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Abstract 
 

 Over the years, Internet of Things (IoT) devices are increasing rapidly and is expected 
to extend over 20 billion by 2030. The growth underscores the increasing demand for 
vigorous security solutions to secure these devices from cyber-attacks. Anomalies in IoT data 
can lead to failure and unexpected behavior in a system. Therefore, it is crucial to detect 
anomalies to achieve system performance and reliability. Detecting anomalies in resources 
constraint devices, such as IoT devices, cause some challenges. In this research, we proposed 
machine learning based anomaly detection system implemented for edge device such as 
Raspberry Pi. Our research uses TensorFlow Lite that helps in developing a compressed 
model that detects malicious activities in real-time resource usage processes without 
demanding high computational resources. An autoencoder-based model was implemented to 
detect anomalies in resource usage processes. Models were trained on high performance 
devices and were further deployed on resource constrained hardware such as Raspberry Pi 
Zero 2W. The real-time inference happens every 5 seconds indicating highly accurate and 
timely anomaly detection for both full and compressed models by achieving an accuracy of 
97.00% showcasing that lightweight models can outperform full models on the resource 
overhead. The key contribution of our research is the development of lightweight, scalable 
model for protecting the fast-growing IoT device ecosystem, which should identify new 
threats efficiently while assuring effective anomaly detection in resource-constraint 
environments.  

 
1 Introduction 
 
Internet of Things (IoT) allows various devices to connect and interact with each other and 
with their surroundings. These devices have capabilities of collecting data and performing 
tasks automatically. Internet of Things (IoT) is becoming famous due to its innovative 
concept and ideas (Gharavi, et al. 2024). IoT environments produce massive amount of data 
that could be helpful to improve decision making process and optimizing systems (Dastjerdi, 
et al. 2016). IoT provides the facility of real-time monitoring and controlling of the system 
using devices like computers, smartphones and tablets. Collecting and analyzing data using 
cloud processing techniques help to make the complex interactions amongst multiple devices. 
An important application of IoT is in industry 4.0, that focuses on the improvement of 
industrial processing (Jove, et al 2022). The ability of IoT devices to integrate smart systems 
across multiple environments offer benefits in many fields including environmental, 
financial, smart homes, industries and healthcare. One of the most effective applications of 
IoT is in smart homes where interrelated devices provide comfort, efficiency and 
convenience. For example, integration of virtual interaction services and entertainment can 
help to alleviate the feelings of loneliness and isolation. Power monitoring capabilities in 
smart home can lessen the energy consumption (Mota, et al. 2024) Out of 24.1 billion 
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devices, it is estimated that 5.8 billion would be dedicated to industrial applications and 
enterprises (Says, et al. 2019). Study shows that currently 12.08 billion IoT devices are linked 
with each other, and it is expected that these number will increase to 29.04 billion by 2030 
(Statista, n.d.). 

The widespread adoption of IoT technology caught the attention of cyber attackers 
and they seek to exploit these systems using advance hacking techniques including botnets. 
Botnets malwares are used to launch Distributed Denial-of-service (DDoS) attacks with 
bandwidth reaching up to 1.1 Tbsp. The vulnerability in IoT is further increased due to the 
lack of standardization and the occurrence of lightweight, inexpensive and low powered 
devices in IoT networks (Koroniotis, et al. 2019). Security has become a major concern in 
IoT devices as IoT devices are connected with various networks and there are chances that 
they will be disposed to more attacks as compared to isolated systems. Antivirus and 
firewalls help to protect the system, but delicate security policies lead to breaches. There are 
many low-priced IoT devices that are available in the market. Manufacturers overlook the 
crucial things like privacy and security in IoT devices that results in the leakage of user’s 
confidential information. Mirai malware, that was discovered in 2016, demonstrates how IoT 
devices could be hijacked and then used as bots to implement large scale attacks such as 
Distributed Denial of Service attack (DDoS), potentially destroying healthcare systems and 
endangering human lives at risks (Antonakakis, et al. 2024). 

 The advent of IoT has introduced challenges in areas like maintenance, data storage, 
privacy and security.  Many IoT devices are designed in a way so they can perform only 
specific hardware and software tasks. For example, using fast processor for real time 
performance, without increasing any extra power in it. These are the factors due to which IoT 
devices are often launch with the vulnerabilities in it. Once a device is compromised, various 
malicious activities can be exploited on it (Breitenbacher, et al. 2019). Due to specific 
applications of IoT devices, their security is limited. For instance, wearable devices, handheld 
and portable devices, that rely on battery often compromise on security by prioritizing longer 
battery. To highlight these issues, control protocols and energy efficient communication have 
been developed to address these issues but vulnerabilities in these protocols still exist. An 
important example is Bluetooth Low Energy (BLE) communication protocol, that is broadly 
used in industrial IoT (IIoT) and wearable devices. Study shows that BLE is vulnerable to 
various attacks. User data is expose due to this protocol as the transmitted packets are sent in 
the form of plain text and during the process of reconnection between paired devices there are 
chances of exploitation (Wu, et al. 2020), (Antonioli, et al. 2022).  

The major concerns for smart home devices users are security. Aldossari, et al. (2018) 
research highlights that users are most likely to adopt these technologies based on their trust 
in the system and how much privacy and security it offers to the user’s data (Alyasiri, et al. 
2021). Traditionally, there were three main goals of the IT security: confidentiality, integrity 
and accountability (Schiller, et al. 2022). Due to the online availability of IoT devices, they 
are more prone to attacks. More security challenges take place due to the embedded 
technology within IoT devices. For instance, an attack on smart home device would cease the 
working of refrigerator to a smoke detector that stops operating, putting lives at risk. Attacks 
on smart home systems result in the leakage of personal information and often leads to 
serious crimes. For instance, misuse of video feeds can be done by hackers for burglary or 
temper healthcare devices that could result in causing physical harm. Many other risks take 
place due to poor security in IoT devices including leakage of personal information, 
unauthorized access to devices, accidently activating the devices and other malware attacks 
(Li, et al. 2023). Huge amount of data is generated by IoT devices, but they have limited 
memory and computing resources. While cloud computing help in overcoming these 
limitations, but it produces high latency which can cause issues in areas like health 
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monitoring. Therefore, solely depending on cloud solutions is unsuitable in these cases 
(Dastjerdi, et al. 2016). Edge computing can solve high latency issues and privacy concerns 
by processing and storing data in the nodes from IoT devices at edge networks. By using this 
method, data can be preprocessed to remove sensitive information before transferring it to the 
cloud. However, reliance on large-scale computing resources is quite expensive and the 
boundaries of the edge networks are not defined clearly (Premsankar, et al. 2018). Some of 
the most typical approaches are Intrusion Detection Systems in IoT systems that monitor 
network traffic and reduce the need for high computational power at the device. IDS can be 
implemented without making any changes to the configuration of the existing IoT systems. 
IDS has two types: Anomaly base IDS and Signature base IDS. Anomaly based IDS are 
designed to detect unusual and unknown attacks by monitoring the system for deviations 
from usual traffic patterns. Signature base IDS depends on pre-defined rules to access the 
attacks that are connected with well-known behaviors and patterns. This is achieved by doing 
contrast between unusual traffic against predefined normal patterns by using Artificial 
Intelligence (AI) models that are trained on the previous historical data (Jove, et al 2022). 

Machine learning (ML) is utilized in many fields for years. Development of new 
machine learning frameworks including Keras, PyTorch and TensorFlow has increased the 
interest of many researchers in the field of cybersecurity. Huge research has been conducted 
on detecting anomalies and attacks using machine learning and various algorithms have been 
introduced that would help in detecting anomalies in IoT devices that shows notable 
effectiveness in identifying threats. Accuracy of the machine learning models depends a lot 
on the size of dataset that is used for training and there is often trade-off between model 
accuracy and its size. This is not a problem for high-end devices with sufficient computing 
resources to achieve optimal performance and accuracy, but it becomes a challenge for the 
devices that have limited resources. For example, TensorFlow lite, that Google introduced in 
2019, was designed for mobile, embedded and low-end devices to compress large models 
into lightweight models. This framework compressed the version of the models without 
affecting its performance and accuracy. To detect anomalous activities, majority of the 
machine learning detection-based systems are trained on the labeled datasets. Limitation of 
this approach is that it will not detect latest malicious activity that model is unaware of. For 
this research, we will highlight this challenge and develop a lightweight, compressed machine 
learning model. With the help of TensorFlow lite, we will detect the anomalies on edge 
devices, evaluate the performance and accuracy on resource constraint devices. 

 
Research Question. The above research problem motivates the following research question:  
 

• How effectively can a compressed, lightweight machine learning model detect 
anomalous activities on resource usage of processes using edge devices? 

 
The objectives of this research are to: 
 

• Develop an anomaly detection model trained on resource usage of processes running 
on the edge device. 

• Convert the model into compressed, lightweight version using TensorFlow Lite. 
• Deploy the lightweight model on edge devices such as Raspberry Pi. 

 
Below are the remaining sections of this research: 

• Section 2: A detailed literature review of the work done in this domain. 
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• Section 3: A detailed methodology to achieve the objectives of this project. 
• Section 4: Evaluation 
• Section 5: Discussion, conclusion and future work. 

 
2 Related Work 
 
This section gives an overview of the related studies by methodologically arranging the 
previous studies which is also shown in the gap analysis Table 1. These studies focus on 
detecting anomalies on edge devices using machine learning approach. Researchers 
highlights range of methods for detecting anomalies from traditional machine learning 
models to advance deep learning models that improves the accuracy but demands high 
computational power. To overcome these challenges, studies suggested lightweighted models 
striking balance between performance and efficiency on edge devices. 

2.1 Anomaly Detection Techniques in IoT Devices 
 
As the usage of Internet of Things (IoT) devices is growing rapidly, it is crucial to make sure 
that these devices detect threats and unusual behaviors, also known as anomalies. It is 
essential because many IoT devices, including wearable or smart home devices have limited 
memory and processing power. Due to this, it becomes daunting to use complex machine 
learning model on these devices. Researchers are working on creating faster and lighter 
models that can detect the anomalies effectively without utilizing many resources.  

Huc, et al. (2021) conducted a study to test the performance of different machine 
learning models on a small and resource-limited device (Raspberry pi 4) to detect the 
anomaly. Models like Support Vector Machines (SVM), Logistic Regression, Random 
Forests, Decision Trees and Artificial Neutral Networks (ANN) were implemented on a 
DS2OS dataset that consists of numerous types of normal and abnormal behaviors. The main 
goal behind this study was to detect how better models detect anomalies and how much 
computational power is used by these models. Their study shows that Decision Tree and 
Random Forest performed better on small datasets by achieving an accuracy score above 
95%. SVM requires loads of processing power that does not make it much efficient for small 
devices. Authors did not discuss about compression and optimization of models leaving it for 
future work.  

Artificial Intelligence plays a vital role in securing IoT networks as complexities are 
increasing within the network exposing it to security threats (Gudala, et al. 2019) suggested 
that an unusual behavior in network traffic can be detected with the help of Artificial 
Intelligence by making a comparison between traditional method with machine learning 
algorithms. Traditional methods including threshold-based detection is speedy and minimal 
resources are required in it. However, they cannot adapt well to changings in environment 
due to which they often produce false alarms. On the other hand, Machine learning models, 
while resource-intensive, identify more complex attack patterns that are missed by simple 
methods. Models including SVMs, Random Forests, and Autoencoders were proven to be 
more efficient and accurate in identifying unknown attacks. AI driven response systems are 
also discussed in this study, where system automatically respond to the threats in real time, 
for example, without human intervention, by adjust security setting or by applying patches 
system automatically address the unknown threats. Despite the benefits of Artificial 
Intelligence (AI) in IoT network, researchers have pointed out that AI models are much 
resource-hungry to be deployed on IoT devices which have limited processing power and 
memory. Researchers suggested that future research should focus on optimizing AI models 
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and creating lightweight models for these devices. Researchers have also emphasized on 
Federated Learning model, where multiple devices cooperate to train a shared model without 
sharing any personal information.  

Selecting the best model for detecting anomaly in IoT networks is not straightforward 
because each model has its own strengthens and weaknesses depending upon the dataset and 
the type of attacks on IoT networks. (Inuwa, et al. 2024) did comparison of several machine 
learning models, including Artificial Neural Networks (ANN), K-Nearest Neighbors (K-NN), 
SVM, Logistic Regression (LR), and Decision Trees (DT) using the ToN-IoT and Bot-IoT 
datasets that simulate real world attack scenarios including Denial of service (DoS) and 
Distributed Denial of Service (DDoS).The results showed that Artificial Neural Networks 
(ANN) models had the best performance in terms of accuracy and achieved near-perfect 
scores for certain datasets. Logistic Regression underperformed in terms of complex attacks. 
Random Forests and Decision Trees achieved great accuracy but they faced challenges with 
more complex attack patterns including Man-in-the-middle attacks. One limitation of this 
study includes not focusing on the lightweight version of these models which would be 
fruitful for deployment on the devices with confined resources. It aligns with the ongoing 
research of creating lightweight models that can perform well in resource constraint 
environments like IoT devices.  

Chatterjee, et al. (2022) examined numerous anomaly detection techniques and their uses 
in IoT system. They examined 64 research papers and categorized the methods into four 
categories including machine learning models, geometric methods, statistical approaches, and 
deep learning architectures. Their study showed that machine learning and deep learning 
models are better at detecting complicated anomalies compared to statistical methods. They 
also observed that mostly machine learning and deep learning models are very demanding in 
terms of processing power. Researchers emphasized on the lightweight models, including 
TensorFlow Lite and recommended hybrid models, involving multiple techniques might 
result in better balance between resource usage and accuracy. Their study is beneficial for the 
present research, that has an aim of developing models that work effectively in real time on 
edge devices without wasting much resources.  

Haji, et al. (2021) discussed about the difficulties that occur when applying machine 
learning in detecting anomalies in IoT networks.  They grouped multiple models, from 
simpler ones including Decision Tree and Logistic Regression to more sophisticated models 
including Recurrent Neural Network (RNN) and Deep Neural Network (DNN). They 
examined that basic models work well for small datasets and pattern attacks but for complex 
pattern attacks such as Denial of Service (DoS) or Distributed Denial of Service (DDoS) 
demands more machine learning power. However, deploying these machine learning models 
on IoT networks is daunting due to memory and computational power. Authors suggested to 
explore more lightweight models approach including pruning i.e., removing unnecessary 
parts of the model and quantization (eliminating the precision of the numbers the model uses) 
to make deep learning models more compatible for IoT devices. Their study underlines the 
significance of finding stability between detection accuracy and computational accuracy. It is 
an important focus of the current research which aims to develop compressed models that can 
work efficiently in detecting anomalies without overloading resource constraint devices. 

2.2 Machine Learning Models on Edge Devices 
 
Murshed, et al. (2021) gave a comprehensive analysis on deploying machine learning (ML) 
models on edge devices, that are small computers or sensors that are located near where data 
is collected. Authors address how machine learning (ML) models can be optimized in a way 
so that they can work in surroundings having limited resources, including battery life, 
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processing power and low memory. In traditional setups, data that is collected from the edge 
devices were send to the cloud for further processing but this method causes latency issues 
along privacy concerns. Rather, processing data locally on edge devices can lessen these 
issues. However, edge devices struggle to work with full-size machine learning models so it 
is crucial to have lightweight versions of these models.The study pointed out on essential 
approaches to optimize these models for edge devices, including pruning i.e., removing 
unnecessary parts of the model, reduction in the size of the model through quantization i.e., 
use of fewer bits of representing data, and knowledge distillation i.e., using a simple model 
that is trained by a larger model. These methods help in making models work efficiently 
without compromising much on accuracy. Some advance lightweight architectures referred to 
SqueezeNet, MobileNet, and ShuffleNet. These models are designed in a way that help in 
reducing computational cost and memory usage.  For instance, ShuttleNet and MobileNet use 
separable convolutions depthwise, i.e., a type of layer that reduces the size of the model and 
make calculations quicker. Meanwhile, SqueezeNet minimizes the number of parameters i.e., 
the parts of model that are learned during the training phase. SqeezeNet lower the number of 
parameters by 50 times as compare to the popular model, AlexNet model. These 
enhancements are important for real-time applications such as autonomous vehicles, video 
analytics. However, difficulties remain, as speed, energy consumption, balancing accuracy is 
still daunting, especially in resource-constrained environments. Authors also highlight the 
concept of Federated Learning, where data from multiple edge devices is gathered for 
training a model without sending data to the central server.  It is beneficial to maintain 
privacy but becomes a challenge of managing communication between devices. Study 
suggests of developing collaborative systems where cloud and edge processing work together 
to achieve best accuracy in terms of efficiency and accuracy.  

Fanariotis, et al. (2023) study focused on the power efficiency of machine learning 
models that run on small IoT devices (Internet of Things), like STM32H7 and ESP32, that 
are commonly use in edge computing. While previous researchers focused on making 
machine learning models faster and smaller, this study took a different angle by focusing on 
how much power these machine learning models can use. It is crucial consideration for 
devices that often run on batteries. Researchers test both compressed and uncompressed 
versions of models, including MobileNet-025 and LeNet-5. Compression techniques help in 
reducing the size and power consumptions of the models without compromising much on 
accuracy. For example, the compressed version of LeNet-5 consumed 5 times less power than 
the original model, only decreasing 2% of accuracy. Similarly, when MobileNet-025 is 
compressed, its power efficiency increased by 3% making it work better for low-poor 
devices. However, study also highlighted some issues. For example, older versions of 
TensorFlow were not completely compatible with some certain devices and some compressed 
models still struggle with low memory capacities. Authors also suggest on focusing more on 
response times and power efficiency especially for real time tasks.  

Tekin, et al. (2023) investigated the performance of different machine learning 
models when they are used for detecting intrusions i.e., hacking attempts in IoT networks. 
These networks are composed of small home devices like cameras and thermostats, which 
could be a target for cyber attackers. Authors composed several models, including k-Nearest 
Neighbor (k-NN), Logistic Regression, Naïve Bayes (NB), Random Forest (RF), Artificial 
Neural Network (ANN) and Decision Tree (DT). They focused on two major factors, power 
consumption of each model and accuracy of each model at detecting intrusions. K-NN and 
ANN models proved to be more accurate, but they consumed excessive power to be practical 
for real time use on edge devices. On the other hand, Decision tree and Random Forest 
displayed better results by offering high accuracy and low energy consumption. Researchers 
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also highlighted about TinyML that helps in optimization of the models without 
compromising much accuracy. It is crucial for intrusion detection in small homes. 

 
Table 1: Summary of literature review 

 
Author 
(Year) 

Dataset Methodology Model Gaps 
Identified 

Limitations 

Huc et 
al., 2021  

DS2OS 
 
 

Five machine 
learning 
models tested 
and evaluated 
on Raspberry 
Pi. 

Logistic 
Regression, 
SVM, 
Random 
Forest, 
Decision 
Tree, ANN  

1-The dataset 
doesn’t have 
any features 
of the 
resource. 
2-Neither 
Compressed 
model was 
used. 

1-High 
resource usage 
needed for 
SVM. 
2-Poor 
performance 
for Logistic 
Regression on 
small scale-
based data. 

Gudala et 
al., 2019 

IoT traffic 
dataset 

Discussed AI 
techniques 
for anomaly 
detection and 
explored 
supervised 
and 
unsupervised 
learning 
specifically 
on network 
data. 

SVM, 
Random 
Forest, 
Autoencoder 

1-The main 
focus was on 
network data. 
2- It also 
lacks 
resource 
usage 
processes 
data. 
3- For edge 
devices there 
were no 
lightweight 
models.  

1-No analysis 
of TensorFlow 
Lite or other 
lightweight 
deployment 
strategies for 
resource 
constrained 
devices. 

Skaperas 
et al., 
2024 

Synthetic 
ARMA 

The 
algorithms 
were tested 
and evaluated 
on cloud 
systems. 

CUSUM and 
BOCPD 

1-It lacks a 
real time 
dataset.  
2-No process 
level 
anomalies 
detection. 
3-Lack 
resource 
usage of edge 
devices 

1- No 
lightweight 
model 
deployment on 
edge devices.  

Inuwa et 
al., 2024 

ToN-IoT, 
BoT-IoT 

Comparative 
Analysis of 
five 
supervised 
models for 
the detection 
of the data.  

SVM, ANN, 
DT, LR, K-
NN 

1-Dataset 
focused on 
IoT network 
data. 
2-Lacks 
resource level 
usage 
processes. 

1- Poor 
performance of 
LR. 
2- High 
resource 
demand for 
ANN and SVM 

https://www.mdpi.com/1424-8220/21/14/4946
https://www.mdpi.com/1424-8220/21/14/4946
https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces
https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces
https://dlabi.org/index.php/journal/article/view/4/4
https://dlabi.org/index.php/journal/article/view/4/4
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620733
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620733
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620733
https://pdf.sciencedirectassets.com/318491/1-s2.0-S2542660524X00025/1-s2.0-S2542660524001033/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIA%2F%2Bx%2BrgYB6vnKn4HDC9M4XYfn2iNJ2BeaODU5UgTuEMAiAvtdG5R4vrO%2B5bcMUEeUlpRcFXFVp699NnQBf%2FewKRpCqzBQgYEAUaDDA1OTAwMzU0Njg2NSIM9ZrOb%2FpAfe1HaU4qKpAFnDLnAyv9AMtgK2kE5%2FujAyZTdI3XTu7eUIHpmzO3Z7IWESdZnki6WgHQdEoxyR52EduwXcuRh1YiC7euvI0Uelboh%2FpnWK1KDUAVOPA6kj7TqGEazQE%2BQdk%2FAFzu9BDQ2XTAJHfpvhrlvt8OJADImaSdD8eSXTnKFeFqnUubOXJyuvmw4I5tO9PsZn2%2BbZ4IZ8FtBKWZJHhE3A5bVBwkVdOTXhG3qn8I1URajfaHG0cpO1y710uSrtRs2j5ZDHf0s8Qgc5gvJFWKcAKytZwdFlJ0eRyuuLSZQFuag4ho4GGnB27MQnSskd%2B6PFsl9O9OxnUIzaj9mGQg9OZ4zuVovT0qBelj8%2BKqrh7xsXxGIPWgjDUWUa%2Ba7%2FOUsbhyM3Qsc2b%2BnKyqpRe%2BANM335FLJ42UQSXO6JLmOaMMi5iekB6gG0Gx9cFn0q2Y0N2G%2FtOErI4FWodDXbpWhdB4EYifCWqo9XPaAvh7oYb1eCN%2BO0gmbHjCVDRFOGZ53HKP2oGEgnJvnLfCyEw%2BoyuVDqmDcYuu2SbcDwX9HmBCPzz8t%2B01vJDhQUKTg0s7vawPSFL84ORJjA9fuhV3iY6XDnJGdJ2%2BJuzU303gQkM0%2BAmRenTre7cMxsxQhO9qmNM3YQJgEFhNcKCOdTsqb%2BXJr3cCXXWndXsih9IPdI75tHJ4jbTwR1IbMwDDhlVeAOvFRT9RZRz4TeS8VPQmcX%2FZHX2U1vml1fqaxagKgPqXm%2Ftjdes1jQeSPhJwpOmU4DvY0mVTW78%2F3a5Qfcmst91y8sNXDmPBwo6hLLNkxYyluizZT2mz9bnCJ9LdOoKX0ToXpf3NAd3CpP04EAuNA6fd%2BJmiE5yC1C0p%2B1SWDpZO3grdFjEwqOLVtwY6sgFGvcSLMvZFo8inKEsw7%2FWYH%2BSd0xWOmBEm7%2B8vvsVc%2B4sm6oTor7Nnc0yGbGbgch6UwR18VE6%2BQwQJ81b7onx9JcQOEC6%2FTzNPN0a4RteCRHhKZ5F9n4m8BBibW77CrvPIWuxT8CGV7IdYaRev78bOsifCBWmFrzGFv7h%2BXjUvw8NfAycMpLWcDIDUkLE6TbX2bCYSXJtu0g%2BekvQPIc6L1l7sFviIi9TEbnBxuJwdcxJ5&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240926T161147Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY6SFGYJ46%2F20240926%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=204ee55e20b7c8f780cde950772075c40a2b601ac918487755c1dfbf35435001&hash=fe91075d1a2775ca33c45921221c48d6278fddcb801d58a7b1eafa8e97a0cee6&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S2542660524001033&tid=spdf-f030761e-d6eb-49f4-ace9-b47a2ec5d922&sid=e7a2987c9950734dae18e4a0e826df7f9bb6gxrqb&type=client&tsoh=d3d3LnNjaWV
https://pdf.sciencedirectassets.com/318491/1-s2.0-S2542660524X00025/1-s2.0-S2542660524001033/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIA%2F%2Bx%2BrgYB6vnKn4HDC9M4XYfn2iNJ2BeaODU5UgTuEMAiAvtdG5R4vrO%2B5bcMUEeUlpRcFXFVp699NnQBf%2FewKRpCqzBQgYEAUaDDA1OTAwMzU0Njg2NSIM9ZrOb%2FpAfe1HaU4qKpAFnDLnAyv9AMtgK2kE5%2FujAyZTdI3XTu7eUIHpmzO3Z7IWESdZnki6WgHQdEoxyR52EduwXcuRh1YiC7euvI0Uelboh%2FpnWK1KDUAVOPA6kj7TqGEazQE%2BQdk%2FAFzu9BDQ2XTAJHfpvhrlvt8OJADImaSdD8eSXTnKFeFqnUubOXJyuvmw4I5tO9PsZn2%2BbZ4IZ8FtBKWZJHhE3A5bVBwkVdOTXhG3qn8I1URajfaHG0cpO1y710uSrtRs2j5ZDHf0s8Qgc5gvJFWKcAKytZwdFlJ0eRyuuLSZQFuag4ho4GGnB27MQnSskd%2B6PFsl9O9OxnUIzaj9mGQg9OZ4zuVovT0qBelj8%2BKqrh7xsXxGIPWgjDUWUa%2Ba7%2FOUsbhyM3Qsc2b%2BnKyqpRe%2BANM335FLJ42UQSXO6JLmOaMMi5iekB6gG0Gx9cFn0q2Y0N2G%2FtOErI4FWodDXbpWhdB4EYifCWqo9XPaAvh7oYb1eCN%2BO0gmbHjCVDRFOGZ53HKP2oGEgnJvnLfCyEw%2BoyuVDqmDcYuu2SbcDwX9HmBCPzz8t%2B01vJDhQUKTg0s7vawPSFL84ORJjA9fuhV3iY6XDnJGdJ2%2BJuzU303gQkM0%2BAmRenTre7cMxsxQhO9qmNM3YQJgEFhNcKCOdTsqb%2BXJr3cCXXWndXsih9IPdI75tHJ4jbTwR1IbMwDDhlVeAOvFRT9RZRz4TeS8VPQmcX%2FZHX2U1vml1fqaxagKgPqXm%2Ftjdes1jQeSPhJwpOmU4DvY0mVTW78%2F3a5Qfcmst91y8sNXDmPBwo6hLLNkxYyluizZT2mz9bnCJ9LdOoKX0ToXpf3NAd3CpP04EAuNA6fd%2BJmiE5yC1C0p%2B1SWDpZO3grdFjEwqOLVtwY6sgFGvcSLMvZFo8inKEsw7%2FWYH%2BSd0xWOmBEm7%2B8vvsVc%2B4sm6oTor7Nnc0yGbGbgch6UwR18VE6%2BQwQJ81b7onx9JcQOEC6%2FTzNPN0a4RteCRHhKZ5F9n4m8BBibW77CrvPIWuxT8CGV7IdYaRev78bOsifCBWmFrzGFv7h%2BXjUvw8NfAycMpLWcDIDUkLE6TbX2bCYSXJtu0g%2BekvQPIc6L1l7sFviIi9TEbnBxuJwdcxJ5&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240926T161147Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY6SFGYJ46%2F20240926%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=204ee55e20b7c8f780cde950772075c40a2b601ac918487755c1dfbf35435001&hash=fe91075d1a2775ca33c45921221c48d6278fddcb801d58a7b1eafa8e97a0cee6&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S2542660524001033&tid=spdf-f030761e-d6eb-49f4-ace9-b47a2ec5d922&sid=e7a2987c9950734dae18e4a0e826df7f9bb6gxrqb&type=client&tsoh=d3d3LnNjaWV
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3-No 
lightweight 
deployment 
model.  

Chatterje
e et al., 
2022 

N/A Multiple 
classifications 
of IoT 
anomaly 
detection 
methods and 
applications. 

Statistic AI 
methods, 
SVM, 
LSTM, AE 

1-Lack of 
exploration 
into 
lightweight 
models like 
TensorFlow 
Lite and on-
device 
optimizations 

1-High 
computational 
cost for ML/DL 
models in real-
time IoT 
settings.  

Haji et 
al., 2021  

N/A The ML 
models for 
anomaly 
detection in 
IoT were 
comparativel
y reviewed. 

SVM, LR, 
DT, DNN, 
RNN 

1-Lack of 
exploration 
and 
investigation 
into 
lightweight 
models like 
TensorFlow 
Lite and 
optimized 
deep learning 
for 
constrained 
devices. 

1-High 
computational 
overhead and 
memory usage 
for deep 
learning 
models 

Murshed 
et al., 
2021 

N/A Survey of ML 
models and 
techniques 
for edge 
deployment 

MobileNet, 
ShuffleNet, 
SqueezeNet 

1-Lack of 
hybrid 
optimization 
strategies to 
balance 
accuracy and 
latency, and 
no 
consideration 
of 
TensorFlow 
Lite or 
quantized 
versions to 
further 
reduce 
resource 
consumption 
on 
constrained 
devices. 

1-
Communicatio
n overheads in 
federated 
learning 
2-Limited 
scalability for 
large networks. 

Tekin et 
al., 2023 

DS2OS Energy 
consumption 

LR, k-NN, 
DT, RF, NB, 

1-No 
exploration 

1-High energy 
consumption 

https://www.sciencedirect.com/science/article/pii/S2542660522000622
https://www.sciencedirect.com/science/article/pii/S2542660522000622
https://www.sciencedirect.com/science/article/pii/S2542660522000622
https://www.researchgate.net/profile/Siddeeq-Ameen-2/publication/352181755_Attack_and_Anomaly_Detection_in_IoT_Networks_using_Machine_Learning_Techniques_A_Review/links/60cb876f92851ca3acaa8fc4/Attack-and-Anomaly-Detection-in-IoT-Networks-using-Machine-Learning-Techniques-A-Review.pdf
https://www.researchgate.net/profile/Siddeeq-Ameen-2/publication/352181755_Attack_and_Anomaly_Detection_in_IoT_Networks_using_Machine_Learning_Techniques_A_Review/links/60cb876f92851ca3acaa8fc4/Attack-and-Anomaly-Detection-in-IoT-Networks-using-Machine-Learning-Techniques-A-Review.pdf
https://www.mdpi.com/1424-8220/23/3/1595
https://www.mdpi.com/1424-8220/23/3/1595
https://www.mdpi.com/1424-8220/23/3/1595
https://www.sciencedirect.com/science/article/pii/S2542660522001512?casa_token=IIW-yvAPex8AAAAA:6m3R8Lzk9YxHDjjy5XYeV48X9FRM8LE7I6HiYk43v2fYtGLzyNPCgvjMhaDi5Fj47-sfvOH8MA
https://www.sciencedirect.com/science/article/pii/S2542660522001512?casa_token=IIW-yvAPex8AAAAA:6m3R8Lzk9YxHDjjy5XYeV48X9FRM8LE7I6HiYk43v2fYtGLzyNPCgvjMhaDi5Fj47-sfvOH8MA
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inspection 
and analysis 
for three 
different 
training and 
two inference 
approaches 

ANN of 
TensorFlow 
Lite or 
energy-
efficient 
deployment 
techniques 
for edge-
based IoT 
networks. 

for k-NN and 
ANN in real-
time 
applications. 

Nkuba et 
al., 2023 

Real-world 
Z-Wave 
traffic data 
(Data 
collected 
from 17 
different IoT 
devices) 

Packet 
formalization, 
centralized 
learning 

ANN  1-No 
exploration 
of 
TensorFlow 
Lite or on-
device 
training 
techniques to 
handle real-
time updates 
and 
adaptations. 

1-Lack of real-
time handling 
of newly added 
devices 
requires 
retraining and 
reequipping for 
network 
updates 

Zhang et 
al., 2022 

GANomaly, 
ResNet-18, 
and other 
image/video 
datasets 

Block-
grained 
scaling 
mechanism.  

LightDNN 
(custom 
DNN 
framework) 

1-Lack of 
dynamic 
adaptation to 
new 
scenarios 
without pre-
generated 
block 
combinations
. 

1-Requires 
some degree of 
offline 
profiling and 
training for 
initial block 
generation. 

Wang et 
al., 2022 

HDFS, BGL Low-
dimensional 
semantic 
vectors, 
multi-kernel 
pointwise 
convolution 

Lightweight 
TCN 

1-Did not 
explore 
TensorFlow 
Lite for 
optimizing 
temporal 2-
convolutional 
networks or 
hybrid 
architectures 
for real-time 
log anomaly 
detection. 

1-Limited 
handling of 
real-time 
variations in 
log templates 

Yap et 
al.,  2021 

N/A Review of 
TinyML 
techniques 
and model 
compression 

Pruning, 
Quantization
, Knowledge 
Distillation, 
TensorFlow 

1-No 
exploration 
of real-time 
on-device 
training and 

1-Loss of 
accuracy in 
heavily 
compressed 
models,limited 

https://ieeexplore.ieee.org/abstract/document/10148964
https://ieeexplore.ieee.org/abstract/document/10148964
https://ieeexplore.ieee.org/abstract/document/9665270?casa_token=jE1Pg0hg9agAAAAA:QIpT2Nl-YBOFN8dbgv1rQRi5G76YXNXnnOIfdaqL-ViYWqCyJXP4RmyNiytcX2fOv5PWC__m7bk
https://ieeexplore.ieee.org/abstract/document/9665270?casa_token=jE1Pg0hg9agAAAAA:QIpT2Nl-YBOFN8dbgv1rQRi5G76YXNXnnOIfdaqL-ViYWqCyJXP4RmyNiytcX2fOv5PWC__m7bk
https://www.sciencedirect.com/science/article/pii/S1389128621005119?casa_token=4qods__oFcQAAAAA:s2NWBdxLKP1hSwLGgd8W570YPedPl6GvT6grJOBTTuzQPpYW7kssbdDAuUURjCm4XjGhK12H7Q
https://www.sciencedirect.com/science/article/pii/S1389128621005119?casa_token=4qods__oFcQAAAAA:s2NWBdxLKP1hSwLGgd8W570YPedPl6GvT6grJOBTTuzQPpYW7kssbdDAuUURjCm4XjGhK12H7Q
https://oiji.utm.my/index.php/oiji/article/view/148/109
https://oiji.utm.my/index.php/oiji/article/view/148/109
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for anomaly 
detection 

Lite Micro adaptation 
strategies to 
handle 
evolving 
patterns in 
constrained 
devices. 

scalability for 
complex 
anomaly 
patterns 

Ziegler et 
al., 2023 

MVTec AD On-device 
optimization, 
quantization, 
and model 
conversion 
for MCUs 

MCU-
PatchCore 
(based on 
PatchCore 
and 
MCUNet) 

1-No 
consideration 
for handling 
new unseen 
anomalies 
dynamically 
without 
model re-
deployment. 

1-Lack of real-
time retraining, 
limited 
adaptability to 
evolving 
anomaly 
patterns 

Idrissi et 
al., 2022 

MQTT-IOT-
IDS2020 

Model 
compression 
(post-training 
quantization, 
pruning, 
clustering) 

DL-HIDS 
(optimized 
CNN) 

1-No focus 
on integrating 
dynamic 
model 
updates or 
on-device 
retraining 
strategies for 
evolving 
threats. 

1-Unable to 
deploy on low-
resource 
devices like 
Arduino Uno 
due to memory 
constraints 

Antonini 
et al., 
2023 

Simulated 
data in 
extreme 
industrial 
environment
s 

Tiny-ML 
Ops, 
blockchain 
for logging 

Isolation 
Forest 

1-Lack of 
real-time 
retraining or 
dynamic 
updates to 
adapt to 
evolving 
anomalies 
without any 
external 
support 
made. 

1-Limited 
model 
adaptability to 
new patterns; 
manual 
arbitration 
needed. 

 

2.3 Lightweight Models for Anomaly Detection 
 
Nkuba, et al. (2023) introduced ZMAD to detect anomalies in smart home devices and uses 
Z-wave protocol, a method to communicate in smart home automation. To remove security 
flaws ZMAD uses lightweight Artificial Neural Networks (ANN) in older S2 and Z-wave 
devices. By analyzing network traffic, it identifies the threats and isolates the data that 
indicate to unexpected behavior. It helps in reducing the complexity of the data by separating 
irrelevant information that helps in more effective and precise threat detection. Researchers 
tested ZMAD on 17 real world Z-Wave devices and achieved detection accuracy of 98% 
while sharply shrinking the model size by up to 47 times as compare to other more 

https://dspace.mit.edu/bitstream/handle/1721.1/151408/ziegler-tjz-meng-eecs-2023-thesis.pdf?sequence=1&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/151408/ziegler-tjz-meng-eecs-2023-thesis.pdf?sequence=1&isAllowed=y
https://journal.uob.edu.bh/bitstream/handle/123456789/4285/IJCDS-110117-1570719367.pdf?sequence=4&isAllowed=y
https://journal.uob.edu.bh/bitstream/handle/123456789/4285/IJCDS-110117-1570719367.pdf?sequence=4&isAllowed=y
https://www.mdpi.com/1424-8220/23/4/2344
https://www.mdpi.com/1424-8220/23/4/2344
https://www.mdpi.com/1424-8220/23/4/2344
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complicated systems like Recurrent Neural Networks (RNNs) and Long Short-Term memory 
(LSTM). ZMAD played a vital role in the detection of numerous types of cyberattacks, such 
as remote code injection, Denial of Service (DoS) attack and attacks that manipulate the route 
of network traffic. Researchers notice that multiple challenges are faced by ZMAD when it 
detects attack on recently added devices without having any need to retrain the whole model. 
This study is relevant to the current study as it focuses on the usage of lightweight models for 
detecting anomalies in IoT networks. ZMAD provides an efficient way to recognize 
suspicious activities in structures communication systems like Z-wave by streamlining data 
analysis process and applying centralized learning.  

Zhang, et al. (2022) proposed LightDNN, which is a framework designed to handle 
long processing time and high computational demands that usually accompany complex Deep 
Neural Networks (DNN) for anomaly detection. LightDNN breaks a larger neural network 
into small independent parts known as blocks. Every part can be compressed and optimized 
independently. It also reduces computation power and time needed to train and make 
predictions. It assists the model to adjust the size and accuracy with available computing 
power provided at any point of time. During experiments on devices like NVIDIA Jetson 
TX2 and Raspberry pi 4, researchers found out that anomaly detection accuracy can be 
improved up to 17.4% by using LightDNN while keeping the number of resources same. The 
ability of LightDNN to scale itself according to available resources enables it to meet the 
requirements of the real-time applications while minimizing energy consumption. Despite 
having advancements, LightDNN have some drawbacks. To create initial block 
combinations, system requires offline training and profiling which makes it less flexible in 
fast-changing environments. Researchers suggest that future work should focus more model 
flexibility, that will enable model to adapt quickly in changings scenarios without having 
need of lengthy retraining periods. This study is relevant to the present study, which focus is 
on development of efficient and scalable anomaly detection models for edge devices. Block-
level optimization strategy of LightDNN provides firm base to make anomaly detection 
models more versatile to different resource constraint environments.  

Wang, et al. (2022) introduced LightLog, a system that is design to detect anomalies 
in logs generated by computer and other devices. It is crucial for real-time monitoring system 
to detect potential issues rapidly. The issue with the existing systems, such as LogAnomaly 
and DeepLog is that it takes a lot of computing power and can be slow. LightLog highlights 
two main techniques to make the processor efficient and faster. First, LightLog creates low-
dimensional semantic vector space. In simpler words, it condenses log data into much smaller 
and more meaningful form using a post-processing algorithm and word2vec. This helps in 
reducing the data size by 98%, making it easier to analyze. Second, LightLog applies 
lightweight version of temporal computational network (TNN), a time of neural network that 
is design for analyzing data over time. To classify log anomalies, TCN uses techniques like 
global average pooling i.e., a way for summarizing information and multi-kernel pointwise 
convolution i.e., a method of speeding up computation process. Testing on two datasets 
(HDFS and BGL), LightLog outperformed other models by achieving F1-score of 97.0% and 
97.2% respectively. Despite these strong outcomes, study highlights some challenges, 
especially when model has to handle the new types of logs that are introduced during real-
time operations. Researchers suggested that future research should focus more on making the 
model more capable and flexible of learning from new data on the fly, without any need of 
extensive training. This study aligns well with the current goal of the study of creating 
efficient anomaly detection models for edge devices. To analyze log data in resource limited 
environments, LightLogs provides a helpful approach by reduction in computational cost and 
enhancement in TCN structure. 
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2.4 TinyML Models for IoT Devices 
 
Yap, et al. (2021) made an analysis on how Tiny Machine Learning (TinyML) can detect 
anomalies in devices like microcontroller units (MCUs) as they have limited resources. 
TinyML is a rapidly growing field that combines machine learning models into small, low-
powered devices that would be helpful to detect anomalies in IoT networks. These small 
devices take placed at edge networks and contain finite power and memory. It is crucial that 
those machine learning models that run on them should be small and efficient. Study 
highlights techniques including model compression, that involves methods like quantization, 
knowledge distillation and pruning. These models help in compressing the size and energy 
consumption of machine learning models, making them adjustable with the limitations of 
MCUs. Quantization reduces numerical precisions and simplifies calculation, pruning 
removes unnecessary parts of the model, and knowledge distillation delivers knowledge from 
a larger model to the lower model while maintaining most of the accuracy. Traditional 
machine learning methods like Support Vector Machine (SVM) and Decision Tree (DT) 
function well in these areas but they are not much flexible and accurate as compare to deep 
learning models that can detect complex patterns. To fill this void, authors discuss tools like 
Single Value Decomposition (SVD) and TensorFlow Lite Micro which is helpful in 
deploying compressed versions of deep learning models, such as Convolutional Neural 
Networks (CNNs) on MCUs. Authors also highlighted that compressing models too much 
result in reduction of accuracy, which means some crucial anomaly patterns might go 
unnoticed. To overcome this issue, they suggested that future work should focus on hybrid 
models that can dynamically adjust the computing power based on real-time conditions like 
availability of power and usage needs. This review is relevant to the current study as it 
explores how to optimize machine learning models to be both effective and efficient for real-
time anomaly detection on low-power devices.  

Ziegler, et al. (2023) proposed MCU-PatchCore, a system that integrates a powerful 
anomaly detection method called PatchCore with the lightweight architecture known as 
MCUNet, which is particularly design for low-power MCUs. PatchCore demands the power 
of graphical processing units (GPUs) to operate but Ziegler adapted to operate it on devices 
with limited processing power and memory,specifically MCUs with less than 1MB of Flash 
Storage and 200KB of SRAM. For anomaly detection, MCU-Patchcore was detected on a 
standard dataset, achieving an accuracy of 86%, which is quite close to the accuracy achieved 
by systems having powerful hardware. This study highlights several innovations, such as a 
procedure of converting complex neural networks into light weight versions using 
TensorFlow Lite (TFLite) and decrease memory usage through quantized operations. 
However, a limitation of MCU-PatchCore is its lack of ability to handle real-time model 
retraining and adjustment in new types of anomalies without manual intervention which 
makes it less flexible in fast-growing environments like industrial setting. Ziegler suggested 
that future researchers can work on developing models that could retrain themselves on-
device or for more dynamic learning, they can collaborate with cloud systems. This study is 
relevant to the current research as it shows how robust models can be adapted to utilize on 
low-power devices, aligning with the goal of building scalable and efficient systems for 
anomaly detection for IoT devices.  

Idrissi, et al. (2022) introduced a Deep Learning-Based Host Intrusion Detection 
System (DL-HIDS) optimized for low power IoT edge devices, by using tools like 
TensorFlow Lite to decrease the size of the deep learning models. The goal of their system is 
to detect attacks on IoT devices using Convolutional Neural Networks (CNNs) and employs 
techniques such as pruning, weight clustering and post training quantization to lessen the 
model size and memory requirements without compromising much on accuracy. 
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System was tested on multiple low-power devices, including Arduino boards, ESP32 and 
Raspberry Pi and used a dataset designed to mitigate different IoT attack scenarios. The 
optimized model achieved high accuracy up to 99.74% on Raspberry Pi. While using very 
little power, ESP32 model achieved an accuracy of 97.21%. The system was even quick 
enough to make predictions in less than 1 microsecond on high-resource device like 
Raspberry Pi. However, some limitations are also discussed while deploying these models on 
extremely low-powered devices, such as Arduino Uno where RAM made it impractical to 
deploy even the optimized models. Researchers suggest that future work should be focused 
on further compressing the models or implementing custom hybrid models that could work in 
such constrained environments. This research directly aligns with the goal of this study of 
implementing lightweight anomaly detection systems for low-power IoT devices.  
Antonini et al. (2023) proposed a novel, flexible anomaly detection system using TinyML for 
development in tough industrial environment, such as submersible pumps used in wastewater 
management plants. Their system uses TinyMLOps methods to handle the complexities of 
limited communication, accessibility and energy while guaranteeing reliable anomaly 
detection on low-cost microcontrollers like ESP32. Their system uses Isolation Random 
Forest algorithm, which is an unsupervised learning method, that can recognize anomalies 
without getting train on labeled data. It permits the system to detect errors in the device 
without relying on cloud support, which can be useful in harsh or remote environments where 
cloud connections are unreliable. To ensure data security, system logs detect anomalies using 
blockchain technology, which ensures data can’t be changed. The system was evaluated in a 
simulated industrial environment and performed well, with models trained in 1.2 to 6.4 
seconds and interference completed in less than 16 milliseconds using just 80kb of memory. 
While the system is effective but it still has some limitations when adapting to latest, unseen 
conditions without manual updates. To improve model adaptability in different surroundings, 
authors suggested to analyze dynamic on-device retraining and federated learning approach. 
They also suggested to integrate complex deep learning models to detect more delicate or 
intricate patterns in the data. This research is relevant to the current research as it depicts how 
lightweight TinyML models can be deployed in real-time for anomaly detection on low-
powered edge devices even in harsh and resource constrained surroundings.  

In conclusion, the literature points out the increasing demand for lightweight, efficient 
anomaly detection techniques in resource-constrained IoT environments. Although traditional 
machine learning techniques offer computational simplicity, they are not able to handle 
challenging anomaly patterns, whereas deep learning models give better accuracy at the 
expense of higher resource usage. The research shows that how compressed models such as 
hybrid methods and TinyML use less resources and detect anomalies accurately.   
 
3 Research Methodology 
 
Detection of unusual behavior and activities is important so that system works smoothly and 
efficiently. It is crucial in scenarios where quick decisions are required like monitoring 
devices that operate in real-time. This research involves the development of custom 
framework for solving the research problem that would help in anomaly detection in small 
and affordable devices like Raspberry Pi, which are widely used in Internet of Things (IoT) 
applications because of their portability, affordability, and computational capabilities. The 
primary challenge lies in detecting these unusual patterns effectively while remaining within 
the device’s constraints, such as processing power and low memory. By identifying any 
unusual behavior in these components, potential problems can be recognized like software 
glitches, hardware breakdowns and hacking attempts by any unauthorized party.  
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3.1 Phases of our system 
 
In this research, phases of our system involve data collection, pre-processing, training of 
model on OFF-Device (Centralized Environment), deploying compressed machine learning 
model for real-time interface on edge device such as Raspberry Pi on On-Device and 
evaluation.  Figure 1 shows phases of our system.  
 
 

 
 

Figure 1: Phases of our System 

3.1.1 Data Collection  
 
Data collection is an essential part of this research as the relevance and quality of the data 
directly aligns with the accuracy of anomaly detection. Since the available datasets are not 
sufficient for process-level monitoring, especially for resource-constraint devices such as 
Raspberry Pi. This work is aimed at filling this gap by creating a synthetic dataset. A 
Synthetic dataset is a collection of artificially generated dataset that mimic the characteristics 
of real-world data. It helps researchers to have more control over their data generation 
process, enabling them to insert specific features, anomalies essential for training and testing 
the model (Kar, et al. 2019), (Paulin, et al. 2023). During the literature review, existing 
datasets like ToN-IoT (Inwa, etl a. 2024), BoT-IoT, and DS2OS (Huc, et al. 2021) were 
examined. Although all these datasets are useful for some certain applications, but they lack 
process-level data and fail to fulfill the specific requirement of our research. During literature 
review, we analyzed public datasets and found their key limitations: 
 

• Limitation of Process-Level Matrices: 

Majority of the public datasets concentrate on system-wide metrices, network traffic, 
application-level matrices but they do not have much data available for process-level 
monitoring. For example, ToN-IoT and BoT-IoT mainly concentrate on network traffic and 
lack on process-level monitoring. DS2OS gives general data of IoT but does not provide 
granular resource consumption of individual process. Anomaly detection at the process level 
needs information like detail on memory, CPU and other resource usage which above 
mentioned datasets do not provide.  

• Lack of Data at Real-Time Resource Usage  

Many existing datasets depend on simulated and historical data, which do not show real-time 
actions at process level. For instance, the work of (Skaperas, et al. 2024) focused on 
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simulation of resource usage on cloud platforms but lacks to address real-time process level 
data that makes their approach less suitable for dynamic anomaly detection.  
 

• Inconsistency with Edge Devices  

Public datasets frequently ignored the constraints of resource-limited devices like Raspberry 
Pi. These devices work under limited CPU capabilities and memories and for real-time 
processing, lightweight datasets are required. For instance, the study of (Chen, et al. 2023) 
discussed the confrontation of the edge devices but existing datasets do not meet these certain 
requirements.  

3.1.1.2 Creation of Dataset  
Two scripts have been developed to overcome the above limitations: 
 
Data Collector Script: It gathers the usage metrics of resources like CPU and memory, 
command line parameters, and network connections at every 60-second interval and stores 
the data in a CSV file. 
 
Anomaly Generator Script: This anomaly generator script was design to simulate real-
world spikes in CPU and memory usage, duplicating anomalous conditions that are crucial 
for training and evaluating the models. The design was inspired from multiple open-source 
resources and studies, such as CPULoadGenerator (Carlucci, 2019), Stack Overflow 
discussions (Stack Overflow, 2016), the Stress Injector from PyPI (PyPI, 2024), insights from 
the Qxf2 Blog (Shetty, 2023). The methodology of this research aligns with (Chouliaras et al. 
2019), who used intentional stress workloads to create synthetic anomalies for detecting 
anomalies in NoSQL systems. Their work revealed that stress induces CPU spikes could 
distinguish abnormal behavior from normal operations. For example, their experiment 
showed that specific stress workloads prevailed in large CPU usage increases, marking them 
as abnormal. Similarly, our script applies controlled stress to mimic realistic anomalous 
scenarios, making sure that dataset involves both normal and abnormal signals for effective 
model training and testing. By running these scripts concurrently, we collected systematic 
data that represents both normal and anomalous behaviors, resulting in comprehensive dataset 
for detecting anomalies. 

3.1.1.3 Dataset Features 
 
The dataset contains following features which have been collected by running both of the 
scripts: 
 

Table 2: Features of Dataset 
 

Feature Description 
Timestamp It includes second, minute, 

hour, day, month, year.  
PID Unique Process Identifier  
Process Name Name of the process 
Username User under which the process 

is executing.  
Memory Usage (%) Memory resources percentage 
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used by the process.  
CPU Usage (%)  CPU resources percentage 

used by the process.  
Command Line Parameters passed at run-

time. 
Connections  Network connections made 

by the process 
 

3.1.1.4 Tools and Techniques 
 
Various tools and techniques were considered for collecting data. To track matrices like I/O 
operations, CPU and memory usage, monitoring tools such as Grafana, Datadog, and 
Prometheus were considered. However, these tools are complex to set up and are not suitable 
for lightweight research or resource-limited environments like edge devices. In the same way, 
command-line utilities such as ps, htop, and top were considered. These are useful for real-
time monitoring but they are insufficient for automation and programmability. Python library 
psutil was selected for this research due to its minimal computational overhead, feature set 
and efficiency. Psuil provides crucial data about network connections, I/O statics, and CPU 
and memory usage, making it best choice for environments like Raspberry Pi, where resource 
efficiency is utmost important. 

3.1.2 Exploratory Data Analysis (EDA) 
 
The EDA section presents the brief analysis of the dataset to understand the characteristics 
and distribution of processes for anomaly detection.  
 

Table 3: Dataset Overview 
 
Metric Value Description 
Dataset Shape (22937, 14) Represents the shape of the 

dataset as rows x columns. 
Missing Values 0 No missing values in any 

feature, ensuring the dataset 
is clean. 

Unique Processes 363 Total unique processes 
running on the system. 

Unique Users 2 Number of distinct users. 
Numerical Features CPU usage, Memory Usage Numeric features available 

for resource utilization 
analysis. 

Categorical Features Process Name, Username Categorical features to 
identify specific users and 
processes. 

 
Mainly, the focus was on CPU and memory usage due to its critical role in detecting 
anomalies in resource constraint environments such as edge devices.  High CPU and memory 
usage usually points out towards malicious activities like malware infections or DDoS 
attacks. (Lindqvist, et al. 1999) analyzed how unauthorized processes may give rise to 
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peculiar spikes, and (Eskandri, et al. 2018) explained that attackers leverage vulnerabilities 
for cryptocurrency mining and DDoS attacks, which can lead to extreme resource utilization. 
According to (Lu, et al. (2011), another cause of anomalies can be software bugs, like 
memory leaks or infinite loops. This is particularly critical in resource-constrained devices, 
such as Raspberry Pi, they have limited computing power and can easily be saturated (Yang, 
et al, 2024). Thus, monitoring CPU and memory usage provides a strong foundation for 
detecting anomalies efficiently.  
 
 

 
 

Figure 2: CPU usage with high spikes 
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Figure 3: Memory usage with high spikes 

3.1.3 Data Pre-processing 
 
Data pre-processing is an essential step before model development as it scales, normalize the 
data for model which helps to train and evaluate the model. In this study, we have created the 
pre-processing pipeline for reusability instead of passing raw data through all functions and 
stored in pickle file. Following are the steps taken to process the data for detecting anomalies 
accurately and efficiently: 

3.1.3.1 Data Cleaning 
 
In data cleaning, several features were considered irrelevant in anomaly detection, and they 
were eliminated. Temporal features, such as, second, minute, day, month, year, timestamp 
was eliminated. This decision was taken as synthetic dataset is used along with random 
intervals for spikes, giving temporary patterns (like hourly or daily trends) irrelevant (Zhang, 
et al. (2019). Similarly, the process ID (PID), a unique identifier assigned to each process 
instance is also eliminated. It is helpful during data collection but lack predictive values for 
machine learning models, so we copied it into separate data frame for validating the model 
later. Command line feature was also removed because process name could be any and it can 
be changed so it holds no purpose. 

3.1.3.2 Feature Transformation 
 
Feature transformation is implemented on existing features to scale the data. Temporal 
features, such as Hour feature, was encoded using cyclic encoding method that includes sine 
and cosine transformation. where hour represents a value between 0 and 23. By applying 
these transformations, the cyclic relationship of time (for instance, 23:00 is close to 00:00) 
which helps to encode the hour into 0 and 1 and helps the model for better prediction. 
Cyclical encoding holds the periodic nature of time, helping the model to understand 
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temporal patterns effectively. (Uber Engineering, 2019), (Ian, 2019). The Connection 
features, that display open network connection for each process were transformed into 
numerical value of active connections. This transformation is crucial as open network 
connections are frequently used in attacks, resulting in spikes in system resource usage like 
memory and CPU. Study of (Eskandri, 2018) and (Lindqvist, 1999) found out that open 
connections are key indicators of malicious activities like DDoS attacks. Additionally, a 
binary feature, root_user was inserted to make sure if the process was executed by root user. 
As processes executing at the root level have high privileges and are more prone to attacks, 
this feature helps in detecting anomalies that are connected to privilege escalation, improving 
the ability of the model to identify potential attacks.  

3.1.3.3 Feature Encoding: 
 
Feature encoding transforms categorical variables in a format that machine learning models 
can process. One-hot encoding helps in encoding categorical variable, Process_Name, 
generating binary features for each unique process name. It ensures that model treats each 
process as a unique category without suggesting any ordinal relationship. One-hot encoding 
is suitable for categorical data with low to medium number of unique values, as it maintains 
interoperability and prevents introducing bias.  

3.1.3.4 Scaling Features: 
 
Feature scaling adjusts numerical features to make sure they are on a similar scale, preserving 
features with larger values from overpowering the model’s learning process. In this research, 
Robust Scaler scaled numerical features such as Memory_Usage(%), CPU_Usage(%) and 
Connections. To handle outliers, Robust Scaler is an effective choice as they are ideal for 
detecting anomalies in extreme values like CPU and Memory spikes. This method improves 
the performance of the model, especially in neural network architectures or distance-based 
metrices (Chouliaras, et al. 2019), (Zhang, et al. (2019). 

3.1.4 Model Development 
 
This section describes the development and training of autoencoder models for detecting 
anomalies in resource usage data. Initially, a basic baseline autoencoder was designed to 
understand data reconstruction and then progressed to more advance model to identify high-
dimensional complexities. Additionally, fundamentals of autoencoder, their applications in 
anomaly detection, and the strategies employed for designing and training the model are 
discussed in this section.  

3.1.4.1 Autoencoders  
 
Autoencoders are neural networks used in unsupervised learning. It compresses the data into 
small, compact and meaningful representation via encoder and then recreates the original data 
with a decoder. The reconstruction error, the difference between the original and output data, 
helps to identify anomalies. Normal data has low construction errors while anomalies data 
have high errors. Autoencoders are popular in anomaly detection due to the fact that they can 
easily handle high-dimensional and mixed-type data, making them suitable for many 
applications. Unlike other datasets, they do not rely on labeled datasets and perform 
incredibly well with imbalanced datasets (Zong, et al. 2018). Their ability to operate 
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efficiently on devices having limited resources make them suitable for real-world 
applications. Moreover, techniques like L2 regularization and dropout make them reliable by 
managing noisy data efficiently, making autoencoder a best choice to handling complex 
anomaly detection tasks (Chen, et al. 2020). 

3.1.4.2 Baseline Model 
 
The baseline model utilized a simple autoencoder architecture to test its basic ability to 
reconstruct data and detect anomalies. As (Song, et al. 2019) show in their research, that 
baseline autoencoder is efficient for simple anomaly detection tasks. Similarly, (Zong, et al. 
2018) recommend starting with simple architectures to establish a foundation for further 
developments. Figure 2 shows baseline autoencoder architecture. It has the following 
structure:  
 

1. Input Layer: Input layer size is same as the input feature. 
2. Hidden Layer: It compresses information while taking the same size as the input 

data. It uses the linear activation function. 
3. Output Layer: It reconstructs the input by using a linear activation function. 

 
 

 

 
Figure 4: Baseline Model Architecture 

 
 

The model was trained using Mean Squared Error (MSE) as the primary loss function, 
calculated using equation 2.  
 

                                      MSE =             (1) 
 
Where  represents the mean value and  represents the constructive values. Mean Absolute 
Error (MAE) is also tackled as a second metric and is calculated in equation 3. 

MAE =                  (2) 
 

The baseline model was trained on 20 epochs with a batch size of 256 and a validation split 
of 20%. Early stopping was used to ensure training stopped if the validation loss did not 
improve for 10 consecutive epochs. A learning rate scheduler reduced the learning rate by 
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half if performance plateaued. While the model gave basic insights, its inability to manage 
non-linear patterns led to the development of an advanced architecture. 

3.1.4.3 Advance Model 
 
The advanced model sophisticatedly picked up more complex data patterns and greatly 
enhanced anomaly detection capabilities (Wang, et al. 2021) and (Zhang, et al. 2023) showed 
that advanced architectures better capture non-linear patterns. (Chen, et al. 2020) emphasized 
how dropout and L2 penalties are regularization techniques that make the model more robust. 
Figure 3 shows the pictorial representation of the advanced autoencoder architecture 
highlighting the encoder bottleneck decoder structure.  
 
 

 
 
 

Figure 5: Advance Autoencoder Architecture 
 
To overcome the weaknesses of the baseline model, an advanced autoencoder has been used 
with architectural improvements.  
 

• Encoder 

The encoder involved multiple layers with fewer neurons at each step: 128 → 64 → 32 → 16. 
It compresses the input step by step. The ReLU activation functions were used to capture 
complex relationships in the data. Dropout with 25% and batch normalization were used after 
each layer to improve generalization and stabilize training. 
 

• Latent Space (Bottleneck)  

The latent space was a dense layer with 16 neurons that formed a compact summary of the 
data. This bottleneck layer acted effectively in filtering out noise and redundancy while 
retaining the important structure of the input. 
 

• Decoder 
The decoder was a mirrored version of the encoder, where each layer had an equal size: 16 → 
32 → 64 → 128, to reconstruct the input. Sigmoid activation in the output layer ensures that 
reconstructed values are in the normalized range of the input features. 
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3.1.5 Model Compression 
 
Model compression plays a crucial role in the deployment of machine learning models in 
resource constraint environments like edge devices. It lessens the need for computational 
power and storage while preserving accuracy. To compress autoencoder model, TensorFlow 
Lite was implemented in this study. It enables efficient, lightweight and scalable real-time 
anomaly detection on devices including Raspberry Pi. TensorFlow Lite, created by Google, is 
a framework designed to efficiently deploy machine learning models on mobile, IoT and 
embedded devices. It integrates ease with effective model compression, increase inference 
speed, making it optimal for resource efficient deployment in real-time applications (Howard, 
et al. 2019). By transforming model into compact format, TensorFlow Lite reduces the size of 
the model, making it convenient for edge devices with limited resources. It also increases the 
speed of the inference by using optimization methods such as kernel optimization and 
operator fusion, which are significant for real-time anomaly detection (Zhou, et al. 2021). 
Moreover, due to post-training quantization support of TensorFlow Lite, 32-bit floating-point 
weights are compacted into 8-bit integers. This process reduces the size of the model and 
power consumption (Jacob, et al. 2018). With the help of cross-platform development 
capabilities of TensorFlow Lite, deploying anomaly detection models on various edge 
devices have become easy (Howard, et al, 2019). Its API makes the workflow easy by 
allowing flawless conversation of trained TensorFlow/Keras models into deployable formats. 
In contrast to other compression methods, TensorFlow Lite provides a comprehensive 
solution. For instance, pruning lessens the size of the model by eliminating unnecessary 
connections but to maintain the performance, it needs retraining (Han, et al. 2015). 
Knowledge distillation delivers knowledge from large model to small model but adds extra 
complexity during training (Hinton, et al. 2015). In contrast, TensorFlow Lite integrates 
inference optimization, size reduction and quantization into single, effective framework, 
making it extensive choice for real-world deployment.  
 
3.1.6 Model Inference  
 
In this section, a lightweight version of our model, TensorFlow Lite (TFLite) is used for 
anomaly detection as well as real-time monitoring of process-level resource usage. This 
model is lightweight and efficient and is designed particularly for devices with low 
processing power. The process is initiated by gathering real-time data, which includes 
memory consumption, CPU usage, network activity, and the names of active processes that 
are collected every 5 seconds. This frequent data collection is carried out to detect anomalies 
with putting stress on the system. Data goes through multiple preparation steps before 
analysis so that it meets model's requirement. This includes irrelevant detail removal, scaling 
numbers to ensure consistency, rearranging the data layout according to what the model 
expects, and encoding categorical variables. Model tries to reconstruct input data according 
to the patterns that it learned during the training process. If reconstruction error is greater 
than a certain threshold, system flags it as an anomaly. This inference helping to detect real-
time anomalies on resource usage of processes without putting overhead on limited reources 
of the system. 
 
4 Evaluation 
 
In this section, we evaluated the performance of our baseline and advanced autoencoder 
models to check the effective identification of anomalies in resource usage processes. We 
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split the dataset into 80% training (64%) and 20% testing (20%). During training, 20% of the 
training data was used for validation to ensure proper evaluation on unseen data. The 
evaluation took place by examining the training history of each model, including 
visualization of loss and mean absolute error (MAE) across epochs. These visualizations gave 
insights on how well each model learned and generalized over time. To further test the 
trained models, predictions against the original data were compared for reconstruction errors. 
The results were visualized through histograms of reconstruction errors and scatter plots of 
CPU vs. memory usage, providing insights to understand the distribution of anomalies and 
the relationship between resource metrics. In addition, confusion matrices have been used to 
measure the classification performance of the models. A confusion matrix breaks down the 
predictions into true positives (properly detected anomalies), true negatives (properly 
identified normal processes), false positives (normal processes misclassified as anomalies), 
and false negatives (anomalies missed by the model). Important metrics like accuracy, 
precision, recall, and F1-score were computed to determine the quantitative performance of 
the model. Accuracy measures the overall preciseness of the model, precision is used to 
measure the significance of detected anomalies, recall is used to measure the sensitivity over 
anomaly detection, and the F1-score measures the balance in between precision and recall. 
Table 3 shows devices used for model testing and evaluation.  
 

Table 4: Devices Used for Model Testing and Evaluation 
 

Devices Purpose Specifications 
MacBook Pro (M1) Model training and dataset 

testing. 
Chip: Apple M1  
Memory: 8 GB  
macOS: Sequoia 15.1.1 

Raspberry Pi Zero 2W Real-time anomaly detection 
and testing. 

CPU: 1 GHz quad-core 
ARM Cortex-A53  
Memory: 512 MB SDRAM  
OS: Raspberry Pi OS 

 
4.1.  Model Architecture Evaluation 
 
We evaluated the baseline and advanced models by analyzing their training and validation 
performance, focusing on loss and Mean Absolute Error (MAE) metrics, as well as their 
ability to distinguish between normal and anomalous behaviors. For the baseline model, we 
observed a sharp decrease in both training and validation loss during the initial epochs, which 
stabilized around epoch 5. Figure 4 visually illustrates the training loss and MAE for the 
baseline model. The validation MAE closely matched the training MAE, indicating minimal 
overfitting. To understand the model's ability to detect anomalies, we plotted histograms of 
reconstruction errors, which showed a clear separation between normal and anomalous data 
points. Figure 5 shows the Reconstruction Error Distribution and CPU vs. Memory Usage for 
the baseline model. However, we noted that the threshold margin was relatively narrow, 
suggesting limitations in capturing more complex patterns. Additionally, we used scatter 
plots of CPU versus memory usage to visualize the anomalies, where some overlap with 
normal data points were observed, indicating room for improvement in the model’s 
generalization. In contrast, the advanced model exhibited smoother and more gradual 
convergence compared to the baseline, with both training and validation loss consistently 
decreasing and stabilizing around epoch 20. Figure 6 depicts the Model Loss and MAE for 
the advanced model. The advanced model achieved substantially lower values of MAE and 
loss, which indicated better learning efficiency. The error histogram also showed a sharper 
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separation between normal and anomalous data with a wider threshold margin, which 
indicated better anomaly detection capabilities. Also, in CPU vs. memory usage, the 
advanced model was more accurate in anomaly detection, where anomalous points were 
clearly, signifying improved generalization and robustness. Figure 7 shows the advanced 
model Reconstructions Error Distribution with more details on how anomalies are better 
separated. The advanced model outperformed the baseline in training convergence, error 
separation, and anomaly accuracy detection. Addition of extra hidden layers, dropout, and 
batch helped this model perform better than the baseline. Normalization in the advanced 
architecture improved the ability of the model to learn complex patterns, making it more 
effective for real-world anomaly detection scenarios. This enhanced performance highlights 
the advanced model's suitability for resource usage anomaly detection tasks, demonstrating 
its potential for practical applications. 
 
 

 
 
 

Figure 6: Training Loss and MAE for baseline model 
 

 

 
 

 
Figure 7: Reconstruction Error Distribution and CPU vs Memory Usage for Baseline Model 
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Figure 8: Model Loss and MAE for Advanced Model. 
 
 

 
 

Figure 9: Reconstruction Error Distribution for the advanced model 
 
4.2.  Active Model vs Compressed Model 
 
Model performance was compared in actual and compressed models on the Raspberry Pi 
dataset. Table 4 displays the performance metrics including, accuracy, precision, recall, F1 
score, and confusion matrix components, both models having same file size. Figure 8 
displays the confusion matrices of actual and compressed models of their classification 
results. 
 

Table 5: Actual and compressed model performance comparison on Raspberry Pi dataset. 
 

Model 
Type 

Model 
File 
Size 

Accura
cy 

Precisi
on 

Reca
ll 

F1 
Scor

e 

True 
Negativ
es (TN) 

False 
Positiv
es (FP) 

False 
Negativ
es (FN) 

True 
Positiv
es (TP) 

Actual 
Model 

1,517,9
20 

bytes 
(1.5 
MB) 

0.9700 1.0000 0.302
2 

0.464
1 

3091 0 97 42 

Compress
ed (Lite) 

1,517,9
20 

0.9700 1.0000 0.302
2 

0.464
1 

3091 0 97 42 
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Model bytes 
(1.5 
MB) 

 
 

 
 
Figure 10: Confusion matrices for the actual and compressed models on Raspberry Pi dataset.  

 
4.3.  Model Inference Evaluation  
 
The Raspberry Pi Zero 2W was used as the deployment device to assess the real-time 
anomaly detection capability of the model. This was done by establishing an SSH connection 
to the Raspberry Pi and accessing the project directory, which contained both the inference 
and anomaly generator scripts. The model inference script was executed in parallel with the 
anomaly generator script. The anomaly generator script was simulated to make the system 
show anomalous behaviors by producing processes consuming much CPU and memory 
resources. Meanwhile, the inference script monitored the system real-time, analyzing 
resource usage and classifying processes as normal or anomalous based on the pre-trained 
model. 
 
5 Discussion, Conclusion & Future Work 
 
In this study, the process had to overcome several technical challenges to make it robust and 
practical. While data collection process, the major challenge was to capture CPU and 
memory usage accurately. At first, the use of psutil library with an interval=0 failed to 
capture high-frequency spikes. From the documentation of the library, it was realized that 
setting interval=1 gives accurate average usage over one second, which matches the data 
collection frequency of 60 seconds. To counter the blocking nature of this configuration, the 
data logging script was redesigned asynchronously, thus ensuring efficiency and avoiding 
delays in data collection. Designing the anomaly generator script was also a challenge as 
early iterations resulted in crashes and excessive memory usage that were unacceptable for 
resource-constrained environments. The simulating of CPU and memory spikes was refined 
to ensure that the script would run smoothly without overloading the system, hence its 
seamless use on edge devices to provide realistic conditions for model evaluation. A 
limitation between precision and recall was observed due to the sigma anomaly threshold 
which flagged anomalies deviating above 95%. The accuracy was better but it was missing 
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some anomalies because we labelled the data above 70% usage of spikes as anomalies for 
validating the model but adaptative threshold could improve the recall and precision.  

Our research addressed the problem of anomaly detection in resource usage processes on 
resource-constrained edge devices. Motivated by the question, how effectively can a 
compressed, lightweight machine learning model detect anomalous activities on resource 
usage of processes using edge devices? Our research has successfully achieved its aim. A 
robust anomaly detection system was developed using autoencoder architectures that were 
trained on resource usage data. The advance model, with improvements such as additional 
hidden layers, dropout regularization, and batch normalization performed much better in 
terms of learning efficiency and anomaly detection over the baseline model. To overcome 
resource constraints, the trained model was compressed with TensorFlow Lite in order to get 
a lightweight version with retained performance, drastically decreasing computational and 
memory requirements such that deployment would be feasible in low-resource environments. 
The compressed model was deployed onto a Raspberry Pi Zero 2W, where in real-time, it 
provided anomaly detection. It made accurate identification of anomalous processes in live 
data streams, affirming its practical applicability for edge computing. With this deployment, 
the entire system was shown to balance efficiency and performance in resource-constrained 
environments. Our work takes a significant step in closing the gap between high performance 
machine learning and edge deployments.  

Future work will continue to improve the robustness and usability of the anomaly 
detection system by overcoming current limitations and exploring new directions. Gathering 
more diverse workloads and datasets from different IoT devices and environments will be a 
priority. Leveraging platforms like OpenWrt OS, which offers flexibility in managing 
networked devices, could enable broader data collection and testing under varied conditions. 
A real-time alerting system is also going to be the focus of development. It will notify users 
or administrators about detected anomalies. This approach enhances the practicality by 
enabling swift responses to potential threats. Incorporating adaptive threshold mechanisms 
could further increase the detection criteria to adjust dynamically based on system behavior 
and workload patterns, optimizing the balance between precision and recall. Moreover, 
establishing a user-friendly interface for managing alerts, monitoring resource usage and 
visualizing results would make the system more accessible to non-technical users in industrial 
and smart home settings. Advanced model architectures, such as graph neural networks and 
transformer-based models could also be explored for enhancing the system's ability to detect 
complex patterns in resource usage data effectively. By making these developments, the 
system could evolve into an efficient and scalable solution for real-time anomaly detection 
across diverse IoT ecosystems.  
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