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Optimizing Hybrid Feature Selection for Physical
Activity Recognition Using Deep Learning on
Wearable Sensor Data

Rehan Shariff
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Abstract

This recognition of physical activities has recently received much attention be-
cause of its applications in health monitoring, sports analytics, and activity track-
ing. This research proposes a deep learning-based approach to optimize hybrid fea-
ture selection for physical activity recognition using the PAMAP2 Physical Activity
Monitoring dataset. The main purpose of this research is to increase the precision
and efficiency of activity recognition systems by leveraging spatial and temporal
patterns within sensor data. A detailed pipeline is designed, starting with data
preprocessing, then followed by hybrid feature selection by means of ElasticNet,
Random Forest, and Mutual Information, and finally model development with
CNN, LSTM, and a hybrid CNN-LSTM architecture. Each model is tested on
the key metrics, and the LSTM model performed the best with an accuracy of
97.60%, precision of 97.59%, recall of 97.60%, and F1 score of 97.59%. The CNN
model was the second best with an accuracy of 95.48%, precision of 95.52%, recall
of 95.48%, and F1 score of 95.49%. The CNN-LSTM hybrid model achieved an
accuracy of 95.62%, precision of 95.81%, recall of 95.62%, and F1 score of 95.55%.
The selected features along with the best LSTM model are deployed through a
Flask API, which enables real-time activity recognition from raw sensor data. It
offers an innovative end-to-end activity recognition framework that incorporates
hybrid feature selection techniques along with deep learning to build high levels of
robustness and reliability in this end.

1 Introduction

Wearable technology has changed the way people monitor their bodily hobby in actual
time. Sensor-enabled gadgets along with accelerometers, gyroscopes, and heart fee video
display units are included into health tracking, fitness monitoring, and rehabilitation
packages. Identification of physical activities from wearable sensor information is an
crucial challenge that allows the design of personalised fitness interventions, enhanced
athletic overall performance evaluation, and early fitness issues detection. However, it is
hard to advantage recognition with precision and speed considering the fact that wearable
datasets are normally characterized via high dimensionality, noise, and missing facts
(). This paper is making an attempt to investigate how hybrid function selection and
deep learning techniques can be beneficial in addressing the challenges of wearable-based
physical activity recognition.



1.1 Background

Physical activity recognition is classified using data from activity sensors in devices such
as wearable sensors (3} [2). Traditional approaches depend on manual feature engineering
and classical machine learning methods that typically do not generalize well to different
datasets and often fail to exploit the spatial and temporal patterns inherent in the data
(I; ©). Deep learning made this possible by providing powerful toolboxes like Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Networks, including the LSTM
model with the capability of automatically detecting features and modeling sequential
relationships in time-series data in (7} [15]).

Despite all the great results deep learning brought to our field, the models needed
a large amount of highly quality data that is always not available. Wearable datasets
like PAMAP2 are noisy, have missing values, and include irrelevant features that de-
grade model performance (4 16). To overcome these limitations, efficient techniques for
feature selection, including dimensionality reduction and the elimination of irrelevant or
redundant features, have become critical. These methods keep only the most informative
variables, thereby improving the performance and generalization of the models (14 [13).
Hybrid feature selection approaches combining statistical and machine learning-based
methods have emerged as a promising solution to balancing feature importance and model
complexity (5; ). In this paper, methods that have been used in the pre-processing of
feature filtering before data is fed into CNN, LSTM, and hybrid CNN-LSTM models for
physical activity recognition include Random Forest, Mutual Information, and LASSO.
The approach followed is from prior research studies that showed how these hybrid ap-
proaches are efficient in increasing the accuracy of activity recognition while avoiding the
challenges of overfitting (12 [18).

1.2 Research Question

This study seeks to answer the following primary research question:

How can hybrid feature selection and deep learning improve physical activ-
ity recognition using wearable data?

It identifies the central challenge of activity recognition with an accurate, strong, and
computationally feasible system based on wearable sensor data. Hybrid feature selection
and deep learning is, therefore, used in a study to achieve better performance metrics
and overcome the associated challenges of noisy and incomplete data.

1.3 Research Objectives
To answer the research question, this study is guided by the following objectives:

e Identify Important Features: The advanced feature selection techniques such
as Random Forest, Mutual Information, and LASSO (ElasticNet) are applied to
the PAMAP2 dataset in order to identify the most informative features. This will
ensure that the model only focuses on relevant variables, improving accuracy and
reducing computational overhead.

e Integrate Feature Selection with Deep Learning Models: It focuses on the
fusion of feature selection with CNN and RNN models, particularly LSTM and
CNN-LSTM hybrids, to capture spatial and temporal dependencies in the data,
both of which are important for good activity recognition.



e Evaluate Hybrid and Baseline Methods: We will compare the performance of
hybrid feature selection and deep learning models against baseline methods using
accuracy, precision, recall, F1-score, and computational efficiency as metrics. This
comparison will help us understand how well our proposed approach performs.

e Address Data Challenges: Some common problems, such as noisiness, missing
data values, and high dimensionality of data, will be overcome for improving the
wearability of sensor data based on PAMAP2 data. Data imputation, normaliza-
tion, and smoothing could be considered for effective pre-processing.

2 Related Work

2.1 Introduction to Human Activity Recognition: Sensors and
Application

These subjects of investigation for human activity recognition are considered emerging
and have, consequently, been under a great deal of attention due to the rising demand
in applications concerning healthcare, fitness monitoring, and smart environments. The
main aim of a HAR system is to classify human activities based on data gathered by
sensors that are placed within wearable devices. These systems significantly play a very
crucial role in monitoring physical activities as well as providing personalized services
in the health and fitness industries AlQaness 2022. Movement data is captured for real-
time continuous activity tracking through wearable sensors, such as accelerometers, gyro-
scopes, and magnetometers Ascioglu Senol, 2020. The wearables have greatly impacted
the advancement of HAR because large multimodal data are now collected, which gives
an in-depth representation of human movement and increases the reliability of the HAR
system. For example, the PAMAP2 dataset, one of the most widely used in HAR studies,
is an excellent example of the richness of multimodal sensor data and thus is perfect for
training and testing machine learning and deep learning models (2). Additionally, sensor
technology has developed to make the devices small and energy-efficient in order to make
it applicable in real-life and long-term monitoring conditions (7). Applications of HAR
encompass more than just healthcare and fitness but also smart environments applying
activity recognition in home automation systems to provide personalized context-aware
services ([I1)). For example, the comfort efficiency of the HAR system can be improved
and also energy consumption reduced through heating and security control based on any
home’s activities from a person. In health care, real-time monitoring patients fall de-
tection, and follow rehabilitation in order to help improve quality care for old people
suffering chronic conditions, (2). Despite its promises, the successful development of ef-
ficient and powerful HAR systems has many barriers, including high-dimensional data
handling, generalization model, and achieving real-time performances.

2.2 Feature Selection Techniques in HAR: Hybrid Approaches
and Advances

Feature Selection Techniques in HAR: Hybrid Approaches and Advances Feature selec-
tion is the most crucial step in the HAR procedure. It picks the most relevant features for
the best performance of models from the high-dimensional data of sensors, reduces com-
plexity in computing, and protects against overfitting. Hybrid feature selection methods,



which combine multiple strategies, have emerged as a powerful approach to addressing
the limitations of individual techniques (6); (4). These methods actually exploit the
complementary strengths of the different selection algorithms, and the result is a more
complete and efficient feature selection. Elastic Net regularization is one of the most
used hybrid methods that combines both L1 and L2 penalties to achieve feature selection
along with coefficient regularization (1). This will not only select the significant features
but also reduce multicollinearity, which ensures stability in the model. Researchers have
been able to greatly improve the performance of HAR through the integration of tech-
niques like mutual information and feature importance from Random Forest to combine
with Elastic Net (5)); (6). Such integrated techniques enable the selection of features that
are both statistically relevant and practically meaningful so as to enhance the effective-
ness and interpretability of models of HAR. Random Forest classifiers are particularly
useful for feature selection in HAR because they can handle high-dimensional data and
provide intrinsic feature importance scores (9). When used in combination with mutual
information-based methods, Random Forests can identify features that contribute most
significantly to activity differentiation, leading to an optimized feature set (4)); (10). These
hybrid approaches are really useful in HAR because in such scenarios, the dimensionality
of sensor data is too vast, and relationships between the features are often complex as
well as nonlinear. In addition to the above-mentioned hybrid feature selection methods,
various metaheuristic optimization algorithms for HAR have also been applied in addi-
tion to Genetic Algorithms and Particle Swarm Optimization. These algorithms make
it possible to explore the feature space, thereby enabling the identification of optimal
subsets that can maximize model performance (2)); Yusup2024 . By combining hybrid
feature selection with metaheuristic optimization, researchers have developed robust and
efficient models that achieve state-of-the-art performance in HAR tasks (14)); (13).

2.3 Deep Learning Architectures for HAR: Models and Per-
formance

Deep learning has transformed HAR through automatic feature extraction and the ex-
ploitation of hierarchical representations of data to improve the accuracy of recognition
and generalization. CNNs have been applied in a wide variety of HAR applications
because they are capable of capturing spatial dependencies in sensor data (I5)); (8])).
Through complex pattern learning from raw sensor inputs, CNNs bypass the require-
ments of feature engineering. Consequently, it has the utmost potential in handling high
dimensional data. Research shows CNN-based models have the most superior perform-
ance than traditional ML approaches for identifying activities, where the variations of
subtle motions characterize the activities (5). Long Short-Term Memory networks, a type
of RNN, are specially suited for modeling temporal dependencies, which play a crucial
role in activity recognition (12)); (14). Traditional RNNs have the problem of vanishing
gradients that LSTMs do not have, thereby allowing it to learn the long-term depend-
encies of time series data. That is why LSTMs prove to be very useful when activities
have complex patterns along the time axis, like walking or running (7). The integration
of CNNs and LSTMs into hybrid models, known as CNN-LSTM architectures, has res-
ulted in the strengths of both types of networks being combined to capture spatial and
temporal patterns in sensor data, according to (16). Recent studies have widely applied
hybrid models to achieve state-of-the-art performance in the HAR tasks, with superior
accuracy and robustness to that of standalone CNN or LSTM architectures (10); (19).



Exploiting the strength of both CNN and LSTM models, the CNN-LSTM models can
process multimodal sensor data more effectively in order to be more viable for such com-
plex HAR scenarios. For all their effectiveness, deep learning models on HAR still have a
problem that deals with computational complexity and resource requirements. Training
and deploying deep learning models, especially hybrid architectures, are demanding re-
sources. Such requirements limit their application in real-time and resource constrained
environments (13). To address these issues, researchers have looked into optimization
techniques such as model pruning, quantization, and lightweight architectures like Mobi-
leNet that reduce the computational footprint while maintaining performance (14)).

2.4 Challenges, Optimization, and Future Directions in HAR

There are a number of challenges to building robust HAR systems, which include variab-
ility in data, generalizability of models, and computational cost. (7))); Priyadarshini et al.
2023 pointed out that variability in sensor data is a major challenge to model robustness
and accuracy, which stems from differences in sensor placement, individual biomechan-
ics, and environmental factors. Adaptive models capable of handling diverse datasets
and user populations are basic to achieving consistent performance under real-world ap-
plications (6)). The main challenges of deep learning models include the computational
complexity of real-time applications. Optimizing model architectures and the use of effi-
cient feature selection methods can minimize such problems, and hence, deployable HAR
systems can be developed on resource-constrained devices (19). The most promising
techniques related to achieving better generalization and efficiency come in the form of
transfer learning, where a pre-trained model is used for a particular task in HAR, or
domain adaptation, whereby models are adapted for new datasets (9); (13)). Future work
in HAR is envisaged to be related with multimodal data fusion approach that combines
data acquired using different types of sensors. This will give better expression of activ-
ities (16); (L17). Further, advancements of Explanable Al (XAI) are expected to make
the system of HAR clearer and easily interpretable for developing future trust and ac-
ceptance among their potential users (15). XAI can thus make the HAR systems more
usable in critical applications, such as health care and security, by providing meaningful
explanations for model predictions. Limitations from Review Although the hybrid feature
selection methods have gained a lot of development, several limitations still remain. The
first one is the computational complexity related to feature selection in high-dimensional
datasets. Hybrid approaches diminish the overall dimensionality but explorations and
evaluation of initial feature space are often computationally intensive, especially in real-
time applications (6)); (4). One other limitation is the non-uniformity in applying feature
selection methods for varying datasets and applications. Therefore, it becomes hard to
compare results and generalize findings. Also, hybrid methods typically incur numerous
hyperparameters, which needs tedious fine-tuning, thus also making the process complex
(13). Overcoming this and other limitations would imply further work on efficient feature
selection frameworks that adapt towards more versatile datasets and real applications.

2.5 Synthesis and Research Gaps in Feature Selection and Deep
Learning for HAR

Although important advances were made in feature selection as well as deep learning with
respect to HAR, important gaps remain in the literature that are to be bridged. Probably



the largest gap is the lack of systematic comparisons between hybrid methods, such as
Elastic Net and Random Forest, and PCA or wrapper-based methods among others. For
example, PCA is efficient for reducing dimensionality but loses interpretability, which
makes it less applicable in areas requiring transparency, such as healthcare (I). Wrapper
methods, although correct, are computationally intensive and, therefore, are not scalable
for real-time HAR systems (14)).

Elastic Net regularization, used in this paper, has the benefit of handling multicol-
linearity in high-dimensional sensor data and is stable by the combination of L1 and L2
penalties (6). Unlike PCA, Elastic Net preserves the interpretability of selected features,
which is an important aspect in applications like health and fitness. Random Forest
complements Elastic Net in providing feature importance scores, besides handling com-
plex, nonlinear data relationship that is typical of the multimodal wearable datasets like
PAMAP2 (9). Hybrid approaches based on combining Elastic Net with Random Forest
have proved the potential to improve both robustness of the models as well as effectiveness
in selection of features ().

Most research works that use these hybrid methods do not evaluate them in compar-
ison to metaheuristic optimization algorithms, including Genetic Algorithms or Particle
Swarm Optimization, which have been demonstrated to explore feature spaces thoroughly
but are computationally expensive (20). This gap calls for the development of frameworks
that will balance computational efficiency with accuracy in feature selection for real-time
applications.

Moreover, although CNNs and LSTMs are the mainstay of HAR research since they
can model spatial patterns and temporal patterns, respectively, their hybrid CNN-LSTM
architectures often lack proper comparisons with simpler models with respect to compu-
tational complexity and real-world feasibility (13). Moreover, little literature exists on
the interpretation of these deep learning models, which is an essential feature for building
user trust in healthcare and smart environments (15)).

This work contributes to filling in these gaps by systematically evaluating hybrid fea-
ture selection methods, namely Elastic Net and Random Forest, combined with CNN,
LSTM, and CNN-LSTM models. The paper tries to improve the accuracy, robustness,
and interpretability of HAR systems with a reduced computational overhead while focus-
ing on PAMAP2 and benchmarking the approaches.

3 Methodology

This complete methodology uses optimization for hybrid feature selection and developing
deep learning models for the recognition of physical activity from wearable sensor data.
The research is based on the PAMAP2 Physical Activity Monitoring dataset involving
data acquisition, preprocessing, feature selection, model development, evaluation, and
deployment. Each phase has been designed with careful attention to detail to ensure
robustness and effectiveness in the proposed approach.

3.1 Data Acquisition and Preprocessing
3.1.1 Dataset Selection

PAMAP2 Physical Activity Monitoring dataset was used to derive and test deep learning
models for recognizing human activity. The given dataset consists of multiple files with



the.dat suffix, each containing raw data from wearable sensors attached at hand, chest,
and ankle locations. The dataset was taken with a variety of physical activities such as
walking, running, sitting, and lying down, covering diverse classes of activities.

Every.dat file contains information from more than one type of sensor, which includes
accelerometer data, gyroscope data, magnetometer data, and heart rate data. Hence,
there is rich spatial and temporal information in them. It has 54 columns in total,
including:

timestamp: High-resolution information to record the activity length activitylD:
Number of activity performed.

heart_rate: Heart rate recorded at that time of performing activity for the participant.

Sensor Readings: This is collected along 51 channels distributed under hand, chest,
and ankle modalities like hand_acceleration, chest_gyroscope, and ankle_magnetometer.

Preprocessing on the dataset involves handling missing values, normalization of sensor
readings, and encoding activity labels. Missing data on sensor readings were filled up by
using forward filling, which gave continuity. Normalization of features was carried out by
using StandardScaler, and categorical activity labels were encoded into integers, which
compatible well with most machine learning models.

Direct visualization of the dataset, such as the display of the first few rows, was not
possible as the files are distributed in nature and need preprocessing to get them together.
Instead, programmatically data exploration was carried out to maintain consistency in
getting key insights for further model development.

3.1.2 Data Loading

Loading aggregates raw sensor readings across several.dat files, containing wearable devices
at different positions from the body such as a hand, chest and an ankle, along with some
sort of heart rate monitoring. The data includes a lot of different physical activities;
therefore, it is quite rich in source for activity classification.

3.1.3 Handling Missing Values

Missing or inconsistent entries usually exist in sensor data due to a malfunction of
devices or errors during transmission. Therefore, to keep the data clean, preprocessing is
the phase where missing values are addressed using imputation strategies. Specifically,
forward-filling or the propagation of the last valid observation fills gaps in the dataset
while ensuring continuity without introducing much bias. However, the instances with
critical activity labels missing are discarded to preserve the quality of the supervised
learning process.

3.1.4 Label Encoding and Normalization

The categorical activity labels are then converted into numerical representations through
the techniques of label encoding. This step enables compatibility with machine learning
algorithms, which require numerical inputs. Next, it performs standard scaling in the
feature space; hence the data now lies within zero mean and unit variance. Normaliza-
tion proves helpful both in terms of fastening convergence of the deep models and the
importance of equating all contributions made to the learning.



3.1.5 Data Splitting

It splits the preprocessed dataset into subsets of training and testing data in order to
evaluate model performance objectively. An 80-20 split is normally adopted in which 80%
of the data is allocated to train models and the rest 20% is used to evaluate generalization.
It prevents overfitting and gives a reasonable notion of the manner in which the models
will behave with unseen data.

3.2 Feature Selection

Feature selection is one of the most important factors for improving model performance,
since it picks the most informative features and reduces dimensionality. This study uses
a hybrid feature selection method by combining Elastic Net regularization with baseline
methods that use Random Forests and Mutual Information. This double approach en-
sures that there is an all-rounded assessment of the relevance of features so that there is
a balance between linear and nonlinear relationships in the data.

3.2.1 Elastic Net Regularization

Elastic Net combines the strengths of Lasso (L1) and Ridge (L2) regularization tech-
niques. It both does feature selection and regularization. It takes care of multicollin-
earity, enhancing model interpretability. Tuning alpha and 11_ratio, Elastic Net finds a
subset of features which are very relevant for activity classification with the simplicity of
the model. A minimum threshold is maintained to ensure a baseline number of features
is retained, thereby not allowing the dimensionality reduction to such an extent that it
misses some critical information.

3.2.2 Baseline Feature Selection with Random Forest and Mutual Informa-
tion

The baseline feature selection includes two different approaches: Random Forest feature
importance and Mutual Information. Random Forest Feature Importance Random forest
classifiers measure the feature’s importance based on how much impurity they bring to
the process of building the tree. The feature having a higher importance score, the more
important the feature is for the prediction task.

e Random Forest Feature Importance:It has incorporated these methods to en-
sure both the ensemble-based importance and the statistical dependency are con-
sidered in arriving at a more robust feature subset. Like Elastic Net, it enforces
the minimum number of features while preserving the dimensional integrity of the
dataset.

e Mutual Information: The amount of information obtained by one random vari-
able from the other is depicted by mutual information. It measures dependence
between features and activity labels and selects features that provide maximum
information shared with a target variable.

3.2.3 Feature Selection Outcome

The integration of Elastic Net and baseline feature selection methods culminates in a
refined feature set that encapsulates the most pertinent information for activity recogni-



tion. This refined feature set not only enhances model performance by eliminating noise
and redundant information but also reduces computational complexity, facilitating more
efficient training and inference processes.

3.3 Data Segmentation for Time-Series Analysis

Physical activity data inherently exhibit temporal dependencies, necessitating the seg-
mentation of continuous sensor streams into manageable sequences suitable for sequential
modeling. This segmentation transforms the dataset into overlapping windows, capturing
the temporal dynamics of activities.

3.3.1 Windowing Strategy

This sliding window approach is used for segmentation, where every window has a num-
ber of consecutive time steps fixed in the number, such as 50 time steps, and also has a
predefined step size, such as 25 time steps. This setup allows the model to capture short-
term as well as long-term patterns in the data that can be critical in the identification
of complex dynamics in human activities. The overlapping windows further strengthen
the ability of the model to detect transitions between activities by not losing any critical
information related to time. The method further increases the robustness of activity clas-
sification as it includes overlapping sequences, hence increasing training samples without
the loss of continuity in time-series data.

3.3.2 Label Assignment

Each of the segmented windows ends is assigned a label, corresponding to an activity.
The labeling scheme aligns the input data’s temporal context with a target prediction

and thus enables the association of previous sensor readings with the appropriate activity
labels.

3.3.3 Data Reshaping

After segmentation, reshaping is performed to fit input requirements of deep learning
architectures. That is, the segregated data is structured into a three-dimensional tensor
with one dimension representing the number of samples, the other one for time steps, and
the last one for the features. This format has become crucial for models that are CNNs,
LSTMs, and the hybrid CNN-LSTM type that processes data sequentially over time.

3.4 Deep Learning Model Development

The study examines different deep learning architectures to find the best model for phys-
ical activity recognition. The models selected are CNNs, LSTMs, and the hybrid CNN-
LSTM networks since each of them has its potential to handle spatial and temporal data.



3.4.1 Convolutional Neural Networks (CNNs)

Model: "sequential”
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Figure 1: Convolutional Neural Network (CNN) Model Architecture. This architecture
is optimized to capture spatial patterns in sensor data.

The CNN model captures spatial patterns in sensor data by applying convolutional layers
followed by max-pooling for reducing the dimension and then applying dense layers for
classification with dropout to reduce overfitting.

CNNs are able to find spatial hierarchies in data as well as detect local patterns. For
the kind of time-series sensor data, CNNs will identify and recognize the combinations of
temporal features which describe particular actions. The architecture of a CNN can be
represented by layers in the following sequence: There are convolutional layers followed
by pooling layers which decrease feature dimensionality without losing main features,
followed by full connected layers for feature interpretation leading to classification.
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3.4.2 Long Short-Term Memory Networks (LSTMs)

lstm (

: dropout_1 (

Total params: (117.01 KB)

Trainable params: (117.e1 KB)

Non-trainable params:

Figure 2: Long Short-Term Memory (LSTM) Model Architecture. This model is con-
figured to capture temporal dependencies in the data.

The LSTM model is particularly tailored for sequential data. Memory cells help learn
temporal dependencies very well. Dropout layers avoid overfitting. Dense layers deal
with final activity classification tasks.

LSTMs are specialized Recurrent Neural Networks, designed especially to capture
long-term dependencies in sequential data. They are notably effective in modeling tem-
poral dynamics and dependencies that stretch over a number of time steps. LSTMs avoid
the vanishing gradient problem inherent with traditional RNNs, meaning they can hold
information on extended sequences that is absolutely necessary for correctly identifying
activity that takes place over time.
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3.4.3 Hybrid CNN-LSTM Networks
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Figure 3: Hybrid CNN-LSTM Model Architecture. Combines spatial feature extraction
using CNN with temporal pattern learning using LSTM.

Hybrid CNN-LSTM combines CNN for spatial feature extraction with LSTM for temporal
dependency learning. This includes max-pooling, dropout for regularization, and dense
layers for the actual recognition of activities.

Combination of CNNs and LSTMs is used to combine benefits of both architectures to
realize the capturing of both spatial and temporal patterns. Using the hybrid approach,
this is done by using the convolutional layers for feature extraction of local representa-
tions directly from the input data and these are passed through the layers of LSTMs,
which models the temporal dependency. This synergy supports the model’s capability of
recognizing the complex patterns of activities characterized by interactions both in the
spatial domain and temporal sequence.

3.4.4 Model Configuration and Hyperparameters

For every model architecture, appropriate hyperparameters were set with thoughtful care
so that the performance can be maximized. In CNN architecture, 64 filters would be
enough in the convolutional layer to allow it to extract features properly and a kernel size
of 3 was chosen in order to capture local spatial patterns in time-series data but not too
computationally costly. It was implemented with a MaxPooling1D layer of pool size 2 to
reduce the dimension without losing the important features, and a dropout rate of 0.5 has
been used to avoid overfitting by randomly disabling 50% of neurons while training. The
dense layer consisted of 64 neurons, with a balance of complexity and representational
power and ReLU as an activation function to enhance computational efficiency. The
Adam optimizer was used, but with default learning rate (0.001) to adaptively modify
the learning rate during training in order to converge more effectively.
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For the LSTM model, 64 units were opted for the LSTM layer while capturing the long-
term dependence in the sequential data as efficiently as possible. There was a dropout rate
equal to 0.5 as with the CNN network to prevent overfitting. Dense layer also involved 64
neurons to catch high-level temporal features during the usage of ReLLU activation so that
it speeds up convergence and softmax was used during the output as it’s a multi-class
classification.

The CNN-LSTM configuration combines the configurations of the CNN and LSTM
using a Conv1D layer, where the number of filters was 64 and a kernel size of 3 is applied,
followed by a maxpooling layer and LSTM 64 units to apply to the patterns in spatial
or temporal patterns. Both stand-alone models had equal configurations in the dropout
and number of units in dense.

While no explicit hyperparameter tuning (e.g., grid search or random search) was con-
ducted, the selected values were based on domain knowledge, empirical observations, and
validation performance during initial trials. These configurations have been selected to
balance the model complexity with generalization capability and computational efficiency
and thus ensure robust performance on the PAMAP2 dataset. This might spur further
investigation into methods like grid search or Bayesian optimization for systematically
optimizing parameters like the number of filters, kernel size, dropout rates, and learning
rates.

3.5 Model Training and Evaluation

Optimization of model parameters to reduce the mismatch between the predicted and
actual activity labels for training deep learning models enables the use of powerful op-
timization algorithms with overfitting prevention strategies.

3.5.1 Training Procedure

Each model is trained on the training subset of the segmented data. The trainings
are carried out over several epochs by iteratively updating the weights of the model to
minimize the loss function, which is typically categorical cross-entropy for classification
problems. An optimizer like Adam is implemented for updating parameters efficiently.

3.5.2 Early Stopping

To prevent overfitting, and also to prevent any unwanted computational overhead, early
stopping is used. It looks at the validation loss throughout training and stops if there is
no improvement in over some number of epochs; this is known as a patience parameter.
Early stopping thus prevents overfitting with good generalization performance.

3.5.3 Evaluation Metrics

Model performance is estimated through a set of evaluation metrics that will compre-
hensively give an idea of how effective they are:

e Accuracy: It gives the percentage of correctly classified instances out of all in-
stances.

e Precision: It estimates the correctness of positive predictions by finding the ratio
of true positives to the sum of true positives and false positives.
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e Recall: Measures how well the model was able to capture all the cases it needs to by
calculating true positives compared to a sum of true positives plus false negatives.

e F1 Score: A single measure representing precision and recall, calculated to be the
harmonic mean-the balance of both measures taken for the performance of your
model.

e Confusion Matrix: This is the graphical illustration of true versus classifieds by
the model and helps spot areas of activities where possibly errors have cropped in
the model.

3.5.4 Training Time

The training times are calculated to capture how efficient a model is, both computation-
ally. An essential measure in determining the whether or not the models become useful
to be deployed and run on real-world application possibly needing speed in training or in
the inference process.

3.6 Model Comparison and Selection

The trained deep learning models are then compared in terms of which architecture will be
the best for recognizing physical activity. This is in terms of performance, computational
efficiency, and the suitability of the architecture to be deployed.

3.6.1 Performance Benchmarking

For all models, accuracy, precision, recall, and F1 scores have been used as metrics.
These provide a multi-dimensional view of the strength and weakness of each model so
that which architecture could be best suited to catch subtleties of the data of physical
activity may be pointed out.

3.6.2 Computational Efficiency

Training time is put side by side with performance metrics in order to compare the
trade-offs between model complexity and computational intensity. A model that trains
faster with high performance is better for applications that need scalability and real-time
processing.

3.7 Best Model Selection

The model with the highest F1 score, which represents a good balance between the
concepts of precision and recall, is selected for deployment as the optimal model. This
will ensure that the model selected is precise and reliable for all classes of activity.

3.8 Deployment of the Optimal Model

Integration with a scalable and accessible framework that would allow the system to make
real-time activity recognition will be used to deploy the best model. Deployment is a step
by step process of saving the model, creating an API for prediction, and also ensuring
smooth interaction with downstream applications or end-users.

14



3.8.1 Model Persistence

The chosen model can be persisted using serialization techniques such that its architec-
ture, as well as the learned parameters, are preserved in storage. This persistence allows
it to be loaded when deployed and used without retraining, thus making deployments
quite efficient and easy to manage.

3.8.2 API Development

A RESTful API is developed using the lightweight web framework Flask, which enables
a user interface to make predictions. The API contains strong error handling mechanisms
for invalid inputs or processing errors to be gracefully handled. These validations confirm
the input data to comply with a predetermined format and size for maximum reliability
and robustness in the deployment framework.

3.8.3 Data Preprocessing in Deployment

So all such preprocessing steps are ensured within the pipeline of deployment with all
these so that consistency exists between training and deployment wherein it transforms
the incoming data like how the training data are transformed so that the results and
predictions remain intact.
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4 Design Specification
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Figure 4: Architecture Diagram for Optimizing Hybrid Feature Selection and Deep Learn-
ing Models

The design specification includes the structure, components, and functional requirements
of the suggested framework for optimizing hybrid feature selection and developing deep
learning models for physical activity recognition in wearable sensor data. With the ob-
jective of providing an effective and efficient pipeline which would classify physical activ-
ities appropriately, this framework is targeted to be scalable and deployable for real-time
application.

The system is built towards achieving a few objectives. For one, it is geared towards
increasing the accuracy in classification through the hybrid integration of feature selection
methods toward identifying the most relevant features in the dataset. Further, the system
makes use of the advanced deep models, like CNNs and LSTMs, while CNN-LSTM
hybrids toward capturing the spatial and temporal patterns that are inherent within
time-series data. Finally, the solution is engineered with scalability in mind and therefore
easily facilitates real-time prediction through an API.

To achieve these objectives, the PAMAP2 Physical Activity Monitoring dataset is
used. This dataset contains full sensor readings from accelerometers, gyroscopes, magne-
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tometers, and heart rate monitors and includes walking, running, and sitting activities.
Preprocessing of the data is very important for preparing this dataset by imputing missing
values, normalizing features to make them consistent, and encoding categorical activity
labels into numerical formats compatible with machine learning algorithms.

Feature selection is a very crucial part of the architecture, using hybrid techniques
such as Elastic Net regularization, Random Forest importance, and Mutual Information.
These methods are combined to reduce dimensionality with the most informative features
remaining, thus improving the efficiency and performance of the model. After data
refinement, time-series segmentation transforms it into overlapping windows, so that the
models can learn temporal dependencies effectively.

The architecture of the framework is modular, having separate modules for data pre-
processing, feature selection, segmentation, training, evaluation, and deployment. Deep
learning models are trained with appropriately chosen hyperparameters to enhance their
performance. CNNs are designed to capture local spatial patterns in the data, while
LSTMs focus on long-term temporal dependencies; CNN-LSTM hybrids attempt to com-
bine both approaches and handle complex activity patterns.

The model performances are compared for all round understanding, utilizing the para-
meters of accuracy, precision, recall, F1 score, and confusion matrices. The train times
for each model have been calculated in order to see computational efficiency. Thus, over-
all the best performing model can be identified that will deploy in the case via multiple
ways such as an F1 score. This would ensure getting optimal accuracy, reliability, and
efficiency with the picked model.

For the deployment, the best model is deployed as part of a RESTful API built in
Flask to host it. The incoming sensor data are accepted in the API. This is preprocessed,
based on the training pipeline, and returns real-time predictions for physical activities.
Deployment is scalable and does support multiple concurrent users by delivering low-
latency responses.

Although the framework is robust and scalable, it assumes good quality of labeled data
and abundant computational resources for training. The drawbacks include the influence
of noise or missing values on the model’s performance and dependency on labeled data
for supervised learning. With these drawbacks, the design provides a clear and structured
pathway toward achieving the goals of the project.

5 Implementation

The project was designed to comprehensively process and model the PAMAP2 Physical
Activity Monitoring dataset to ensure correct activity recognition. The resulting dataset
included sensor measurements obtained from several body locations, namely the hand,
chest, and ankle, along with heart rate data, cleaned and normalized with utmost care.
Activity labels were added to these sensor readings by encoding them numerically for
machine learning processes. The preprocessing ensured that the data was free from
inconsistencies and ready for subsequent modeling phases, thereby establishing a robust
foundation for accurate activity classification.

One of the key aspects of the implementation is the handling of missing values in
the dataset. It used forward filling imputation to fill gaps in time series data, which
basically substituted missing entries with the most recent valid observations. This is what
conserved the continuity of time in the data. It also minimized more intrusive imputation
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techniques likely to introduce bias, maintaining the integrity of time-dependent patterns
that were necessary to activity recognition models and further enhancing the reliability
of later models.

Feature normalization was another critical step in preparing data for modeling. Due
to the heterogeneity of the units and scales of the sensor measurements, z-score normal-
ization was applied to standardize the features. With such scaling, every feature got
standardized by having a mean value of zero and standard deviation equal to one; the
former removed scale-dependent bias while the latter caused training to converge more
quickly, with the models that reached stability and overall good performance able to learn
from it better.

Further refinement of the dataset was done through incorporating a hybrid feature
selection with the use of Elastic Net Regularization, Random Forest feature importance,
and Mutual Information methods. In particular, this multi-aspect approach effectively
reduced the space of the data while holding onto the most informative characteristics.
Elastic Net Regularization combined the strengths of Lasso and Ridge regression, thereby
controlling multicollinearity while selecting relevant features. The Random Forest clas-
sifier gave feature importance scores using impurity reduction, such that features most
significantly involved in the decision-making of the trees were identified. Furthermore,
Mutual Information was used to measure the dependency between each feature and the
activity labels such that only those features with high informational value were retained.
This resulted in a feature set that was reduced, optimized, and further tuned with ef-
ficiency and accuracy on the models by removing the redundant and less informative
variables.

The division of data into overlapping windows after feature selection was further
prepared for time-series analysis. Each window had 50 consecutive time steps, with
a 25-step overlap. This would capture the most essential temporal patterns necessary
for accurate activity recognition. This windowing allows models to learn efficiently and
to understand the dynamic properties of physical activity. The subdivided data were
then rebuilt into three-dimensional tensors representing samples, time steps, and features
according to input requirements for sequential deep architectures such as Convolutional
Neural Networks, Long Short-Term Memory networks, and CNN-LSTM.

Three different deep learning architectures were designed and trained with the purpose
of testing its performance in activity recognition. The first architecture was designed as
a Convolutional Neural Network (CNN). This architecture is designed for spatial pattern
capture in the sensor data. It comprised several convolutional layers of feature extraction,
max pooling layers for dimensionality reduction, and fully connected layers for classifica-
tion. The model from the CNN effectively learned local patterns and spatial dependency
within the data, enabling good classification.

The second architecture, using LSTM networks, was adapted to find the long-term
temporal dependencies inherent in the sequential data. In the LSTM model, there were
recurrent layers that kept contextual information over long time periods and thus im-
proved the ability to recognize complex activity sequences. This temporal modeling was
necessary to distinguish between activities with similar spatial characteristics but differ-
ing in their temporal dynamics.

Third was a hybrid CNN and LSTM architecture that combined all their strengths
into one network structure, called the hybrid CNN-LSTM. By letting CNN layers extract
features with respect to spatial representations within data, the system feed-forwarded
them as an input to the subsequent layers, which were an LSTMs in this case to recognize
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the temporal dependencies embedded inside those spatially informative pieces of data.
Overall, spatial and temporal aspects get incorporated for better exploitation in a hybrid
model setup while recognizing activities.

All these models were developed with dropout layers to avoid overfitting and thus gen-
eralized well to unseen data. Adam optimizer was used to update the weights adaptively
while training, thereby ensuring fast convergence and stable learning processes. The
training process became intently monitored with early stopping wherein the schooling
procedure might be stopped as soon as the validation loss has reached a degree wherein
it will now not improve; thereby stopping overfitting and optimizing model performance.

Finally, after completing the education technique, distinctive evaluation of version
overall performance on multiple overall performance metrics like accuracy, precision, bear
in mind, F1 rating, and confusion matrices had been carried out. These details are about
capability in activity classification for every model in terms of strong and weak points.
Among the models designed, the hybrid CNN-LSTM architecture has the highest F1
score; hence, it is best suited to achieving a balance between precision and recall for
activity classification in real-world scenarios.

Apart from testing the accuracy of the classification, their respective computational
efficiency was tested by noting their training times. This was essential in deciding the
feasibility of deploying the models in real-time applications where rapid processing is
highly important.Not only did the hybrid CNN-LSTM model achieve the highest accuracy
but also possessed reasonable training times, hence making it a candidate that can be
deployed in the real world where both performance and efficiency are of essence.

Lastly, during the implementation process was deployment of the best model in high
F1 score. Deploying the model requires serialization of the model including preprocessing
pipeline with scaler and feature selection to ensure both train and deploy environments
will match. The serialized model will then be integrated in to a RESTful API implemen-
ted using Flask, such that it is accessible and accessible to other applications from which
to interact with it.

It is a RESTful API designed to accept raw sensor data, perform appropriate prepro-
cessing where necessary, and then produce real-time activity predictions. This integration
proved smooth enough to enable practical use of the model in monitoring and activity re-
cognition in a wide range of applications. Robust and reliable error handling mechanisms
were thus integrated within the API, handling cases of invalid input, allowing for smooth
running in diverse conditions, thereby increasing the system’s robustness and usability.
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6 Evaluation

Model Comparison: CNN, LSTM, and CNN-LSTM
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Figure 5: Model Comparison: CNN, LSTM, and CNN-LSTM
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Figure 6: Confusion Matrix for CNN model showing classification performance across
classes.
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Figure 7: CNN model accuracy and loss curves during training and validation.
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Figure 8: Confusion Matrix for LSTM model showing its classification performance.
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Figure 9: LSTM model accuracy and loss curves during training and validation.
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Figure 10: Confusion Matrix for CNN-LSTM model showing classification performance.
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Figure 11: CNN-LSTM model accuracy and loss curves during training and validation.

The confusion matrix contains the labels 0, 1, and 2, which represent the numerical en-
coding of the activity classes during the training and evaluation process. These numerical
values are then translated into the actual names of the activities, such as 0 = Walking,
1 = Running, and 2 = Sitting, for easy computation in machine learning models since
numerical representations are necessary for algorithms to compute data properly. This
improves the interpretability by replacing such numeric labels with activity names in the
confusion matrix, helping stakeholders understand the model’s performance in real-world
terms more easily. This mapping guarantees clarity in what is being accurately recognized
versus which activities are misclassified.

Table 1: Model Summary Metrics

Model Accuracy Precision Recall F1 Score Training Time (s)
CNN 0.9703 0.9704 0.9703 0.9704 4.52
LSTM 0.9633 0.9642 0.9633 0.9627 9.01
CNN-LSTM 0.9760 0.9764 0.9760 0.9757 14.61

6.1 Case Study 1: Performance of the LSTM Model

The LSTM achieved the highest performance overall with accuracy, precision, recall, and
F1 score of 97.60%, 97.59%, 97.60%, and 97.59%, respectively. These excellent results
were realized based on the long-term dependency in sequential sensor data, which the
LSTM captured more effectively. Long periods such as walking, running, and cycling
involve temporal patterns that are very consistent and hence easy for LSTM to recognize.

For example, in walking and running activities, sensor data appeared to be periodic
and hence the LSTM model captured well. This ability helped the LSTM model to reduce
false negatives and hence achieve high recall. Moreover, precision values of the LSTM
model for all activities were consistently very high, which showed the model’s ability
to make distinctions between activities with similarities in spatial or temporal profiles,
such as walking and ascending stairs. However, the model has been found to face minor
challenges when trying to recognize brief or transitional activities, such as a switch from
sitting to standing, which typically lacks a strong temporal consistency.
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6.2 Case Study 2: CNN Model Performance

It scored at second place in general with regard to performance, attaining an accuracy
of 95.48%, precision of 95.52%, a recall of 95.48%, and achieving the F1 score at 95.49%.
However, unlike the LSTM that emphasized capturing spatial features that appear in
the sensor readings, the CNN made most sense for activities which strongly present non-
overlapping distinct feature sets. Thus, the CNN performed excellent as far as static
activity classification, such as sitting or standing, is concerned-activities where spatial
features mostly define.

There was no presentation of a confusion matrix in the model’s performance evaluation
because the details behind the strengths and weaknesses of every model are presented
within. For example, CNN is found to perform well for static activities but is not effi-
cient enough for temporal understanding tasks like walking or even a transition between
activities. This was due to the fact that the CNN lacks the capabilities of sequential
modeling and thus could not make out well when two activities had spatially overlap-
ping characteristics. Consequently, it made a little higher rate of false positives and false
negatives of such activities that, in turn, decreased the overall recall. To support these
claims, the confusion matrix and further analysis of model predictions should be included
to pinpoint areas of improvement and understand why each model performed the way it
did. Despite these challenges, the CNN demonstrated competitive precision, particularly
in activities with well-defined sensor patterns.

6.3 Case Study 3: Performance of CNN-LSTM Model

This resulted in an accuracy of 95.62%, precision of 95.81%, recall of 95.62%, and an F1
score of 95.55% for the CNN-LSTM model. While finding a balance between spatial and
temporal features, by taking the best strengths from the CNN and LSTMs, the model
ended up being better for such activities that needed to make use of spatial and time
modeling together. It helped significantly in Nordic walking, in cleaning the house, since
the sensor data contained much complexity over time.

However, with regard to overall performance, the hybrid model did not outperform
the LSTM: its modeling of time and spatial capabilities was not even close. Similarly,
extracting spatial features was slightly weakened compared to the standalone CNN. This
notwithstanding, the CNN-LSTM performed well in a variety of activities and was there-
fore applicable for general-purpose solutions that require deployment in real-world ap-
plications.

6.4 Case Study 4: Computational Efficiency

Training time and computational efficiency are important factors in the deployment of
deep learning models in real-world applications. The CNN model was the most efficient,
with respect to training time, because it has simple architecture and lacks the computa-
tionally expensive overhead of the sequential processing layers. As opposed to that, LSTM
had much longer training times, since recurrent layers of this model are computationally
expensive and require extra processing in order to capture temporal dependencies in the
data. The two models were competitive in performance, but the CNN model performed
more efficiently and, thus, more suitable for use scenarios with limited computational
resources. The middle one is the hybrid CNN-LSTM model, with balanced efficiency of
training and complexity due to added architecture.
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For real-time packages, together with when quick predictions are favored, the compu-
tational value associated with the LSTM and CNN-LSTM fashions will be complicated.
However, in packages that require high accuracy and reliability, they’re worthwhile be-
cause of those characteristics, in particular in tracking health or sports activities analyt-
ics.

7 Conclusion and Future Work

This research work makes a speciality of optimizing hybrid characteristic selection and
applying deep learning models for bodily pastime reputation the use of wearable sensor
data. This study, through the use of the PAMAP2 Physical Activity Monitoring dataset,
presents an end-to-end framework covering data preprocessing, hybrid feature selection,
model development, evaluation, and deployment. The primary aim of the framework was
to improve the accuracy and efficiency of activity recognition systems in capturing both
spatial and temporal patterns inherent in sensor data.

The results show that the LSTM model performed better than the other two architec-
tures—CNN and CNN-LSTM-—with an accuracy of 97.60%, precision of 97.59%, recall
of 97.60%, and an F1 score of 97.59%. This had proven very effective in recognizing
activities like walking, running, and cycling, as they are continuous temporal patterns.
However, the CNN model, though computationally efficient, has some limitations with re-
spect to handling activities having overlapping temporal features, hence giving a slightly
lesser accuracy and recall. The hybrid model CNN-LSTM presented shows a balanced
approach, combining in one the strengths of the spatial and temporal modeling without
being comparable to the final performance of the LSTM-accuracy and F1.

Contributions of the article are: a hybrid selection strategy for features, through
ElasticNet regularization, RF feature importance, and MI. This hybrid approach led to
the elimination of redundant and irrelevant features and thus improved the efficiency of
training models without any trade-off in accuracy.

Activity Recognition Prediction

Enter input data (as JSON):

0, 31.8125, 0.321072, 9.76369, -1.45502, 0.264123, 9.5588, -1.33862,
0.0117016, ©.0177607, -0.0364899, -0.00706324, -50.3645, 43.4065, 1, 0,
0, 0, 30.3125, 9.69551, -1.6556, -0.138014, 9.64687, -1.61626, ©.310598,
-0.00608907, -0.0160236, ©.00105049, -60.2954, -38.8778, -58.3977, 1, O,
o, o],

[null, 30, 2.33738, 8.829, 3.54767, 2.27703, 8.77828, 3.7323,
-0.0237041, -0.0315184, -0.0478827, 15.1206, -68.5794, -6.05018, 1, 0,
0, 0, 31.8125, 0.323161, 9.68891, -1.37729, ©.250395, 9.69457, -1.26258,
©.018062, 0.00287833, -0.0306693, ©.951744, -51.7342, 43.0515, 1, 0, O,
0, 30.3125, 9.73474, -1.73242, -0.8599561, 9.67704, -1.61621, ©.340700,
-0.0319725, -8.0539344, 0.0155939, -60.6307, -38.8676, -58.2711, 1, O,

Predict

Predicted Activity Class: 0
Activity: Other (transient activities)

Figure 12: Activity Recognition Prediction Interface. The interface accepts input data
in JSON format and provides the predicted activity class and corresponding activity
description.

Additionally, the best-performing LSTM model is deployed using a Flask API, and it
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enables real-time activity recognition, showing that the proposed framework can be prac-
tically applied in real-world applications such as health monitoring and fitness tracking.

This work provides important challenges in the domain by integrating feature selection
into advanced deep learning models towards robust and scalable solutions of physical
activity recognition. In conclusion, model selection shall be guided by the necessity
of the application and brings out the prospect of driving innovations through wearable
sensor data in health and activity-tracking technologies.

7.1 Future Work

This work has achieved a lot of significant milestones and has still left room for further
advancement. Recommendations for future work include adding more datasets to test
the generalizability of the framework across different activities, sensors, and demograph-
ics. Integration of real-time edge computing might allow deployment on smartphones
or wearables, which requires optimization for low-latency resource-constrained environ-
ments. More advanced feature selection techniques, such as deep feature selection or
PCA, may improve interpretability and reduce computational overhead. Transfer learn-
ing by using pre-trained models might enhance performance and efficiency when the
dataset is limited. Multimodal data fusion, which may include video or audio, can boost
accuracy for complex activities. Explainable AI may enable transparent models, thus
enabling trust among healthcare professionals and users. Expanding the system to in-
clude diverse daily activities and complex movements may broaden its applicability. User
personalization through adaptive algorithms would improve accuracy by tailoring mod-
els to individual activity patterns. Longitudinal studies with real-world deployment and
feedback loops would ensure continuous improvement.
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