~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Rehan Shariff
Student ID: x22246339Q@student.ncirl.ie

School of Computing
National College of Ireland

Supervisor: Jaswinder Singh

National College of Ireland National
Project Submission Sheet College of

School of Computing Ireland

Student Name:

Rehan Shariff

Student ID: x22246339Qstudent.ncirl.ie
Programme: Data Analytics

Year: 2025

Module: MSc Research Project
Supervisor: Jaswinder Singh

Submission Due Date:

29 January 2025

Project Title:

Configuration Manual

Word Count:

1000

Page Count:

10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Rehan Shariff
Date: 29th January 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | [

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Rehan Shariff
x22246339@student.ncirl.ie

1 Introduction

This configuration manual provides detailed instructions for setting up, configuring, and
deploying the Physical Activity Recognition system using wearable sensor data. The
system leverages deep learning models, including Convolutional Neural Networks (CNN),
Long Short-Term Memory (LSTM) networks, and a hybrid CNN-LSTM architecture,
combined with hybrid feature selection techniques to optimize performance. Additionally,
the manual covers the deployment of a Flask-based API for real-time activity prediction.

2 System Requirements

Before proceeding with the installation and configuration, ensure that your system meets
the following requirements:

2.1 Hardware Requirements

Processor: Intel i5 or higher

RAM: Minimum 8 GB

Storage: At least 20 GB of free space

GPU: NVIDIA GPU with CUDA support (optional, for faster model training)

2.2 Software Requirements

e Operating System: Windows 10/11, macOS, or Linux
e Python: Version 3.7 or higher
e Libraries and Dependencies:

— numpy
— pandas
scikit-learn
— TensorFlow
— Keras

— Flask

— joblib

— plotly

— flask_cors

e Development Tools:

— Jupyter Notebook or Google Colab

1

— Integrated Development Environment (IDE) like VS Code or PyCharm
— Git for version control

3 Installation

3.1 Create a Virtual Environment

It is recommended to use a virtual environment to manage dependencies.

3.2 Activate the Virtual Environment

Activate the virtual environment using the appropriate command for your operating
system.

3.3 Install Dependencies

Install all required Python libraries using pip.

4 Data Preparation

4.1 Download the Dataset

Ensure that the dataset is placed in the designated directory with the following structure:
Figure 1: Dataset Directory Structure

Figure 1: Dataset Directory Structure

4.2 Data Loading and Preprocessing

The data is loaded and preprocessed to handle missing values, normalize features, and
encode activity labels.
Figure 2: Data Preprocessing Process

= data.drop(co J p',)
data['activityID']

Figure 2: Data Preprocessing Process

5 Feature Selection

5.1 Hybrid Feature Selection Approach

The system employs a hybrid feature selection strategy combining Elastic Net regulariza-
tion and Random Forest with Mutual Information to identify the most relevant features.

Figure 3: Feature Selection Process

tures=5):

np.mean(rf.feature_impor

Figure 3: Feature Selection Process

5.2 Saving Selected Features

After feature selection, the scaler, selected feature indices, and label encoder are saved

for future use.

6 Data Segmentation for Time-Series Modeling

6.1 Segmenting the Data

The dataset is divided into overlapping segments suitable for sequential models.
Figure 4: Data Segmentation Process

Figure 4: Data Segmentation Process

6.2 Splitting the Data

The segmented data is split into training and testing sets using an 80-20 split.

7 Model Architecture

7.1 Convolutional Neural Network (CNN)

The CNN model captures spatial patterns within each time step.
Figure 5: CNN Model Architecture

Figure 5: CNN Model Architecture

7.2 Long Short-Term Memory (LSTM)

The LSTM model focuses on capturing temporal dependencies in the data.

Figure 6: LSTM Model Architecture

put_shape),

Figure 6: LSTM Model Architecture

7.3 CNN-LSTM Hybrid Model

Combining CNN and LSTM layers to capture both spatial and temporal patterns.
Figure 7: CNN-LSTM Model Architecture

def crea
model Se
ConvlD(64, N " Lnp] input_shape),

Dense
1)

model.c

gorical_crossentropy',

acy"

Figure 7: CNN-LSTM Model Architecture

8 Model Training and Evaluation

8.1 Training the Models

Each model is trained with early stopping to prevent overfitting. Training time and
performance metrics are recorded.

8.2 [Evaluating Model Performance

After training, models are evaluated using metrics such as accuracy, precision, recall, and
F1 score.
Figure 8: Model Evaluation Metrics

Figure 8: Model Evaluation Metrics

9 Model Comparison

9.1 Visualizing Performance Metrics

Performance metrics for all models are visualized using Plotly to facilitate comparison.
Figure 9: Model Comparison Bar Chart

Model Comparison: CNN, LSTM, and CNN-LSTM

15

10

Scores / Training Time (s)

Best Model: LSTM

o | [| [E— [N —
CNN LSTM CNN-LSTM

Models

Figure 9: Model Comparison Bar Chart

9.2 Identifying the Best Model
The model with the highest F1 score is identified as the best-performing model.

10 Saving and Deploying the Best Model

10.1 Saving the Model

The best-performing model is saved using TensorFlow’s model saving utilities.
Figure 10: Saving the Best Model

Figure 10: Saving the Best Model

10.2 Setting Up the Flask API

A Flask API is set up to serve the saved model for real-time predictions.
Figure 11: Flask API Setup

[@ shariff thesis 3.
02:14: 19 | ® 10 Dec, Tuesday in E: - shariff_thesis
>
P024-12-10 14:37.369655: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see
ferent nume al results due to floating-point Lound off errors from different computation orders. To turn t
the environment variable ‘TF_ENABLE_ONEDNN_OPT
024-12-10 02:14:52.435329: I tPﬂ”OLflnw/CﬁlE/Utll/DDIT cc:153] oneDNN ¢ om operations are on. You may see
nt numerical results due to floating-point round-off errors from different computation orde To turn t
the environment variable ‘TF_ENABLE_ONEDNN_OPTS=0"
2:15:19.790685: I tun..oxfLou/cor.e/matform/cpu feature_guard.cc:210] Th sorFlow binary is op
1se avallabLe CPU instructions in performar 1 operations.
0 enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate {
hes.
ARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. ‘model.compile_metrics
npty until you train or evaluate the model.
* Serving Flask app 'app.py'

0.1 - - [10/Dec/2024 ©02:17:46] "OPTIONS /predict HTTP/1.1" 200 -
nviLib te-packages\sklearn\base.py:493: rWarning: X does not have valid feature name
ndSualez was fitted with feature names
warnings.warn(
/1 @s 135ms/step
NFO:werkzeug:127.0.0.1 - - [10/Dec/2024 02:17:46] "POST /predict HTTP/1.1" 200 -

Figure 11: Flask API Setup

10.3 Running the Flask API

Start the Flask server to make the API available for predictions.
Figure 12: Running Flask API

Activity Recognition Prediction

Enter input data (as JSON):

972645, 0.216756, -50.

©0.0203516, -61.5302

Predicted Activity Class: 0
Activity: Other (transient activities)

Figure 12: Flask API Running Output

11 Making Predictions via the API

11.1 API Endpoint

The API provides a single endpoint /predict that accepts POST requests with sensor
data for activity prediction.

11.2 Request Format
Send a JSON payload with the key input, containing a 2D array of sensor data.

11.3 Response Format

The API responds with a JSON containing the predicted class, label, prediction probab-
ilities, and Mean Squared Deviation Ratio (MSDR).

12 Conclusion

This manual provides a step-by-step guide to configuring and deploying a deep learning-
based physical activity recognition system. By following the instructions, users can set
up the environment, preprocess data, perform hybrid feature selection, train and evaluate
models, and deploy the best model using a Flask APIL.

	Introduction
	System Requirements
	Hardware Requirements
	Software Requirements

	Installation
	Create a Virtual Environment
	Activate the Virtual Environment
	Install Dependencies

	Data Preparation
	Download the Dataset
	Data Loading and Preprocessing

	Feature Selection
	Hybrid Feature Selection Approach
	Saving Selected Features

	Data Segmentation for Time-Series Modeling
	Segmenting the Data
	Splitting the Data

	Model Architecture
	Convolutional Neural Network (CNN)
	Long Short-Term Memory (LSTM)
	CNN-LSTM Hybrid Model

	Model Training and Evaluation
	Training the Models
	Evaluating Model Performance

	Model Comparison
	Visualizing Performance Metrics
	Identifying the Best Model

	Saving and Deploying the Best Model
	Saving the Model
	Setting Up the Flask API
	Running the Flask API

	Making Predictions via the API
	API Endpoint
	Request Format
	Response Format

	Conclusion

