind of RNN used in input data with the time factor or sequence data.
This comes in handy in capturing long term dependencies in the data.

Hyperparameters:
units: The number of neurons in the LSTM layer fixed it in order to make proper dimension
of output.

# Standardize the data for the LSTM model
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

# Reshape data for LSTM input (adding a third dimension)
X_train_lstm = np.expand_dims(X_train_scaled, axis=-1)
X_test_lstm = np.expand_dims(X_test_scaled, axis=-1)

# Define and build LSTM model
def build_lstm_model(input_shape):
model = models.Sequential()
model.add(layers.InputLayer(input_shape=(input_shape, 1))) # Reshape for LSTM
model.add(layers.LSTM(50, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid')) # Output layer for binary classification
model.compile(optimizer="'adam', loss='binary_crossentropy', metrics=['accuracy'])
return model

# Measure training time for the LSTM model

start_time = time.time()

lstm_model = build_lstm_model(X_train_scaled.shape[1])

lstm_model.fit(X_train_lstm, y_train, epochs=z10, batch_size=32, validation_split=@.2, verbose=0)
lstm_training_time = time.time() - start_time

print(f"Time for LSTM model training: {lstm_training_time:.2f} seconds")

5.8 MLP

Now MLP is the type of fully connected feedforward neural network with more than one
hidden layer, which is most commonly employed in classification problems.

Hyperparameters used in the code:



hidden_layer_sizes: Specifies the quantity of neurons of each hidden layer.

activation: Describes the activation function of the hidden layers, It is a function that is used
to put an activator on the hidden layers.

solver: The optimization process to follow; This is known as the algorithm.

# Define and build MLP model
def build_mlp_model(input_shape):
model = models.Sequential()
model.add(layers.InputlLayer(input_shape=(input_shape,)))
model .add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(64, activation='relu'))
model .add(layers.Dense(32, activationz'relu'))
model.add(layers.Dense(1l, activationz'sigmoid')) # Output Llayer for binary classification
model.compile(optimizer="'adam', loss='binary_crossentropy', metrics=['accuracy'])

return model

5.9 GRU

GRU is also an RNN based network; however, it’s simpler than LSTM but in most sequence
types of problem, it is better or at least as good as the latter.

Hyperparameters used in the code below:

# Standardize the data for the GRU model
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

# Reshape data for GRU input (adding a third dimension)
X_train_gru = np.expand_dims(X_train_scaled, axis=-1)

X_test_gru = np.expand_dims(X_test_scaled, axis=-1)

# Define and build GRU model

def build_gru_model(input_shape):
model = models.Sequential()
model.add(layers.InputLayer(input_shape=(input_shape, 1))) # Reshape for GRU
model.add(layers.GRU(50, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid')) # Output Llayer for binary classification
model.compile(optimizer="'adam', loss='binary_crossentropy’', metrics=['accuracy'])

return model

# Measure training time for the GRU model

start_time = time.time()

gru_model = build_gru_model(X_train_scaled.shape[1])

gru_model.fit(X_train_gru, y_train, epochs=10, batch_size=32, validation_split=0.2, verbose=0)
gru_training_time = time.time() - start_time

print(f"Time for GRU model training: {gru_training_time:.2f} seconds")

5.10 RNN

Recurrent Neural Networks (RNNs) are actors or machines whose performance is to use
temporal data since the current output depends on previous inputs (text, time series data).



Hyperparameters used in the code below:
units: The number of neurons that is to be contained in the RNN layer of this network.

# Standardize the data for the RNN model
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

# Reshape data for RNN input (adding a third dimension)
X_train_rnn = np.expand_dims(X_train_scaled, axis=-1)
X_test_rnn = np.expand_dims(X_test_scaled, axis=-1)

# Define and build RNN model
def build_rnn_model(input_shape):
model = models.Sequential()
model.add(layers.InputlLayer(input_shape=(input_shape, 1))) # Reshape for RNN
model.add(layers.SimpleRNN(50, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid')) # Output layer for binary classification
model.compile(optimizer="adam', loss='binary_crossentropy', metrics=['accuracy'])
return model

6. Results

6.1 Performance Metrics

After training and predicting with the models, the performance metrics (Accuracy, Precision,
Recall, and F1 Score) are calculated for both the training and testing sets:

# Perform Grid Search to find the best hyperparameters for Random Forest

start_time = time.time() # Track the time for training

grid_search_rf = GridSearchCV(estimator=Model_rf, param_grid=params_rf, verbose=z1l, n_jobs=-1, scoring='accuracy')
grid_search_rf.fit(X_train, y_train)

rf_training_time = time.time() - start_time # Calculate training time

print(f"Time for Random Forest model training: {rf_training_time:.2f} seconds")

# Extract the best model from GridSearchCV

Model_rf_best = grid_search_rf.best_estimator_

# Use the trained model to make predictions on the training and test data
start_time = time.time()

y_train_pred_rf = Model_rf_best.predict(X_train)

y_test_pred_rf = Model_rf_best.predict(X_test)

rf_prediction_time = time.time() - start_time # Calculate prediction time
print(f"Time for Random Forest model predictions: {rf_prediction_time:.2f} seconds")

# Evaluate the model's performance on the training data
print("Random Forest - Train Performance")

print("Train Accuracy:", accuracy_score(y_train, y_train_pred_rf))
print("Train Precision:", precision_score(y_train, y_train_pred_rf))
print("Train Recall:", recall_score(y_train, y_train_pred_rf))
print("Train F1 Score:", fl_score(y_train, y_train_pred_rf))

# Evaluate the model 's performance on the testing data
print("\nRandom Forest - Test Performance")

print("Test Accuracy:", accuracy_score(y_test, y_test_pred_rf))
print("Test Precision:", precision_score(y_test, y_test_pred_rf))
print("Test Recall:", recall_score(y_test, y_test_pred_rf))
print("Test F1 Score:", fl_score(y_test, y test_pred_rf))

6.2 Confusion Matrix & ROC Curve

A confusion matrix and Receiver Operating Characteristics curve plotting is done on
individual models to summarize their performance.
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6.3 Training and Prediction Time
The time taken for both training and predictions for the models is printed:

# Use the trained model to make predictions on the training and test data
start_time = time.time()

y_train_pred rf = Model rf_best.predict(X_train)

y_test pred_rf = Model rf best.predict(X_test)

rf_prediction_time = time.time() - start_time # Calculate prediction time
print(f"Time for Random Forest model predictions: {rf_prediction_time:.2f} seconds")

Time for Random Forest model training: 266.38 seconds
Time for Random Forest model predictions: 8.31 seconds

6.4 Final Computation Time
The total time for the entire computation process is printed at the end of the script:

# Calculate and print the total computation time
overall end_time = time.time()
overall time = overall end_time - overall start_time

print(f"\nTotal computation time: {overall time:.2f} seconds")
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Total computation time: 267.98 seconds
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