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Configuration Manual

Rehan Shariff
x22246339@student.ncirl.ie

1 Introduction

This configuration manual provides detailed instructions for setting up, configuring, and
deploying the Physical Activity Recognition system using wearable sensor data. The
system leverages deep learning models, including Convolutional Neural Networks (CNN),
Long Short-Term Memory (LSTM) networks, and a hybrid CNN-LSTM architecture,
combined with hybrid feature selection techniques to optimize performance. Additionally,
the manual covers the deployment of a Flask-based API for real-time activity prediction.

2 System Requirements

Before proceeding with the installation and configuration, ensure that your system meets
the following requirements:

2.1 Hardware Requirements

Processor: Intel i5 or higher

RAM: Minimum 8 GB

Storage: At least 20 GB of free space

GPU: NVIDIA GPU with CUDA support (optional, for faster model training)

2.2 Software Requirements

e Operating System: Windows 10/11, macOS, or Linux
e Python: Version 3.7 or higher
e Libraries and Dependencies:

— numpy
— pandas
scikit-learn
— TensorFlow
— Keras

— Flask

— joblib

— plotly

— flask_cors

e Development Tools:

— Jupyter Notebook or Google Colab
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— Integrated Development Environment (IDE) like VS Code or PyCharm
— Git for version control

3 Installation

3.1 Create a Virtual Environment

It is recommended to use a virtual environment to manage dependencies.

3.2 Activate the Virtual Environment

Activate the virtual environment using the appropriate command for your operating
system.

3.3 Install Dependencies

Install all required Python libraries using pip.

4 Data Preparation

4.1 Download the Dataset

Ensure that the dataset is placed in the designated directory with the following structure:
Figure 1: Dataset Directory Structure

Figure 1: Dataset Directory Structure

4.2 Data Loading and Preprocessing

The data is loaded and preprocessed to handle missing values, normalize features, and
encode activity labels.
Figure 2: Data Preprocessing Process
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Figure 2: Data Preprocessing Process

5 Feature Selection

5.1 Hybrid Feature Selection Approach

The system employs a hybrid feature selection strategy combining Elastic Net regulariza-
tion and Random Forest with Mutual Information to identify the most relevant features.

Figure 3: Feature Selection Process
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Figure 3: Feature Selection Process

5.2 Saving Selected Features

After feature selection, the scaler, selected feature indices, and label encoder are saved

for future use.



6 Data Segmentation for Time-Series Modeling

6.1 Segmenting the Data

The dataset is divided into overlapping segments suitable for sequential models.
Figure 4: Data Segmentation Process

Figure 4: Data Segmentation Process

6.2 Splitting the Data

The segmented data is split into training and testing sets using an 80-20 split.

7 Model Architecture

7.1 Convolutional Neural Network (CNN)

The CNN model captures spatial patterns within each time step.
Figure 5: CNN Model Architecture

Figure 5: CNN Model Architecture

7.2 Long Short-Term Memory (LSTM)

The LSTM model focuses on capturing temporal dependencies in the data.



Figure 6: LSTM Model Architecture
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Figure 6: LSTM Model Architecture

7.3 CNN-LSTM Hybrid Model

Combining CNN and LSTM layers to capture both spatial and temporal patterns.
Figure 7: CNN-LSTM Model Architecture
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Figure 7: CNN-LSTM Model Architecture

8 Model Training and Evaluation

8.1 Training the Models

Each model is trained with early stopping to prevent overfitting. Training time and
performance metrics are recorded.

8.2 [Evaluating Model Performance

After training, models are evaluated using metrics such as accuracy, precision, recall, and
F1 score.
Figure 8: Model Evaluation Metrics



Figure 8: Model Evaluation Metrics

9 Model Comparison

9.1 Visualizing Performance Metrics

Performance metrics for all models are visualized using Plotly to facilitate comparison.
Figure 9: Model Comparison Bar Chart
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Figure 9: Model Comparison Bar Chart

9.2 Identifying the Best Model
The model with the highest F1 score is identified as the best-performing model.

10 Saving and Deploying the Best Model

10.1 Saving the Model

The best-performing model is saved using TensorFlow’s model saving utilities.
Figure 10: Saving the Best Model



Figure 10: Saving the Best Model

10.2 Setting Up the Flask API

A Flask API is set up to serve the saved model for real-time predictions.
Figure 11: Flask API Setup
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Figure 11: Flask API Setup

10.3 Running the Flask API

Start the Flask server to make the API available for predictions.
Figure 12: Running Flask API
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Figure 12: Flask API Running Output



11 Making Predictions via the API

11.1 API Endpoint

The API provides a single endpoint /predict that accepts POST requests with sensor
data for activity prediction.

11.2 Request Format
Send a JSON payload with the key input, containing a 2D array of sensor data.

11.3 Response Format

The API responds with a JSON containing the predicted class, label, prediction probab-
ilities, and Mean Squared Deviation Ratio (MSDR).

12 Conclusion

This manual provides a step-by-step guide to configuring and deploying a deep learning-
based physical activity recognition system. By following the instructions, users can set
up the environment, preprocess data, perform hybrid feature selection, train and evaluate
models, and deploy the best model using a Flask APIL.
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