

A Machine Learning Approach to Detect
Anomalies on Edge Devices

MSc Research Project
Data Analytics

Awais Shamas
Student ID: x23258756

School of Computing
National College of Ireland

Supervisor: Mr. Vikas Tomer

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Awais Shamas

Student ID:

x23258756

Programme:

MSc. Data Analytics

Year:

2024-2025

Module:

MSc. Research Project

Supervisor:

Mr. Vikas Tomer

Submission Due
Date:

12 December, 2024

Project Title:

A Machine Learning Approach to Detect Anomalies on Edge
Devices

Word Count:

12473 Page Count 34

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

……

Date:

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

A Machine Learning Approach to Detect Anomalies
on Edge Devices

Awais Shamas
x23258756

Abstract

 Over the years, Internet of Things (IoT) devices are increasing rapidly and is expected
to extend over 20 billion by 2030. The growth underscores the increasing demand for
vigorous security solutions to secure these devices from cyber-attacks. Anomalies in IoT data
can lead to failure and unexpected behavior in a system. Therefore, it is crucial to detect
anomalies to achieve system performance and reliability. Detecting anomalies in resources
constraint devices, such as IoT devices, cause some challenges. In this research, we proposed
machine learning based anomaly detection system implemented for edge device such as
Raspberry Pi. Our research uses TensorFlow Lite that helps in developing a compressed
model that detects malicious activities in real-time resource usage processes without
demanding high computational resources. An autoencoder-based model was implemented to
detect anomalies in resource usage processes. Models were trained on high performance
devices and were further deployed on resource constrained hardware such as Raspberry Pi
Zero 2W. The real-time inference happens every 5 seconds indicating highly accurate and
timely anomaly detection for both full and compressed models by achieving an accuracy of
97.00% showcasing that lightweight models can outperform full models on the resource
overhead. The key contribution of our research is the development of lightweight, scalable
model for protecting the fast-growing IoT device ecosystem, which should identify new
threats efficiently while assuring effective anomaly detection in resource-constraint
environments.

1 Introduction

Internet of Things (IoT) allows various devices to connect and interact with each other and
with their surroundings. These devices have capabilities of collecting data and performing
tasks automatically. Internet of Things (IoT) is becoming famous due to its innovative
concept and ideas (Gharavi, et al. 2024). IoT environments produce massive amount of data
that could be helpful to improve decision making process and optimizing systems (Dastjerdi,
et al. 2016). IoT provides the facility of real-time monitoring and controlling of the system
using devices like computers, smartphones and tablets. Collecting and analyzing data using
cloud processing techniques help to make the complex interactions amongst multiple devices.
An important application of IoT is in industry 4.0, that focuses on the improvement of
industrial processing (Jove, et al 2022). The ability of IoT devices to integrate smart systems
across multiple environments offer benefits in many fields including environmental,
financial, smart homes, industries and healthcare. One of the most effective applications of
IoT is in smart homes where interrelated devices provide comfort, efficiency and
convenience. For example, integration of virtual interaction services and entertainment can
help to alleviate the feelings of loneliness and isolation. Power monitoring capabilities in
smart home can lessen the energy consumption (Mota, et al. 2024) Out of 24.1 billion

2

devices, it is estimated that 5.8 billion would be dedicated to industrial applications and
enterprises (Says, et al. 2019). Study shows that currently 12.08 billion IoT devices are linked
with each other, and it is expected that these number will increase to 29.04 billion by 2030
(Statista, n.d.).

The widespread adoption of IoT technology caught the attention of cyber attackers
and they seek to exploit these systems using advance hacking techniques including botnets.
Botnets malwares are used to launch Distributed Denial-of-service (DDoS) attacks with
bandwidth reaching up to 1.1 Tbsp. The vulnerability in IoT is further increased due to the
lack of standardization and the occurrence of lightweight, inexpensive and low powered
devices in IoT networks (Koroniotis, et al. 2019). Security has become a major concern in
IoT devices as IoT devices are connected with various networks and there are chances that
they will be disposed to more attacks as compared to isolated systems. Antivirus and
firewalls help to protect the system, but delicate security policies lead to breaches. There are
many low-priced IoT devices that are available in the market. Manufacturers overlook the
crucial things like privacy and security in IoT devices that results in the leakage of user’s
confidential information. Mirai malware, that was discovered in 2016, demonstrates how IoT
devices could be hijacked and then used as bots to implement large scale attacks such as
Distributed Denial of Service attack (DDoS), potentially destroying healthcare systems and
endangering human lives at risks (Antonakakis, et al. 2024).

 The advent of IoT has introduced challenges in areas like maintenance, data storage,
privacy and security. Many IoT devices are designed in a way so they can perform only
specific hardware and software tasks. For example, using fast processor for real time
performance, without increasing any extra power in it. These are the factors due to which IoT
devices are often launch with the vulnerabilities in it. Once a device is compromised, various
malicious activities can be exploited on it (Breitenbacher, et al. 2019). Due to specific
applications of IoT devices, their security is limited. For instance, wearable devices, handheld
and portable devices, that rely on battery often compromise on security by prioritizing longer
battery. To highlight these issues, control protocols and energy efficient communication have
been developed to address these issues but vulnerabilities in these protocols still exist. An
important example is Bluetooth Low Energy (BLE) communication protocol, that is broadly
used in industrial IoT (IIoT) and wearable devices. Study shows that BLE is vulnerable to
various attacks. User data is expose due to this protocol as the transmitted packets are sent in
the form of plain text and during the process of reconnection between paired devices there are
chances of exploitation (Wu, et al. 2020), (Antonioli, et al. 2022).

The major concerns for smart home devices users are security. Aldossari, et al. (2018)
research highlights that users are most likely to adopt these technologies based on their trust
in the system and how much privacy and security it offers to the user’s data (Alyasiri, et al.
2021). Traditionally, there were three main goals of the IT security: confidentiality, integrity
and accountability (Schiller, et al. 2022). Due to the online availability of IoT devices, they
are more prone to attacks. More security challenges take place due to the embedded
technology within IoT devices. For instance, an attack on smart home device would cease the
working of refrigerator to a smoke detector that stops operating, putting lives at risk. Attacks
on smart home systems result in the leakage of personal information and often leads to
serious crimes. For instance, misuse of video feeds can be done by hackers for burglary or
temper healthcare devices that could result in causing physical harm. Many other risks take
place due to poor security in IoT devices including leakage of personal information,
unauthorized access to devices, accidently activating the devices and other malware attacks
(Li, et al. 2023). Huge amount of data is generated by IoT devices, but they have limited
memory and computing resources. While cloud computing help in overcoming these
limitations, but it produces high latency which can cause issues in areas like health

3

monitoring. Therefore, solely depending on cloud solutions is unsuitable in these cases
(Dastjerdi, et al. 2016). Edge computing can solve high latency issues and privacy concerns
by processing and storing data in the nodes from IoT devices at edge networks. By using this
method, data can be preprocessed to remove sensitive information before transferring it to the
cloud. However, reliance on large-scale computing resources is quite expensive and the
boundaries of the edge networks are not defined clearly (Premsankar, et al. 2018). Some of
the most typical approaches are Intrusion Detection Systems in IoT systems that monitor
network traffic and reduce the need for high computational power at the device. IDS can be
implemented without making any changes to the configuration of the existing IoT systems.
IDS has two types: Anomaly base IDS and Signature base IDS. Anomaly based IDS are
designed to detect unusual and unknown attacks by monitoring the system for deviations
from usual traffic patterns. Signature base IDS depends on pre-defined rules to access the
attacks that are connected with well-known behaviors and patterns. This is achieved by doing
contrast between unusual traffic against predefined normal patterns by using Artificial
Intelligence (AI) models that are trained on the previous historical data (Jove, et al 2022).

Machine learning (ML) is utilized in many fields for years. Development of new
machine learning frameworks including Keras, PyTorch and TensorFlow has increased the
interest of many researchers in the field of cybersecurity. Huge research has been conducted
on detecting anomalies and attacks using machine learning and various algorithms have been
introduced that would help in detecting anomalies in IoT devices that shows notable
effectiveness in identifying threats. Accuracy of the machine learning models depends a lot
on the size of dataset that is used for training and there is often trade-off between model
accuracy and its size. This is not a problem for high-end devices with sufficient computing
resources to achieve optimal performance and accuracy, but it becomes a challenge for the
devices that have limited resources. For example, TensorFlow lite, that Google introduced in
2019, was designed for mobile, embedded and low-end devices to compress large models
into lightweight models. This framework compressed the version of the models without
affecting its performance and accuracy. To detect anomalous activities, majority of the
machine learning detection-based systems are trained on the labeled datasets. Limitation of
this approach is that it will not detect latest malicious activity that model is unaware of. For
this research, we will highlight this challenge and develop a lightweight, compressed machine
learning model. With the help of TensorFlow lite, we will detect the anomalies on edge
devices, evaluate the performance and accuracy on resource constraint devices.

Research Question. The above research problem motivates the following research question:

• How effectively can a compressed, lightweight machine learning model detect
anomalous activities on resource usage of processes using edge devices?

The objectives of this research are to:

• Develop an anomaly detection model trained on resource usage of processes running
on the edge device.

• Convert the model into compressed, lightweight version using TensorFlow Lite.
• Deploy the lightweight model on edge devices such as Raspberry Pi.

Below are the remaining sections of this research:

• Section 2: A detailed literature review of the work done in this domain.

4

• Section 3: A detailed methodology to achieve the objectives of this project.
• Section 4: Evaluation
• Section 5: Discussion, conclusion and future work.

2 Related Work

This section gives an overview of the related studies by methodologically arranging the
previous studies which is also shown in the gap analysis Table 1. These studies focus on
detecting anomalies on edge devices using machine learning approach. Researchers
highlights range of methods for detecting anomalies from traditional machine learning
models to advance deep learning models that improves the accuracy but demands high
computational power. To overcome these challenges, studies suggested lightweighted models
striking balance between performance and efficiency on edge devices.

2.1 Anomaly Detection Techniques in IoT Devices

As the usage of Internet of Things (IoT) devices is growing rapidly, it is crucial to make sure
that these devices detect threats and unusual behaviors, also known as anomalies. It is
essential because many IoT devices, including wearable or smart home devices have limited
memory and processing power. Due to this, it becomes daunting to use complex machine
learning model on these devices. Researchers are working on creating faster and lighter
models that can detect the anomalies effectively without utilizing many resources.

Huc, et al. (2021) conducted a study to test the performance of different machine
learning models on a small and resource-limited device (Raspberry pi 4) to detect the
anomaly. Models like Support Vector Machines (SVM), Logistic Regression, Random
Forests, Decision Trees and Artificial Neutral Networks (ANN) were implemented on a
DS2OS dataset that consists of numerous types of normal and abnormal behaviors. The main
goal behind this study was to detect how better models detect anomalies and how much
computational power is used by these models. Their study shows that Decision Tree and
Random Forest performed better on small datasets by achieving an accuracy score above
95%. SVM requires loads of processing power that does not make it much efficient for small
devices. Authors did not discuss about compression and optimization of models leaving it for
future work.

Artificial Intelligence plays a vital role in securing IoT networks as complexities are
increasing within the network exposing it to security threats (Gudala, et al. 2019) suggested
that an unusual behavior in network traffic can be detected with the help of Artificial
Intelligence by making a comparison between traditional method with machine learning
algorithms. Traditional methods including threshold-based detection is speedy and minimal
resources are required in it. However, they cannot adapt well to changings in environment
due to which they often produce false alarms. On the other hand, Machine learning models,
while resource-intensive, identify more complex attack patterns that are missed by simple
methods. Models including SVMs, Random Forests, and Autoencoders were proven to be
more efficient and accurate in identifying unknown attacks. AI driven response systems are
also discussed in this study, where system automatically respond to the threats in real time,
for example, without human intervention, by adjust security setting or by applying patches
system automatically address the unknown threats. Despite the benefits of Artificial
Intelligence (AI) in IoT network, researchers have pointed out that AI models are much
resource-hungry to be deployed on IoT devices which have limited processing power and
memory. Researchers suggested that future research should focus on optimizing AI models

5

and creating lightweight models for these devices. Researchers have also emphasized on
Federated Learning model, where multiple devices cooperate to train a shared model without
sharing any personal information.

Selecting the best model for detecting anomaly in IoT networks is not straightforward
because each model has its own strengthens and weaknesses depending upon the dataset and
the type of attacks on IoT networks. (Inuwa, et al. 2024) did comparison of several machine
learning models, including Artificial Neural Networks (ANN), K-Nearest Neighbors (K-NN),
SVM, Logistic Regression (LR), and Decision Trees (DT) using the ToN-IoT and Bot-IoT
datasets that simulate real world attack scenarios including Denial of service (DoS) and
Distributed Denial of Service (DDoS).The results showed that Artificial Neural Networks
(ANN) models had the best performance in terms of accuracy and achieved near-perfect
scores for certain datasets. Logistic Regression underperformed in terms of complex attacks.
Random Forests and Decision Trees achieved great accuracy but they faced challenges with
more complex attack patterns including Man-in-the-middle attacks. One limitation of this
study includes not focusing on the lightweight version of these models which would be
fruitful for deployment on the devices with confined resources. It aligns with the ongoing
research of creating lightweight models that can perform well in resource constraint
environments like IoT devices.

Chatterjee, et al. (2022) examined numerous anomaly detection techniques and their uses
in IoT system. They examined 64 research papers and categorized the methods into four
categories including machine learning models, geometric methods, statistical approaches, and
deep learning architectures. Their study showed that machine learning and deep learning
models are better at detecting complicated anomalies compared to statistical methods. They
also observed that mostly machine learning and deep learning models are very demanding in
terms of processing power. Researchers emphasized on the lightweight models, including
TensorFlow Lite and recommended hybrid models, involving multiple techniques might
result in better balance between resource usage and accuracy. Their study is beneficial for the
present research, that has an aim of developing models that work effectively in real time on
edge devices without wasting much resources.

Haji, et al. (2021) discussed about the difficulties that occur when applying machine
learning in detecting anomalies in IoT networks. They grouped multiple models, from
simpler ones including Decision Tree and Logistic Regression to more sophisticated models
including Recurrent Neural Network (RNN) and Deep Neural Network (DNN). They
examined that basic models work well for small datasets and pattern attacks but for complex
pattern attacks such as Denial of Service (DoS) or Distributed Denial of Service (DDoS)
demands more machine learning power. However, deploying these machine learning models
on IoT networks is daunting due to memory and computational power. Authors suggested to
explore more lightweight models approach including pruning i.e., removing unnecessary
parts of the model and quantization (eliminating the precision of the numbers the model uses)
to make deep learning models more compatible for IoT devices. Their study underlines the
significance of finding stability between detection accuracy and computational accuracy. It is
an important focus of the current research which aims to develop compressed models that can
work efficiently in detecting anomalies without overloading resource constraint devices.

2.2 Machine Learning Models on Edge Devices

Murshed, et al. (2021) gave a comprehensive analysis on deploying machine learning (ML)
models on edge devices, that are small computers or sensors that are located near where data
is collected. Authors address how machine learning (ML) models can be optimized in a way
so that they can work in surroundings having limited resources, including battery life,

6

processing power and low memory. In traditional setups, data that is collected from the edge
devices were send to the cloud for further processing but this method causes latency issues
along privacy concerns. Rather, processing data locally on edge devices can lessen these
issues. However, edge devices struggle to work with full-size machine learning models so it
is crucial to have lightweight versions of these models.The study pointed out on essential
approaches to optimize these models for edge devices, including pruning i.e., removing
unnecessary parts of the model, reduction in the size of the model through quantization i.e.,
use of fewer bits of representing data, and knowledge distillation i.e., using a simple model
that is trained by a larger model. These methods help in making models work efficiently
without compromising much on accuracy. Some advance lightweight architectures referred to
SqueezeNet, MobileNet, and ShuffleNet. These models are designed in a way that help in
reducing computational cost and memory usage. For instance, ShuttleNet and MobileNet use
separable convolutions depthwise, i.e., a type of layer that reduces the size of the model and
make calculations quicker. Meanwhile, SqueezeNet minimizes the number of parameters i.e.,
the parts of model that are learned during the training phase. SqeezeNet lower the number of
parameters by 50 times as compare to the popular model, AlexNet model. These
enhancements are important for real-time applications such as autonomous vehicles, video
analytics. However, difficulties remain, as speed, energy consumption, balancing accuracy is
still daunting, especially in resource-constrained environments. Authors also highlight the
concept of Federated Learning, where data from multiple edge devices is gathered for
training a model without sending data to the central server. It is beneficial to maintain
privacy but becomes a challenge of managing communication between devices. Study
suggests of developing collaborative systems where cloud and edge processing work together
to achieve best accuracy in terms of efficiency and accuracy.

Fanariotis, et al. (2023) study focused on the power efficiency of machine learning
models that run on small IoT devices (Internet of Things), like STM32H7 and ESP32, that
are commonly use in edge computing. While previous researchers focused on making
machine learning models faster and smaller, this study took a different angle by focusing on
how much power these machine learning models can use. It is crucial consideration for
devices that often run on batteries. Researchers test both compressed and uncompressed
versions of models, including MobileNet-025 and LeNet-5. Compression techniques help in
reducing the size and power consumptions of the models without compromising much on
accuracy. For example, the compressed version of LeNet-5 consumed 5 times less power than
the original model, only decreasing 2% of accuracy. Similarly, when MobileNet-025 is
compressed, its power efficiency increased by 3% making it work better for low-poor
devices. However, study also highlighted some issues. For example, older versions of
TensorFlow were not completely compatible with some certain devices and some compressed
models still struggle with low memory capacities. Authors also suggest on focusing more on
response times and power efficiency especially for real time tasks.

Tekin, et al. (2023) investigated the performance of different machine learning
models when they are used for detecting intrusions i.e., hacking attempts in IoT networks.
These networks are composed of small home devices like cameras and thermostats, which
could be a target for cyber attackers. Authors composed several models, including k-Nearest
Neighbor (k-NN), Logistic Regression, Naïve Bayes (NB), Random Forest (RF), Artificial
Neural Network (ANN) and Decision Tree (DT). They focused on two major factors, power
consumption of each model and accuracy of each model at detecting intrusions. K-NN and
ANN models proved to be more accurate, but they consumed excessive power to be practical
for real time use on edge devices. On the other hand, Decision tree and Random Forest
displayed better results by offering high accuracy and low energy consumption. Researchers

7

also highlighted about TinyML that helps in optimization of the models without
compromising much accuracy. It is crucial for intrusion detection in small homes.

Table 1: Summary of literature review

Author
(Year)

Dataset Methodology Model Gaps
Identified

Limitations

Huc et
al., 2021

DS2OS

Five machine
learning
models tested
and evaluated
on Raspberry
Pi.

Logistic
Regression,
SVM,
Random
Forest,
Decision
Tree, ANN

1-The dataset
doesn’t have
any features
of the
resource.
2-Neither
Compressed
model was
used.

1-High
resource usage
needed for
SVM.
2-Poor
performance
for Logistic
Regression on
small scale-
based data.

Gudala et
al., 2019

IoT traffic
dataset

Discussed AI
techniques
for anomaly
detection and
explored
supervised
and
unsupervised
learning
specifically
on network
data.

SVM,
Random
Forest,
Autoencoder

1-The main
focus was on
network data.
2- It also
lacks
resource
usage
processes
data.
3- For edge
devices there
were no
lightweight
models.

1-No analysis
of TensorFlow
Lite or other
lightweight
deployment
strategies for
resource
constrained
devices.

Skaperas
et al.,
2024

Synthetic
ARMA

The
algorithms
were tested
and evaluated
on cloud
systems.

CUSUM and
BOCPD

1-It lacks a
real time
dataset.
2-No process
level
anomalies
detection.
3-Lack
resource
usage of edge
devices

1- No
lightweight
model
deployment on
edge devices.

Inuwa et
al., 2024

ToN-IoT,
BoT-IoT

Comparative
Analysis of
five
supervised
models for
the detection
of the data.

SVM, ANN,
DT, LR, K-
NN

1-Dataset
focused on
IoT network
data.
2-Lacks
resource level
usage
processes.

1- Poor
performance of
LR.
2- High
resource
demand for
ANN and SVM

https://www.mdpi.com/1424-8220/21/14/4946
https://www.mdpi.com/1424-8220/21/14/4946
https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces
https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces
https://dlabi.org/index.php/journal/article/view/4/4
https://dlabi.org/index.php/journal/article/view/4/4
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620733
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620733
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620733
https://pdf.sciencedirectassets.com/318491/1-s2.0-S2542660524X00025/1-s2.0-S2542660524001033/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIA%2F%2Bx%2BrgYB6vnKn4HDC9M4XYfn2iNJ2BeaODU5UgTuEMAiAvtdG5R4vrO%2B5bcMUEeUlpRcFXFVp699NnQBf%2FewKRpCqzBQgYEAUaDDA1OTAwMzU0Njg2NSIM9ZrOb%2FpAfe1HaU4qKpAFnDLnAyv9AMtgK2kE5%2FujAyZTdI3XTu7eUIHpmzO3Z7IWESdZnki6WgHQdEoxyR52EduwXcuRh1YiC7euvI0Uelboh%2FpnWK1KDUAVOPA6kj7TqGEazQE%2BQdk%2FAFzu9BDQ2XTAJHfpvhrlvt8OJADImaSdD8eSXTnKFeFqnUubOXJyuvmw4I5tO9PsZn2%2BbZ4IZ8FtBKWZJHhE3A5bVBwkVdOTXhG3qn8I1URajfaHG0cpO1y710uSrtRs2j5ZDHf0s8Qgc5gvJFWKcAKytZwdFlJ0eRyuuLSZQFuag4ho4GGnB27MQnSskd%2B6PFsl9O9OxnUIzaj9mGQg9OZ4zuVovT0qBelj8%2BKqrh7xsXxGIPWgjDUWUa%2Ba7%2FOUsbhyM3Qsc2b%2BnKyqpRe%2BANM335FLJ42UQSXO6JLmOaMMi5iekB6gG0Gx9cFn0q2Y0N2G%2FtOErI4FWodDXbpWhdB4EYifCWqo9XPaAvh7oYb1eCN%2BO0gmbHjCVDRFOGZ53HKP2oGEgnJvnLfCyEw%2BoyuVDqmDcYuu2SbcDwX9HmBCPzz8t%2B01vJDhQUKTg0s7vawPSFL84ORJjA9fuhV3iY6XDnJGdJ2%2BJuzU303gQkM0%2BAmRenTre7cMxsxQhO9qmNM3YQJgEFhNcKCOdTsqb%2BXJr3cCXXWndXsih9IPdI75tHJ4jbTwR1IbMwDDhlVeAOvFRT9RZRz4TeS8VPQmcX%2FZHX2U1vml1fqaxagKgPqXm%2Ftjdes1jQeSPhJwpOmU4DvY0mVTW78%2F3a5Qfcmst91y8sNXDmPBwo6hLLNkxYyluizZT2mz9bnCJ9LdOoKX0ToXpf3NAd3CpP04EAuNA6fd%2BJmiE5yC1C0p%2B1SWDpZO3grdFjEwqOLVtwY6sgFGvcSLMvZFo8inKEsw7%2FWYH%2BSd0xWOmBEm7%2B8vvsVc%2B4sm6oTor7Nnc0yGbGbgch6UwR18VE6%2BQwQJ81b7onx9JcQOEC6%2FTzNPN0a4RteCRHhKZ5F9n4m8BBibW77CrvPIWuxT8CGV7IdYaRev78bOsifCBWmFrzGFv7h%2BXjUvw8NfAycMpLWcDIDUkLE6TbX2bCYSXJtu0g%2BekvQPIc6L1l7sFviIi9TEbnBxuJwdcxJ5&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240926T161147Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY6SFGYJ46%2F20240926%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=204ee55e20b7c8f780cde950772075c40a2b601ac918487755c1dfbf35435001&hash=fe91075d1a2775ca33c45921221c48d6278fddcb801d58a7b1eafa8e97a0cee6&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S2542660524001033&tid=spdf-f030761e-d6eb-49f4-ace9-b47a2ec5d922&sid=e7a2987c9950734dae18e4a0e826df7f9bb6gxrqb&type=client&tsoh=d3d3LnNjaWV
https://pdf.sciencedirectassets.com/318491/1-s2.0-S2542660524X00025/1-s2.0-S2542660524001033/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIA%2F%2Bx%2BrgYB6vnKn4HDC9M4XYfn2iNJ2BeaODU5UgTuEMAiAvtdG5R4vrO%2B5bcMUEeUlpRcFXFVp699NnQBf%2FewKRpCqzBQgYEAUaDDA1OTAwMzU0Njg2NSIM9ZrOb%2FpAfe1HaU4qKpAFnDLnAyv9AMtgK2kE5%2FujAyZTdI3XTu7eUIHpmzO3Z7IWESdZnki6WgHQdEoxyR52EduwXcuRh1YiC7euvI0Uelboh%2FpnWK1KDUAVOPA6kj7TqGEazQE%2BQdk%2FAFzu9BDQ2XTAJHfpvhrlvt8OJADImaSdD8eSXTnKFeFqnUubOXJyuvmw4I5tO9PsZn2%2BbZ4IZ8FtBKWZJHhE3A5bVBwkVdOTXhG3qn8I1URajfaHG0cpO1y710uSrtRs2j5ZDHf0s8Qgc5gvJFWKcAKytZwdFlJ0eRyuuLSZQFuag4ho4GGnB27MQnSskd%2B6PFsl9O9OxnUIzaj9mGQg9OZ4zuVovT0qBelj8%2BKqrh7xsXxGIPWgjDUWUa%2Ba7%2FOUsbhyM3Qsc2b%2BnKyqpRe%2BANM335FLJ42UQSXO6JLmOaMMi5iekB6gG0Gx9cFn0q2Y0N2G%2FtOErI4FWodDXbpWhdB4EYifCWqo9XPaAvh7oYb1eCN%2BO0gmbHjCVDRFOGZ53HKP2oGEgnJvnLfCyEw%2BoyuVDqmDcYuu2SbcDwX9HmBCPzz8t%2B01vJDhQUKTg0s7vawPSFL84ORJjA9fuhV3iY6XDnJGdJ2%2BJuzU303gQkM0%2BAmRenTre7cMxsxQhO9qmNM3YQJgEFhNcKCOdTsqb%2BXJr3cCXXWndXsih9IPdI75tHJ4jbTwR1IbMwDDhlVeAOvFRT9RZRz4TeS8VPQmcX%2FZHX2U1vml1fqaxagKgPqXm%2Ftjdes1jQeSPhJwpOmU4DvY0mVTW78%2F3a5Qfcmst91y8sNXDmPBwo6hLLNkxYyluizZT2mz9bnCJ9LdOoKX0ToXpf3NAd3CpP04EAuNA6fd%2BJmiE5yC1C0p%2B1SWDpZO3grdFjEwqOLVtwY6sgFGvcSLMvZFo8inKEsw7%2FWYH%2BSd0xWOmBEm7%2B8vvsVc%2B4sm6oTor7Nnc0yGbGbgch6UwR18VE6%2BQwQJ81b7onx9JcQOEC6%2FTzNPN0a4RteCRHhKZ5F9n4m8BBibW77CrvPIWuxT8CGV7IdYaRev78bOsifCBWmFrzGFv7h%2BXjUvw8NfAycMpLWcDIDUkLE6TbX2bCYSXJtu0g%2BekvQPIc6L1l7sFviIi9TEbnBxuJwdcxJ5&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240926T161147Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY6SFGYJ46%2F20240926%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=204ee55e20b7c8f780cde950772075c40a2b601ac918487755c1dfbf35435001&hash=fe91075d1a2775ca33c45921221c48d6278fddcb801d58a7b1eafa8e97a0cee6&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S2542660524001033&tid=spdf-f030761e-d6eb-49f4-ace9-b47a2ec5d922&sid=e7a2987c9950734dae18e4a0e826df7f9bb6gxrqb&type=client&tsoh=d3d3LnNjaWV

8

3-No
lightweight
deployment
model.

Chatterje
e et al.,
2022

N/A Multiple
classifications
of IoT
anomaly
detection
methods and
applications.

Statistic AI
methods,
SVM,
LSTM, AE

1-Lack of
exploration
into
lightweight
models like
TensorFlow
Lite and on-
device
optimizations

1-High
computational
cost for ML/DL
models in real-
time IoT
settings.

Haji et
al., 2021

N/A The ML
models for
anomaly
detection in
IoT were
comparativel
y reviewed.

SVM, LR,
DT, DNN,
RNN

1-Lack of
exploration
and
investigation
into
lightweight
models like
TensorFlow
Lite and
optimized
deep learning
for
constrained
devices.

1-High
computational
overhead and
memory usage
for deep
learning
models

Murshed
et al.,
2021

N/A Survey of ML
models and
techniques
for edge
deployment

MobileNet,
ShuffleNet,
SqueezeNet

1-Lack of
hybrid
optimization
strategies to
balance
accuracy and
latency, and
no
consideration
of
TensorFlow
Lite or
quantized
versions to
further
reduce
resource
consumption
on
constrained
devices.

1-
Communicatio
n overheads in
federated
learning
2-Limited
scalability for
large networks.

Tekin et
al., 2023

DS2OS Energy
consumption

LR, k-NN,
DT, RF, NB,

1-No
exploration

1-High energy
consumption

https://www.sciencedirect.com/science/article/pii/S2542660522000622
https://www.sciencedirect.com/science/article/pii/S2542660522000622
https://www.sciencedirect.com/science/article/pii/S2542660522000622
https://www.researchgate.net/profile/Siddeeq-Ameen-2/publication/352181755_Attack_and_Anomaly_Detection_in_IoT_Networks_using_Machine_Learning_Techniques_A_Review/links/60cb876f92851ca3acaa8fc4/Attack-and-Anomaly-Detection-in-IoT-Networks-using-Machine-Learning-Techniques-A-Review.pdf
https://www.researchgate.net/profile/Siddeeq-Ameen-2/publication/352181755_Attack_and_Anomaly_Detection_in_IoT_Networks_using_Machine_Learning_Techniques_A_Review/links/60cb876f92851ca3acaa8fc4/Attack-and-Anomaly-Detection-in-IoT-Networks-using-Machine-Learning-Techniques-A-Review.pdf
https://www.mdpi.com/1424-8220/23/3/1595
https://www.mdpi.com/1424-8220/23/3/1595
https://www.mdpi.com/1424-8220/23/3/1595
https://www.sciencedirect.com/science/article/pii/S2542660522001512?casa_token=IIW-yvAPex8AAAAA:6m3R8Lzk9YxHDjjy5XYeV48X9FRM8LE7I6HiYk43v2fYtGLzyNPCgvjMhaDi5Fj47-sfvOH8MA
https://www.sciencedirect.com/science/article/pii/S2542660522001512?casa_token=IIW-yvAPex8AAAAA:6m3R8Lzk9YxHDjjy5XYeV48X9FRM8LE7I6HiYk43v2fYtGLzyNPCgvjMhaDi5Fj47-sfvOH8MA

9

inspection
and analysis
for three
different
training and
two inference
approaches

ANN of
TensorFlow
Lite or
energy-
efficient
deployment
techniques
for edge-
based IoT
networks.

for k-NN and
ANN in real-
time
applications.

Nkuba et
al., 2023

Real-world
Z-Wave
traffic data
(Data
collected
from 17
different IoT
devices)

Packet
formalization,
centralized
learning

ANN 1-No
exploration
of
TensorFlow
Lite or on-
device
training
techniques to
handle real-
time updates
and
adaptations.

1-Lack of real-
time handling
of newly added
devices
requires
retraining and
reequipping for
network
updates

Zhang et
al., 2022

GANomaly,
ResNet-18,
and other
image/video
datasets

Block-
grained
scaling
mechanism.

LightDNN
(custom
DNN
framework)

1-Lack of
dynamic
adaptation to
new
scenarios
without pre-
generated
block
combinations
.

1-Requires
some degree of
offline
profiling and
training for
initial block
generation.

Wang et
al., 2022

HDFS, BGL Low-
dimensional
semantic
vectors,
multi-kernel
pointwise
convolution

Lightweight
TCN

1-Did not
explore
TensorFlow
Lite for
optimizing
temporal 2-
convolutional
networks or
hybrid
architectures
for real-time
log anomaly
detection.

1-Limited
handling of
real-time
variations in
log templates

Yap et
al., 2021

N/A Review of
TinyML
techniques
and model
compression

Pruning,
Quantization
, Knowledge
Distillation,
TensorFlow

1-No
exploration
of real-time
on-device
training and

1-Loss of
accuracy in
heavily
compressed
models,limited

https://ieeexplore.ieee.org/abstract/document/10148964
https://ieeexplore.ieee.org/abstract/document/10148964
https://ieeexplore.ieee.org/abstract/document/9665270?casa_token=jE1Pg0hg9agAAAAA:QIpT2Nl-YBOFN8dbgv1rQRi5G76YXNXnnOIfdaqL-ViYWqCyJXP4RmyNiytcX2fOv5PWC__m7bk
https://ieeexplore.ieee.org/abstract/document/9665270?casa_token=jE1Pg0hg9agAAAAA:QIpT2Nl-YBOFN8dbgv1rQRi5G76YXNXnnOIfdaqL-ViYWqCyJXP4RmyNiytcX2fOv5PWC__m7bk
https://www.sciencedirect.com/science/article/pii/S1389128621005119?casa_token=4qods__oFcQAAAAA:s2NWBdxLKP1hSwLGgd8W570YPedPl6GvT6grJOBTTuzQPpYW7kssbdDAuUURjCm4XjGhK12H7Q
https://www.sciencedirect.com/science/article/pii/S1389128621005119?casa_token=4qods__oFcQAAAAA:s2NWBdxLKP1hSwLGgd8W570YPedPl6GvT6grJOBTTuzQPpYW7kssbdDAuUURjCm4XjGhK12H7Q
https://oiji.utm.my/index.php/oiji/article/view/148/109
https://oiji.utm.my/index.php/oiji/article/view/148/109

10

for anomaly
detection

Lite Micro adaptation
strategies to
handle
evolving
patterns in
constrained
devices.

scalability for
complex
anomaly
patterns

Ziegler et
al., 2023

MVTec AD On-device
optimization,
quantization,
and model
conversion
for MCUs

MCU-
PatchCore
(based on
PatchCore
and
MCUNet)

1-No
consideration
for handling
new unseen
anomalies
dynamically
without
model re-
deployment.

1-Lack of real-
time retraining,
limited
adaptability to
evolving
anomaly
patterns

Idrissi et
al., 2022

MQTT-IOT-
IDS2020

Model
compression
(post-training
quantization,
pruning,
clustering)

DL-HIDS
(optimized
CNN)

1-No focus
on integrating
dynamic
model
updates or
on-device
retraining
strategies for
evolving
threats.

1-Unable to
deploy on low-
resource
devices like
Arduino Uno
due to memory
constraints

Antonini
et al.,
2023

Simulated
data in
extreme
industrial
environment
s

Tiny-ML
Ops,
blockchain
for logging

Isolation
Forest

1-Lack of
real-time
retraining or
dynamic
updates to
adapt to
evolving
anomalies
without any
external
support
made.

1-Limited
model
adaptability to
new patterns;
manual
arbitration
needed.

2.3 Lightweight Models for Anomaly Detection

Nkuba, et al. (2023) introduced ZMAD to detect anomalies in smart home devices and uses
Z-wave protocol, a method to communicate in smart home automation. To remove security
flaws ZMAD uses lightweight Artificial Neural Networks (ANN) in older S2 and Z-wave
devices. By analyzing network traffic, it identifies the threats and isolates the data that
indicate to unexpected behavior. It helps in reducing the complexity of the data by separating
irrelevant information that helps in more effective and precise threat detection. Researchers
tested ZMAD on 17 real world Z-Wave devices and achieved detection accuracy of 98%
while sharply shrinking the model size by up to 47 times as compare to other more

https://dspace.mit.edu/bitstream/handle/1721.1/151408/ziegler-tjz-meng-eecs-2023-thesis.pdf?sequence=1&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/151408/ziegler-tjz-meng-eecs-2023-thesis.pdf?sequence=1&isAllowed=y
https://journal.uob.edu.bh/bitstream/handle/123456789/4285/IJCDS-110117-1570719367.pdf?sequence=4&isAllowed=y
https://journal.uob.edu.bh/bitstream/handle/123456789/4285/IJCDS-110117-1570719367.pdf?sequence=4&isAllowed=y
https://www.mdpi.com/1424-8220/23/4/2344
https://www.mdpi.com/1424-8220/23/4/2344
https://www.mdpi.com/1424-8220/23/4/2344

11

complicated systems like Recurrent Neural Networks (RNNs) and Long Short-Term memory
(LSTM). ZMAD played a vital role in the detection of numerous types of cyberattacks, such
as remote code injection, Denial of Service (DoS) attack and attacks that manipulate the route
of network traffic. Researchers notice that multiple challenges are faced by ZMAD when it
detects attack on recently added devices without having any need to retrain the whole model.
This study is relevant to the current study as it focuses on the usage of lightweight models for
detecting anomalies in IoT networks. ZMAD provides an efficient way to recognize
suspicious activities in structures communication systems like Z-wave by streamlining data
analysis process and applying centralized learning.

Zhang, et al. (2022) proposed LightDNN, which is a framework designed to handle
long processing time and high computational demands that usually accompany complex Deep
Neural Networks (DNN) for anomaly detection. LightDNN breaks a larger neural network
into small independent parts known as blocks. Every part can be compressed and optimized
independently. It also reduces computation power and time needed to train and make
predictions. It assists the model to adjust the size and accuracy with available computing
power provided at any point of time. During experiments on devices like NVIDIA Jetson
TX2 and Raspberry pi 4, researchers found out that anomaly detection accuracy can be
improved up to 17.4% by using LightDNN while keeping the number of resources same. The
ability of LightDNN to scale itself according to available resources enables it to meet the
requirements of the real-time applications while minimizing energy consumption. Despite
having advancements, LightDNN have some drawbacks. To create initial block
combinations, system requires offline training and profiling which makes it less flexible in
fast-changing environments. Researchers suggest that future work should focus more model
flexibility, that will enable model to adapt quickly in changings scenarios without having
need of lengthy retraining periods. This study is relevant to the present study, which focus is
on development of efficient and scalable anomaly detection models for edge devices. Block-
level optimization strategy of LightDNN provides firm base to make anomaly detection
models more versatile to different resource constraint environments.

Wang, et al. (2022) introduced LightLog, a system that is design to detect anomalies
in logs generated by computer and other devices. It is crucial for real-time monitoring system
to detect potential issues rapidly. The issue with the existing systems, such as LogAnomaly
and DeepLog is that it takes a lot of computing power and can be slow. LightLog highlights
two main techniques to make the processor efficient and faster. First, LightLog creates low-
dimensional semantic vector space. In simpler words, it condenses log data into much smaller
and more meaningful form using a post-processing algorithm and word2vec. This helps in
reducing the data size by 98%, making it easier to analyze. Second, LightLog applies
lightweight version of temporal computational network (TNN), a time of neural network that
is design for analyzing data over time. To classify log anomalies, TCN uses techniques like
global average pooling i.e., a way for summarizing information and multi-kernel pointwise
convolution i.e., a method of speeding up computation process. Testing on two datasets
(HDFS and BGL), LightLog outperformed other models by achieving F1-score of 97.0% and
97.2% respectively. Despite these strong outcomes, study highlights some challenges,
especially when model has to handle the new types of logs that are introduced during real-
time operations. Researchers suggested that future research should focus more on making the
model more capable and flexible of learning from new data on the fly, without any need of
extensive training. This study aligns well with the current goal of the study of creating
efficient anomaly detection models for edge devices. To analyze log data in resource limited
environments, LightLogs provides a helpful approach by reduction in computational cost and
enhancement in TCN structure.

12

2.4 TinyML Models for IoT Devices

Yap, et al. (2021) made an analysis on how Tiny Machine Learning (TinyML) can detect
anomalies in devices like microcontroller units (MCUs) as they have limited resources.
TinyML is a rapidly growing field that combines machine learning models into small, low-
powered devices that would be helpful to detect anomalies in IoT networks. These small
devices take placed at edge networks and contain finite power and memory. It is crucial that
those machine learning models that run on them should be small and efficient. Study
highlights techniques including model compression, that involves methods like quantization,
knowledge distillation and pruning. These models help in compressing the size and energy
consumption of machine learning models, making them adjustable with the limitations of
MCUs. Quantization reduces numerical precisions and simplifies calculation, pruning
removes unnecessary parts of the model, and knowledge distillation delivers knowledge from
a larger model to the lower model while maintaining most of the accuracy. Traditional
machine learning methods like Support Vector Machine (SVM) and Decision Tree (DT)
function well in these areas but they are not much flexible and accurate as compare to deep
learning models that can detect complex patterns. To fill this void, authors discuss tools like
Single Value Decomposition (SVD) and TensorFlow Lite Micro which is helpful in
deploying compressed versions of deep learning models, such as Convolutional Neural
Networks (CNNs) on MCUs. Authors also highlighted that compressing models too much
result in reduction of accuracy, which means some crucial anomaly patterns might go
unnoticed. To overcome this issue, they suggested that future work should focus on hybrid
models that can dynamically adjust the computing power based on real-time conditions like
availability of power and usage needs. This review is relevant to the current study as it
explores how to optimize machine learning models to be both effective and efficient for real-
time anomaly detection on low-power devices.

Ziegler, et al. (2023) proposed MCU-PatchCore, a system that integrates a powerful
anomaly detection method called PatchCore with the lightweight architecture known as
MCUNet, which is particularly design for low-power MCUs. PatchCore demands the power
of graphical processing units (GPUs) to operate but Ziegler adapted to operate it on devices
with limited processing power and memory,specifically MCUs with less than 1MB of Flash
Storage and 200KB of SRAM. For anomaly detection, MCU-Patchcore was detected on a
standard dataset, achieving an accuracy of 86%, which is quite close to the accuracy achieved
by systems having powerful hardware. This study highlights several innovations, such as a
procedure of converting complex neural networks into light weight versions using
TensorFlow Lite (TFLite) and decrease memory usage through quantized operations.
However, a limitation of MCU-PatchCore is its lack of ability to handle real-time model
retraining and adjustment in new types of anomalies without manual intervention which
makes it less flexible in fast-growing environments like industrial setting. Ziegler suggested
that future researchers can work on developing models that could retrain themselves on-
device or for more dynamic learning, they can collaborate with cloud systems. This study is
relevant to the current research as it shows how robust models can be adapted to utilize on
low-power devices, aligning with the goal of building scalable and efficient systems for
anomaly detection for IoT devices.

Idrissi, et al. (2022) introduced a Deep Learning-Based Host Intrusion Detection
System (DL-HIDS) optimized for low power IoT edge devices, by using tools like
TensorFlow Lite to decrease the size of the deep learning models. The goal of their system is
to detect attacks on IoT devices using Convolutional Neural Networks (CNNs) and employs
techniques such as pruning, weight clustering and post training quantization to lessen the
model size and memory requirements without compromising much on accuracy.

13

System was tested on multiple low-power devices, including Arduino boards, ESP32 and
Raspberry Pi and used a dataset designed to mitigate different IoT attack scenarios. The
optimized model achieved high accuracy up to 99.74% on Raspberry Pi. While using very
little power, ESP32 model achieved an accuracy of 97.21%. The system was even quick
enough to make predictions in less than 1 microsecond on high-resource device like
Raspberry Pi. However, some limitations are also discussed while deploying these models on
extremely low-powered devices, such as Arduino Uno where RAM made it impractical to
deploy even the optimized models. Researchers suggest that future work should be focused
on further compressing the models or implementing custom hybrid models that could work in
such constrained environments. This research directly aligns with the goal of this study of
implementing lightweight anomaly detection systems for low-power IoT devices.
Antonini et al. (2023) proposed a novel, flexible anomaly detection system using TinyML for
development in tough industrial environment, such as submersible pumps used in wastewater
management plants. Their system uses TinyMLOps methods to handle the complexities of
limited communication, accessibility and energy while guaranteeing reliable anomaly
detection on low-cost microcontrollers like ESP32. Their system uses Isolation Random
Forest algorithm, which is an unsupervised learning method, that can recognize anomalies
without getting train on labeled data. It permits the system to detect errors in the device
without relying on cloud support, which can be useful in harsh or remote environments where
cloud connections are unreliable. To ensure data security, system logs detect anomalies using
blockchain technology, which ensures data can’t be changed. The system was evaluated in a
simulated industrial environment and performed well, with models trained in 1.2 to 6.4
seconds and interference completed in less than 16 milliseconds using just 80kb of memory.
While the system is effective but it still has some limitations when adapting to latest, unseen
conditions without manual updates. To improve model adaptability in different surroundings,
authors suggested to analyze dynamic on-device retraining and federated learning approach.
They also suggested to integrate complex deep learning models to detect more delicate or
intricate patterns in the data. This research is relevant to the current research as it depicts how
lightweight TinyML models can be deployed in real-time for anomaly detection on low-
powered edge devices even in harsh and resource constrained surroundings.

In conclusion, the literature points out the increasing demand for lightweight, efficient
anomaly detection techniques in resource-constrained IoT environments. Although traditional
machine learning techniques offer computational simplicity, they are not able to handle
challenging anomaly patterns, whereas deep learning models give better accuracy at the
expense of higher resource usage. The research shows that how compressed models such as
hybrid methods and TinyML use less resources and detect anomalies accurately.

3 Research Methodology

Detection of unusual behavior and activities is important so that system works smoothly and
efficiently. It is crucial in scenarios where quick decisions are required like monitoring
devices that operate in real-time. This research involves the development of custom
framework for solving the research problem that would help in anomaly detection in small
and affordable devices like Raspberry Pi, which are widely used in Internet of Things (IoT)
applications because of their portability, affordability, and computational capabilities. The
primary challenge lies in detecting these unusual patterns effectively while remaining within
the device’s constraints, such as processing power and low memory. By identifying any
unusual behavior in these components, potential problems can be recognized like software
glitches, hardware breakdowns and hacking attempts by any unauthorized party.

14

3.1 Phases of our system

In this research, phases of our system involve data collection, pre-processing, training of
model on OFF-Device (Centralized Environment), deploying compressed machine learning
model for real-time interface on edge device such as Raspberry Pi on On-Device and
evaluation. Figure 1 shows phases of our system.

Figure 1: Phases of our System

3.1.1 Data Collection

Data collection is an essential part of this research as the relevance and quality of the data
directly aligns with the accuracy of anomaly detection. Since the available datasets are not
sufficient for process-level monitoring, especially for resource-constraint devices such as
Raspberry Pi. This work is aimed at filling this gap by creating a synthetic dataset. A
Synthetic dataset is a collection of artificially generated dataset that mimic the characteristics
of real-world data. It helps researchers to have more control over their data generation
process, enabling them to insert specific features, anomalies essential for training and testing
the model (Kar, et al. 2019), (Paulin, et al. 2023). During the literature review, existing
datasets like ToN-IoT (Inwa, etl a. 2024), BoT-IoT, and DS2OS (Huc, et al. 2021) were
examined. Although all these datasets are useful for some certain applications, but they lack
process-level data and fail to fulfill the specific requirement of our research. During literature
review, we analyzed public datasets and found their key limitations:

• Limitation of Process-Level Matrices:

Majority of the public datasets concentrate on system-wide metrices, network traffic,
application-level matrices but they do not have much data available for process-level
monitoring. For example, ToN-IoT and BoT-IoT mainly concentrate on network traffic and
lack on process-level monitoring. DS2OS gives general data of IoT but does not provide
granular resource consumption of individual process. Anomaly detection at the process level
needs information like detail on memory, CPU and other resource usage which above
mentioned datasets do not provide.

• Lack of Data at Real-Time Resource Usage

Many existing datasets depend on simulated and historical data, which do not show real-time
actions at process level. For instance, the work of (Skaperas, et al. 2024) focused on

15

simulation of resource usage on cloud platforms but lacks to address real-time process level
data that makes their approach less suitable for dynamic anomaly detection.

• Inconsistency with Edge Devices

Public datasets frequently ignored the constraints of resource-limited devices like Raspberry
Pi. These devices work under limited CPU capabilities and memories and for real-time
processing, lightweight datasets are required. For instance, the study of (Chen, et al. 2023)
discussed the confrontation of the edge devices but existing datasets do not meet these certain
requirements.

3.1.1.2 Creation of Dataset
Two scripts have been developed to overcome the above limitations:

Data Collector Script: It gathers the usage metrics of resources like CPU and memory,
command line parameters, and network connections at every 60-second interval and stores
the data in a CSV file.

Anomaly Generator Script: This anomaly generator script was design to simulate real-
world spikes in CPU and memory usage, duplicating anomalous conditions that are crucial
for training and evaluating the models. The design was inspired from multiple open-source
resources and studies, such as CPULoadGenerator (Carlucci, 2019), Stack Overflow
discussions (Stack Overflow, 2016), the Stress Injector from PyPI (PyPI, 2024), insights from
the Qxf2 Blog (Shetty, 2023). The methodology of this research aligns with (Chouliaras et al.
2019), who used intentional stress workloads to create synthetic anomalies for detecting
anomalies in NoSQL systems. Their work revealed that stress induces CPU spikes could
distinguish abnormal behavior from normal operations. For example, their experiment
showed that specific stress workloads prevailed in large CPU usage increases, marking them
as abnormal. Similarly, our script applies controlled stress to mimic realistic anomalous
scenarios, making sure that dataset involves both normal and abnormal signals for effective
model training and testing. By running these scripts concurrently, we collected systematic
data that represents both normal and anomalous behaviors, resulting in comprehensive dataset
for detecting anomalies.

3.1.1.3 Dataset Features

The dataset contains following features which have been collected by running both of the
scripts:

Table 2: Features of Dataset

Feature Description
Timestamp It includes second, minute,

hour, day, month, year.
PID Unique Process Identifier
Process Name Name of the process
Username User under which the process

is executing.
Memory Usage (%) Memory resources percentage

16

used by the process.
CPU Usage (%) CPU resources percentage

used by the process.
Command Line Parameters passed at run-

time.
Connections Network connections made

by the process

3.1.1.4 Tools and Techniques

Various tools and techniques were considered for collecting data. To track matrices like I/O
operations, CPU and memory usage, monitoring tools such as Grafana, Datadog, and
Prometheus were considered. However, these tools are complex to set up and are not suitable
for lightweight research or resource-limited environments like edge devices. In the same way,
command-line utilities such as ps, htop, and top were considered. These are useful for real-
time monitoring but they are insufficient for automation and programmability. Python library
psutil was selected for this research due to its minimal computational overhead, feature set
and efficiency. Psuil provides crucial data about network connections, I/O statics, and CPU
and memory usage, making it best choice for environments like Raspberry Pi, where resource
efficiency is utmost important.

3.1.2 Exploratory Data Analysis (EDA)

The EDA section presents the brief analysis of the dataset to understand the characteristics
and distribution of processes for anomaly detection.

Table 3: Dataset Overview

Metric Value Description
Dataset Shape (22937, 14) Represents the shape of the

dataset as rows x columns.
Missing Values 0 No missing values in any

feature, ensuring the dataset
is clean.

Unique Processes 363 Total unique processes
running on the system.

Unique Users 2 Number of distinct users.
Numerical Features CPU usage, Memory Usage Numeric features available

for resource utilization
analysis.

Categorical Features Process Name, Username Categorical features to
identify specific users and
processes.

Mainly, the focus was on CPU and memory usage due to its critical role in detecting
anomalies in resource constraint environments such as edge devices. High CPU and memory
usage usually points out towards malicious activities like malware infections or DDoS
attacks. (Lindqvist, et al. 1999) analyzed how unauthorized processes may give rise to

17

peculiar spikes, and (Eskandri, et al. 2018) explained that attackers leverage vulnerabilities
for cryptocurrency mining and DDoS attacks, which can lead to extreme resource utilization.
According to (Lu, et al. (2011), another cause of anomalies can be software bugs, like
memory leaks or infinite loops. This is particularly critical in resource-constrained devices,
such as Raspberry Pi, they have limited computing power and can easily be saturated (Yang,
et al, 2024). Thus, monitoring CPU and memory usage provides a strong foundation for
detecting anomalies efficiently.

Figure 2: CPU usage with high spikes

18

Figure 3: Memory usage with high spikes

3.1.3 Data Pre-processing

Data pre-processing is an essential step before model development as it scales, normalize the
data for model which helps to train and evaluate the model. In this study, we have created the
pre-processing pipeline for reusability instead of passing raw data through all functions and
stored in pickle file. Following are the steps taken to process the data for detecting anomalies
accurately and efficiently:

3.1.3.1 Data Cleaning

In data cleaning, several features were considered irrelevant in anomaly detection, and they
were eliminated. Temporal features, such as, second, minute, day, month, year, timestamp
was eliminated. This decision was taken as synthetic dataset is used along with random
intervals for spikes, giving temporary patterns (like hourly or daily trends) irrelevant (Zhang,
et al. (2019). Similarly, the process ID (PID), a unique identifier assigned to each process
instance is also eliminated. It is helpful during data collection but lack predictive values for
machine learning models, so we copied it into separate data frame for validating the model
later. Command line feature was also removed because process name could be any and it can
be changed so it holds no purpose.

3.1.3.2 Feature Transformation

Feature transformation is implemented on existing features to scale the data. Temporal
features, such as Hour feature, was encoded using cyclic encoding method that includes sine
and cosine transformation. where hour represents a value between 0 and 23. By applying
these transformations, the cyclic relationship of time (for instance, 23:00 is close to 00:00)
which helps to encode the hour into 0 and 1 and helps the model for better prediction.
Cyclical encoding holds the periodic nature of time, helping the model to understand

19

temporal patterns effectively. (Uber Engineering, 2019), (Ian, 2019). The Connection
features, that display open network connection for each process were transformed into
numerical value of active connections. This transformation is crucial as open network
connections are frequently used in attacks, resulting in spikes in system resource usage like
memory and CPU. Study of (Eskandri, 2018) and (Lindqvist, 1999) found out that open
connections are key indicators of malicious activities like DDoS attacks. Additionally, a
binary feature, root_user was inserted to make sure if the process was executed by root user.
As processes executing at the root level have high privileges and are more prone to attacks,
this feature helps in detecting anomalies that are connected to privilege escalation, improving
the ability of the model to identify potential attacks.

3.1.3.3 Feature Encoding:

Feature encoding transforms categorical variables in a format that machine learning models
can process. One-hot encoding helps in encoding categorical variable, Process_Name,
generating binary features for each unique process name. It ensures that model treats each
process as a unique category without suggesting any ordinal relationship. One-hot encoding
is suitable for categorical data with low to medium number of unique values, as it maintains
interoperability and prevents introducing bias.

3.1.3.4 Scaling Features:

Feature scaling adjusts numerical features to make sure they are on a similar scale, preserving
features with larger values from overpowering the model’s learning process. In this research,
Robust Scaler scaled numerical features such as Memory_Usage(%), CPU_Usage(%) and
Connections. To handle outliers, Robust Scaler is an effective choice as they are ideal for
detecting anomalies in extreme values like CPU and Memory spikes. This method improves
the performance of the model, especially in neural network architectures or distance-based
metrices (Chouliaras, et al. 2019), (Zhang, et al. (2019).

3.1.4 Model Development

This section describes the development and training of autoencoder models for detecting
anomalies in resource usage data. Initially, a basic baseline autoencoder was designed to
understand data reconstruction and then progressed to more advance model to identify high-
dimensional complexities. Additionally, fundamentals of autoencoder, their applications in
anomaly detection, and the strategies employed for designing and training the model are
discussed in this section.

3.1.4.1 Autoencoders

Autoencoders are neural networks used in unsupervised learning. It compresses the data into
small, compact and meaningful representation via encoder and then recreates the original data
with a decoder. The reconstruction error, the difference between the original and output data,
helps to identify anomalies. Normal data has low construction errors while anomalies data
have high errors. Autoencoders are popular in anomaly detection due to the fact that they can
easily handle high-dimensional and mixed-type data, making them suitable for many
applications. Unlike other datasets, they do not rely on labeled datasets and perform
incredibly well with imbalanced datasets (Zong, et al. 2018). Their ability to operate

20

efficiently on devices having limited resources make them suitable for real-world
applications. Moreover, techniques like L2 regularization and dropout make them reliable by
managing noisy data efficiently, making autoencoder a best choice to handling complex
anomaly detection tasks (Chen, et al. 2020).

3.1.4.2 Baseline Model

The baseline model utilized a simple autoencoder architecture to test its basic ability to
reconstruct data and detect anomalies. As (Song, et al. 2019) show in their research, that
baseline autoencoder is efficient for simple anomaly detection tasks. Similarly, (Zong, et al.
2018) recommend starting with simple architectures to establish a foundation for further
developments. Figure 2 shows baseline autoencoder architecture. It has the following
structure:

1. Input Layer: Input layer size is same as the input feature.
2. Hidden Layer: It compresses information while taking the same size as the input

data. It uses the linear activation function.
3. Output Layer: It reconstructs the input by using a linear activation function.

Figure 4: Baseline Model Architecture

The model was trained using Mean Squared Error (MSE) as the primary loss function,
calculated using equation 2.

 MSE = (1)

Where represents the mean value and represents the constructive values. Mean Absolute
Error (MAE) is also tackled as a second metric and is calculated in equation 3.

MAE = (2)

The baseline model was trained on 20 epochs with a batch size of 256 and a validation split
of 20%. Early stopping was used to ensure training stopped if the validation loss did not
improve for 10 consecutive epochs. A learning rate scheduler reduced the learning rate by

21

half if performance plateaued. While the model gave basic insights, its inability to manage
non-linear patterns led to the development of an advanced architecture.

3.1.4.3 Advance Model

The advanced model sophisticatedly picked up more complex data patterns and greatly
enhanced anomaly detection capabilities (Wang, et al. 2021) and (Zhang, et al. 2023) showed
that advanced architectures better capture non-linear patterns. (Chen, et al. 2020) emphasized
how dropout and L2 penalties are regularization techniques that make the model more robust.
Figure 3 shows the pictorial representation of the advanced autoencoder architecture
highlighting the encoder bottleneck decoder structure.

Figure 5: Advance Autoencoder Architecture

To overcome the weaknesses of the baseline model, an advanced autoencoder has been used
with architectural improvements.

• Encoder

The encoder involved multiple layers with fewer neurons at each step: 128 → 64 → 32 → 16.
It compresses the input step by step. The ReLU activation functions were used to capture
complex relationships in the data. Dropout with 25% and batch normalization were used after
each layer to improve generalization and stabilize training.

• Latent Space (Bottleneck)

The latent space was a dense layer with 16 neurons that formed a compact summary of the
data. This bottleneck layer acted effectively in filtering out noise and redundancy while
retaining the important structure of the input.

• Decoder
The decoder was a mirrored version of the encoder, where each layer had an equal size: 16 →
32 → 64 → 128, to reconstruct the input. Sigmoid activation in the output layer ensures that
reconstructed values are in the normalized range of the input features.

22

3.1.5 Model Compression

Model compression plays a crucial role in the deployment of machine learning models in
resource constraint environments like edge devices. It lessens the need for computational
power and storage while preserving accuracy. To compress autoencoder model, TensorFlow
Lite was implemented in this study. It enables efficient, lightweight and scalable real-time
anomaly detection on devices including Raspberry Pi. TensorFlow Lite, created by Google, is
a framework designed to efficiently deploy machine learning models on mobile, IoT and
embedded devices. It integrates ease with effective model compression, increase inference
speed, making it optimal for resource efficient deployment in real-time applications (Howard,
et al. 2019). By transforming model into compact format, TensorFlow Lite reduces the size of
the model, making it convenient for edge devices with limited resources. It also increases the
speed of the inference by using optimization methods such as kernel optimization and
operator fusion, which are significant for real-time anomaly detection (Zhou, et al. 2021).
Moreover, due to post-training quantization support of TensorFlow Lite, 32-bit floating-point
weights are compacted into 8-bit integers. This process reduces the size of the model and
power consumption (Jacob, et al. 2018). With the help of cross-platform development
capabilities of TensorFlow Lite, deploying anomaly detection models on various edge
devices have become easy (Howard, et al, 2019). Its API makes the workflow easy by
allowing flawless conversation of trained TensorFlow/Keras models into deployable formats.
In contrast to other compression methods, TensorFlow Lite provides a comprehensive
solution. For instance, pruning lessens the size of the model by eliminating unnecessary
connections but to maintain the performance, it needs retraining (Han, et al. 2015).
Knowledge distillation delivers knowledge from large model to small model but adds extra
complexity during training (Hinton, et al. 2015). In contrast, TensorFlow Lite integrates
inference optimization, size reduction and quantization into single, effective framework,
making it extensive choice for real-world deployment.

3.1.6 Model Inference

In this section, a lightweight version of our model, TensorFlow Lite (TFLite) is used for
anomaly detection as well as real-time monitoring of process-level resource usage. This
model is lightweight and efficient and is designed particularly for devices with low
processing power. The process is initiated by gathering real-time data, which includes
memory consumption, CPU usage, network activity, and the names of active processes that
are collected every 5 seconds. This frequent data collection is carried out to detect anomalies
with putting stress on the system. Data goes through multiple preparation steps before
analysis so that it meets model's requirement. This includes irrelevant detail removal, scaling
numbers to ensure consistency, rearranging the data layout according to what the model
expects, and encoding categorical variables. Model tries to reconstruct input data according
to the patterns that it learned during the training process. If reconstruction error is greater
than a certain threshold, system flags it as an anomaly. This inference helping to detect real-
time anomalies on resource usage of processes without putting overhead on limited reources
of the system.

4 Evaluation

In this section, we evaluated the performance of our baseline and advanced autoencoder
models to check the effective identification of anomalies in resource usage processes. We

23

split the dataset into 80% training (64%) and 20% testing (20%). During training, 20% of the
training data was used for validation to ensure proper evaluation on unseen data. The
evaluation took place by examining the training history of each model, including
visualization of loss and mean absolute error (MAE) across epochs. These visualizations gave
insights on how well each model learned and generalized over time. To further test the
trained models, predictions against the original data were compared for reconstruction errors.
The results were visualized through histograms of reconstruction errors and scatter plots of
CPU vs. memory usage, providing insights to understand the distribution of anomalies and
the relationship between resource metrics. In addition, confusion matrices have been used to
measure the classification performance of the models. A confusion matrix breaks down the
predictions into true positives (properly detected anomalies), true negatives (properly
identified normal processes), false positives (normal processes misclassified as anomalies),
and false negatives (anomalies missed by the model). Important metrics like accuracy,
precision, recall, and F1-score were computed to determine the quantitative performance of
the model. Accuracy measures the overall preciseness of the model, precision is used to
measure the significance of detected anomalies, recall is used to measure the sensitivity over
anomaly detection, and the F1-score measures the balance in between precision and recall.
Table 3 shows devices used for model testing and evaluation.

Table 4: Devices Used for Model Testing and Evaluation

Devices Purpose Specifications
MacBook Pro (M1) Model training and dataset

testing.
Chip: Apple M1
Memory: 8 GB
macOS: Sequoia 15.1.1

Raspberry Pi Zero 2W Real-time anomaly detection
and testing.

CPU: 1 GHz quad-core
ARM Cortex-A53
Memory: 512 MB SDRAM
OS: Raspberry Pi OS

4.1. Model Architecture Evaluation

We evaluated the baseline and advanced models by analyzing their training and validation
performance, focusing on loss and Mean Absolute Error (MAE) metrics, as well as their
ability to distinguish between normal and anomalous behaviors. For the baseline model, we
observed a sharp decrease in both training and validation loss during the initial epochs, which
stabilized around epoch 5. Figure 4 visually illustrates the training loss and MAE for the
baseline model. The validation MAE closely matched the training MAE, indicating minimal
overfitting. To understand the model's ability to detect anomalies, we plotted histograms of
reconstruction errors, which showed a clear separation between normal and anomalous data
points. Figure 5 shows the Reconstruction Error Distribution and CPU vs. Memory Usage for
the baseline model. However, we noted that the threshold margin was relatively narrow,
suggesting limitations in capturing more complex patterns. Additionally, we used scatter
plots of CPU versus memory usage to visualize the anomalies, where some overlap with
normal data points were observed, indicating room for improvement in the model’s
generalization. In contrast, the advanced model exhibited smoother and more gradual
convergence compared to the baseline, with both training and validation loss consistently
decreasing and stabilizing around epoch 20. Figure 6 depicts the Model Loss and MAE for
the advanced model. The advanced model achieved substantially lower values of MAE and
loss, which indicated better learning efficiency. The error histogram also showed a sharper

24

separation between normal and anomalous data with a wider threshold margin, which
indicated better anomaly detection capabilities. Also, in CPU vs. memory usage, the
advanced model was more accurate in anomaly detection, where anomalous points were
clearly, signifying improved generalization and robustness. Figure 7 shows the advanced
model Reconstructions Error Distribution with more details on how anomalies are better
separated. The advanced model outperformed the baseline in training convergence, error
separation, and anomaly accuracy detection. Addition of extra hidden layers, dropout, and
batch helped this model perform better than the baseline. Normalization in the advanced
architecture improved the ability of the model to learn complex patterns, making it more
effective for real-world anomaly detection scenarios. This enhanced performance highlights
the advanced model's suitability for resource usage anomaly detection tasks, demonstrating
its potential for practical applications.

Figure 6: Training Loss and MAE for baseline model

Figure 7: Reconstruction Error Distribution and CPU vs Memory Usage for Baseline Model

25

Figure 8: Model Loss and MAE for Advanced Model.

Figure 9: Reconstruction Error Distribution for the advanced model

4.2. Active Model vs Compressed Model

Model performance was compared in actual and compressed models on the Raspberry Pi
dataset. Table 4 displays the performance metrics including, accuracy, precision, recall, F1
score, and confusion matrix components, both models having same file size. Figure 8
displays the confusion matrices of actual and compressed models of their classification
results.

Table 5: Actual and compressed model performance comparison on Raspberry Pi dataset.

Model
Type

Model
File
Size

Accura
cy

Precisi
on

Reca
ll

F1
Scor

e

True
Negativ
es (TN)

False
Positiv
es (FP)

False
Negativ
es (FN)

True
Positiv
es (TP)

Actual
Model

1,517,9
20

bytes
(1.5
MB)

0.9700 1.0000 0.302
2

0.464
1

3091 0 97 42

Compress
ed (Lite)

1,517,9
20

0.9700 1.0000 0.302
2

0.464
1

3091 0 97 42

26

Model bytes
(1.5
MB)

Figure 10: Confusion matrices for the actual and compressed models on Raspberry Pi dataset.

4.3. Model Inference Evaluation

The Raspberry Pi Zero 2W was used as the deployment device to assess the real-time
anomaly detection capability of the model. This was done by establishing an SSH connection
to the Raspberry Pi and accessing the project directory, which contained both the inference
and anomaly generator scripts. The model inference script was executed in parallel with the
anomaly generator script. The anomaly generator script was simulated to make the system
show anomalous behaviors by producing processes consuming much CPU and memory
resources. Meanwhile, the inference script monitored the system real-time, analyzing
resource usage and classifying processes as normal or anomalous based on the pre-trained
model.

5 Discussion, Conclusion & Future Work

In this study, the process had to overcome several technical challenges to make it robust and
practical. While data collection process, the major challenge was to capture CPU and
memory usage accurately. At first, the use of psutil library with an interval=0 failed to
capture high-frequency spikes. From the documentation of the library, it was realized that
setting interval=1 gives accurate average usage over one second, which matches the data
collection frequency of 60 seconds. To counter the blocking nature of this configuration, the
data logging script was redesigned asynchronously, thus ensuring efficiency and avoiding
delays in data collection. Designing the anomaly generator script was also a challenge as
early iterations resulted in crashes and excessive memory usage that were unacceptable for
resource-constrained environments. The simulating of CPU and memory spikes was refined
to ensure that the script would run smoothly without overloading the system, hence its
seamless use on edge devices to provide realistic conditions for model evaluation. A
limitation between precision and recall was observed due to the sigma anomaly threshold
which flagged anomalies deviating above 95%. The accuracy was better but it was missing

27

some anomalies because we labelled the data above 70% usage of spikes as anomalies for
validating the model but adaptative threshold could improve the recall and precision.

Our research addressed the problem of anomaly detection in resource usage processes on
resource-constrained edge devices. Motivated by the question, how effectively can a
compressed, lightweight machine learning model detect anomalous activities on resource
usage of processes using edge devices? Our research has successfully achieved its aim. A
robust anomaly detection system was developed using autoencoder architectures that were
trained on resource usage data. The advance model, with improvements such as additional
hidden layers, dropout regularization, and batch normalization performed much better in
terms of learning efficiency and anomaly detection over the baseline model. To overcome
resource constraints, the trained model was compressed with TensorFlow Lite in order to get
a lightweight version with retained performance, drastically decreasing computational and
memory requirements such that deployment would be feasible in low-resource environments.
The compressed model was deployed onto a Raspberry Pi Zero 2W, where in real-time, it
provided anomaly detection. It made accurate identification of anomalous processes in live
data streams, affirming its practical applicability for edge computing. With this deployment,
the entire system was shown to balance efficiency and performance in resource-constrained
environments. Our work takes a significant step in closing the gap between high performance
machine learning and edge deployments.

Future work will continue to improve the robustness and usability of the anomaly
detection system by overcoming current limitations and exploring new directions. Gathering
more diverse workloads and datasets from different IoT devices and environments will be a
priority. Leveraging platforms like OpenWrt OS, which offers flexibility in managing
networked devices, could enable broader data collection and testing under varied conditions.
A real-time alerting system is also going to be the focus of development. It will notify users
or administrators about detected anomalies. This approach enhances the practicality by
enabling swift responses to potential threats. Incorporating adaptive threshold mechanisms
could further increase the detection criteria to adjust dynamically based on system behavior
and workload patterns, optimizing the balance between precision and recall. Moreover,
establishing a user-friendly interface for managing alerts, monitoring resource usage and
visualizing results would make the system more accessible to non-technical users in industrial
and smart home settings. Advanced model architectures, such as graph neural networks and
transformer-based models could also be explored for enhancing the system's ability to detect
complex patterns in resource usage data effectively. By making these developments, the
system could evolve into an efficient and scalable solution for real-time anomaly detection
across diverse IoT ecosystems.

Acknowledgement

I am profoundly grateful to my supervisor Mr. Vikas Tomer, for his exceptional guidance and
unwavering support throughout my thesis journey. His continuous encouragement and
constructive feedback not only helped me complete my thesis but also enhanced my
professional expertise and skills. It has been a great experience for me to complete my thesis
under his supervision. I extend my heartfelt appreciation to my elder brother, Shavaiz
Shamas, my family, and friends, whose constant support, understanding, and motivation were
crucial in helping me navigate the challenges of this academic journey. Lastly, I would like to
express my sincere thanks to the entire faculty of NCI for their guidance, mentorship, and
support thorough out my master’s program.

28

References

Aldossari, Mobark & Sidorova, Anna. (2018). Consumer Acceptance of Internet of Things
(IoT): Smart Home Context. Journal of Computer Information Systems. 60. 1-11.
10.1080/08874417.2018.1543000.

Alyasiri, H., Clark, J.A., Malik, A. and de Fréin, R., 2021, July. Grammatical evolution for
detecting cyberattacks in Internet of Things environments. In 2021 International Conference
on Computer Communications and Networks (ICCCN) (pp. 1-6). IEEE.

Al-amri, R. et al. (2021) "A review of machine learning and deep learning techniques for
anomaly detection in IoT data," Applied sciences (Basel, Switzerland), 11(12), p. 5320.
Available at: https://doi.org/10.3390/app11125320.

Antonakakis, M. (no date) Understanding the Mirai Botnet, Usenix.org. Available at:
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf
(Accessed: August 1, 2024).

Antonini, M. et al. (2023) "An adaptable and unsupervised TinyML anomaly detection
system for extreme industrial environments," Sensors (Basel, Switzerland), 23(4), p. 2344.
Available at: https://doi.org/10.3390/s23042344.

Antonioli, D., Tippenhauer, N.O., Rasmussen, K. and Payer, M., 2022, May. Blurtooth:
Exploiting cross-transport key derivation in bluetooth classic and bluetooth low energy. In
Proceedings of the 2022 ACM on Asia conference on computer and communications security
(pp. 196-207).

Breitenbacher, D., Homoliak, I., Aung, Y.L., Tippenhauer, N.O. and Elovici, Y., 2019, July.
HADES-IoT: A practical host-based anomaly detection system for IoT devices. In
Proceedings of the 2019 ACM Asia conference on computer and communications security
(pp. 479-484).

Carlucci, G. (no date) CPULoadGenerator: CPU Load Generator allows you to generate a
fixed configurable CPU load for a finite time by means of PID regulator.

Chatterjee, A. and Ahmed, B.S. (2022) "IoT anomaly detection methods and applications: A
survey," Internet of Things, 19(100568), p. 100568. Available at:
https://doi.org/10.1016/j.iot.2022.100568.

Chen, J., Wang, Z., & Wu, T. (2020). Regularization strategies for deep anomaly detection.
IEEE Transactions on Neural Networks and Learning Systems.
https://ieeexplore.ieee.org/document/8963456.

Chouliaras, S. and Sotiriadis, S. (2020) "Real-time anomaly detection of NoSQL systems
based on resource usage monitoring," IEEE transactions on industrial informatics, 16(9), pp.
6042–6049. Available at: https://doi.org/10.1109/tii.2019.2958606.

Dastjerdi, A.V. and Buyya, R., 2016. Fog computing: Helping the Internet of Things realize
its potential. Computer, 49(8), pp.112-116.

https://doi.org/10.3390/app11125320
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf
https://doi.org/10.3390/s23042344
https://doi.org/10.1016/j.iot.2022.100568
https://ieeexplore.ieee.org/document/8963456
https://doi.org/10.1109/tii.2019.2958606

29

Eskandari, S. et al. (2018) "A First Look at Browser-Based Cryptojacking," in 2018 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, pp. 58–66.

Fanariotis, A. et al. (2023) "Power efficient Machine Learning models deployment on edge
IoT devices," Sensors (Basel, Switzerland), 23(3), p. 1595. Available at:
https://doi.org/10.3390/s23031595.

Gharavi, H., Granjal, J. and Monteiro, E., 2024. Post-quantum blockchain security for the
Internet of Things: Survey and research directions. IEEE Communications Surveys &
Tutorials.

Gudala, et al., (2019) "Leveraging Artificial Intelligence for Enhanced Threat Detection,
Response, and Anomaly Identification in Resource-Constrained IoT Networks", Distributed
Learning and Broad Applications in Scientific Research, 5, pp. 23–54. Available at:
https://dlabi.org/index.php/journal/article/view/4 (Accessed: 7 December 2024).

Haji, S. and Ameen, S., 2021. Attack and anomaly detection in IoT networks using machine
learning techniques: A review. Asian Journal of Research in Computer Science, [online] 9(2),
pp.30-46. Available at: https://doi.org/10.9734/ajrcos/2021/v9i230218 [Accessed 4 Dec.
2024].

Haowen, X. et al. (2018) "Unsupervised anomaly detection via variational auto-encoder for
seasonal KPIs in Web applications," arXiv [cs.LG]. Available at:
http://arxiv.org/abs/1802.03903.

Huc, A., Salej, J. and Trebar, M. (2021) "Analysis of machine learning algorithms for
anomaly detection on edge devices," Sensors (Basel, Switzerland), 21(14), p. 4946. Available
at: https://doi.org/10.3390/s21144946.

Idrissi, I., Moussaoui, O. and Azizi, M. (2022) "A lightweight optimized deep learning-based
host-intrusion detection system deployed on the edge for IoT," International Journal of
Computing and Digital Systems, 11(1), pp. 209–216. Available at:
https://doi.org/10.12785/ijcds/110117.

Inuwa, M.M. and Das, R. (2024) "A comparative analysis of various machine learning
methods for anomaly detection in cyber attacks on IoT networks," Internet of Things,
26(101162), p. 101162. Available at: https://doi.org/10.1016/j.iot.2024.101162.

Jove, E., Aveleira-Mata, J., Alaiz-Moretón, H., Casteleiro-Roca, J.L., Marcos del Blanco,
D.Y., Zayas-Gato, F., Quintián, H. and Calvo-Rolle, J.L., 2022. Intelligent one-class
classifiers for the development of an intrusion detection system: the mqtt case study.
Electronics, 11(3), p.422.

Kar, A., Prakash, A., Liu, M.Y., Cameracci, E., Yuan, J., Rusiniak, M., Acuna, D., Torralba,
A.and Fidler, S., 2019. Meta-sim: Learning to generate synthetic datasets. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (pp. 4551-4560).

Koroniotis, N., Moustafa, N., Sitnikova, E. and Turnbull, B., 2019. Towards the development
of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot
dataset. Future Generation Computer Systems, 100, pp.779-796.

https://doi.org/10.3390/s23031595
https://dlabi.org/index.php/journal/article/view/4
https://doi.org/10.9734/ajrcos/2021/v9i230218
http://arxiv.org/abs/1802.03903
https://doi.org/10.3390/s21144946
https://doi.org/10.12785/ijcds/110117
https://doi.org/10.1016/j.iot.2024.101162

30

Landauer, M. et al. (2023) "Deep learning for anomaly detection in log data: A survey,"
Machine learning with applications, 12(100470), p. 100470. Available at:
https://doi.org/10.1016/j.mlwa.2023.100470.

Li, Y., Mandalari, A.M. and Straw, I., 2023. Who let the smart toaster hack the house? An
investigation into the security vulnerabilities of consumer IoT devices. arXiv preprint
arXiv:2306.09017.

Lindqvist, U. and Porras, P.A. (1999) "Detecting computer and network misuse through the
production-based expert system toolset (P-BEST)," Proceedings of the 1999 IEEE
Symposium on Security and Privacy (Cat. No.99CB36344), pp. 146–161. Available at:
https://doi.org/10.1109/SECPRI.1999.766911.

Lu, Shan & Park, Soyeon & Seo, Eunsoo & Zhou, Yuanyuan. (2008). Learning from
mistakes: A comprehensive study on real world concurrency bug characteristics. SIGARCH
Computer Architecture News. 36. 329-339. 10.1145/1346281.1346323.

Mota, A., Serôdio, C. and Valente, A., 2024. Matter Protocol Integration Using Espressif's
Solutions to Achieve Smart Home Interoperability. Electronics, 13(11), p.2217.

Nkuba, C.K. et al. (2023) "ZMAD: Lightweight model-based anomaly detection for the
structured Z-wave protocol," IEEE access: practical innovations, open solutions, 11, pp.
60562–60577. Available at: https://doi.org/10.1109/access.2023.3285476.

Paulin, G. and Ivasic‐Kos, M., 2023. Review and analysis of synthetic dataset generation
methods and techniques for application in computer vision. Artificial intelligence review,
56(9), pp.9221-9265.

Premsankar, G., Di Francesco, M. and Taleb, T. (2018) "Edge computing for the internet of
things: A case study," IEEE internet of things journal, 5(2), pp. 1275–1284. doi:
10.1109/jiot.2018.2805263.

Raghavendra, C. and Sanjay, C. (2019) "Deep learning for anomaly detection: A survey,"
arXiv [cs.LG]. Available at: http://arxiv.org/abs/1901.03407.

Says, G., 2019. 5.8 Billion Enterprise and Automotive IoT Endpoints Will Be in Use in 2020.
Gartner. Available online: https://www. gartner. com/en/newsroom/press-releases/2019-08-
29-gartner-says-5-8-billion-enterprise-and-automotive-io (accessed on 12 July 2021).

Schiller, E., Aidoo, A., Fuhrer, J., Stahl, J., Ziörjen, M. and Stiller, B., 2022. Landscape of
IoT security. Computer Science Review, 44, p.100467.

Shetty, A. (2023) Generate CPU load using Python, Qxf2 BLOG. Qxf2 Services. Available
at: https://qxf2.com/blog/generate-cpu-load/ (Accessed: December 11, 2024).

Siang, Y. Y. ., Ahamd, M. R. . and Zainal Abidin, M. S. (2021) "Anomaly Detection Based
on Tiny Machine Learning: A Review", Open International Journal of Informatics, 9(Special
Issue 2), pp. 67–78. doi: 10.11113/oiji2021.9nSpecial Issue 2.148.

https://doi.org/10.1016/j.mlwa.2023.100470
https://doi.org/10.1109/SECPRI.1999.766911
https://doi.org/10.1109/access.2023.3285476
http://arxiv.org/abs/1901.03407
https://www/
https://qxf2.com/blog/generate-cpu-load/

31

Song, H., Rajasegarar, S., & Leckie, C. (2019). A survey of deep learning techniques for
anomaly detection. arXiv preprint. https://arxiv.org/pdf/1901.03407.

Sotiris, S. et al. (2024) "A pragmatical approach to anomaly detection evaluation in edge
cloud systems," arXiv [cs.NI]. Available at: http://www.intersys-
lab.org/media/papers/2024/pragmatical-approach.pdf (Accessed: December 7, 2024).

Tekin, N. et al. (2023) "Energy consumption of on-device machine learning models for IoT
intrusion detection," Internet of Things, 21(100670), p. 100670. Available at:
https://doi.org/10.1016/j.iot.2022.100670.

Wang, X., Li, Y., & Zhang, Y. (2021). Autoencoders for anomaly detection in high-
dimensional data. Applied Sciences. https://www.mdpi.com/2076-3417/11/12/5320#B19-
applsci-11-05320.

Wang, Z. et al. (2022) "LightLog: A lightweight temporal convolutional network for log
anomaly detection on the edge," Computer networks, 203(108616), p. 108616. Available at:
https://doi.org/10.1016/j.comnet.2021.108616.

Wu, J., Nan, Y., Kumar, V., Tian, D.J., Bianchi, A., Payer, M. and Xu, D., 2020. {BLESA}:
Spoofing attacks against reconnections in bluetooth low energy. In 14th USENIX Workshop
on Offensive Technologies (WOOT 20).

Yang, Min & Zhang, Jiajie. (2023). Data Anomaly Detection in the Internet of Things: A
Review of Current Trends and Research Challenges. International Journal of Advanced
Computer Science and Applications. 14. 10.14569/IJACSA.2023.0140901.

Zhang, Q. et al. (2021) "Lightweight and accurate DNN-based anomaly detection at edge,"
IEEE transactions on parallel and distributed systems: a publication of the IEEE Computer
Society, 33(11), pp. 1–1. Available at: https://doi.org/10.1109/tpds.2021.3137631.

Zhang, Y., Zhou, D., Chen, S., & Xu, J. (2019). Challenges in designing anomaly detection
models for operational systems. arXiv preprint. https://arxiv.org/pdf/1906.03821.

Zhang, Y., Zhou, D., & Xu, J. (2023). Machine learning models for anomaly detection in
high-dimensional data. ScienceDirect.
https://www.sciencedirect.com/science/article/pii/S2666827023000233.

Ziegler, T. (2023) Applications of AI on Resource-ConstrainedHardware with a focus on
Anomaly Detection. Massachusetts Institute of Technology.

Zong, B., Song, Q., Huang, H., Swanson, E., Eide, D., Ding, Y., & Han, W. (2018). Deep
autoencoding Gaussian mixture model for unsupervised anomaly detection. International
Conference on Learning Representations (ICLR). https://arxiv.org/pdf/1802.03903.

https://arxiv.org/pdf/1901.03407
http://www.intersys-lab.org/media/papers/2024/pragmatical-approach.pdf
http://www.intersys-lab.org/media/papers/2024/pragmatical-approach.pdf
https://doi.org/10.1016/j.iot.2022.100670
https://www.mdpi.com/2076-3417/11/12/5320#B19-applsci-11-05320
https://www.mdpi.com/2076-3417/11/12/5320#B19-applsci-11-05320
https://doi.org/10.1016/j.comnet.2021.108616
https://doi.org/10.1109/tpds.2021.3137631
https://arxiv.org/pdf/1906.03821
https://www.sciencedirect.com/science/article/pii/S2666827023000233
https://arxiv.org/pdf/1802.03903

