~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc Data Analytics

Akimuddin Aslam Shaikh

Student ID: x22123245

School of Computing
National College of Ireland

Supervisor: Bharat Agarwal

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Akimuddin Aslam Shaikh
Student ID: x22123245
Programme: MSc Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Bharat Agarwal
Submission Due Date: 12/12/2024
Project Title: Configuration Manual
Word Count: 498
Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Akimuddin Aslam Shaikh
Date: 11th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | (I
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Akimuddin Aslam Shaikh
x22123245

1 Introduction

The configuration manual provide details of all the software and hardware that was
necessary for the project. It also share the details of the required libraries for models
building, importing necessary libraries and all other important aspects of the code that
assisted in machine learning computation and visualization.

2 Hardware Specifications

Figure [I], Figure [2, Figure [3] provides the hardware configuration of laptop device used
for the project.

OSs Name
Version
Other OS Description

Microsoft Windows 10 Home
10.0.12045 Build 192045
Not Available

OSs Manufacturer
System MName
System Manufacturer
Systerm Model

Microsoft Corporation
DESKTOP-MNDLWATS
HP

HP Laptop 15-di2xxx

x6d-based PC
SWMNOAPA#HAC)

System Type
System SKU

Processor Intel{R) Core(Th) i5-10210U CPU @ 1.60GH=z, 2112 Mhz, 4 ___
BIOS Version/Date Insyde F.41, 4/19/2022

SMBIOS VWersion 3.2

Embedded Controller W... 88.31

BI1OS Mode UEFI

BaseBoard Manufacturer HP

BaseBoard Product 86B3

BaseBoard Version 88.31

Platform Role rMMobile
Secure Boot State Off
PCR7 Configuration
wWindows Directory
Systemn Directory
Boot Device

Elevation Required to View
Chwindows
Chwindowshsystem32
“DevicesHarddiskWolumes
Locale United States

Hardware Abstraction L... VWersion = "10.0.19041.5072"
DESKTOP-NDLWVATS\WABCD
GMT Standard Time

User Name
Time Zone

Figure 1: System confugration

3 Software and language Used

Software: Google Colab Pro
Language: Python

Device specifications

Device name DESKTOP-NDLVATYS

Processor Intel{R) Core(Th) i5-102100U CPU @ 1.60GHz 2.11 GH=z
Installed RAM 4.00 GB (3.81 GB usable)

Device ID FOS5ECB3B-56D1-41928-92DC-FACSDYBS50454

Product 1D 00326-20000-000017-AA920

System type 64-bit operating system, x64-based processor

Pen and touch Touch support with 2 touch points

Figure 2: device specification

Windows specifications

Edition Windows 10 Home

Version 22H2

Installed on 12/22/2022

OS build 19045.5131

Experience Windows Feature Experience Pack 1000.19060.1000.0

Figure 3: windows specification

4 Python Libraries Used

4.1 File Handling and Data Management

Figure 4| shows us the file management, directories, and data operations Libraries.

from google.colab import drive # For mounting Google Drive in Colab
import zipfile # For extracting ZIP files

import os # For file and directory operations

import shutil # For file and directory management

import hashlib # For generating file hashes

from collections import defaultdict # For organizing data structures

Figure 4: File Handling and Data Management Libraries

4.2 Data Visualization

Figure [5| depicts libraries to plot visualization thoguh graphs and images.

4.3 Image Processing

Figure [6] demonstrate libraries for image processing and handling image data.

import matplotlib.pyplot as plt # For creating plots and visualizations

import random # For random sampling

from PIL import Image # For image handling

Figure 5: Data visualization libraries

import cv2 # For image processing

import numpy as np # For numerical operations and arrays

from tensorflow.keras.utils import load img # For loading images

from tensorflow.keras.utils import img_to_array # For converting images to arrays

from skimage.feature import greycomatrix, greycoprops # For GLCM texture feature extraction

Figure 6: Image Processing Libraries

4.4 Machine Learning Utilities

Figure [7] represent tools for machine learning, clustering, dimensionality reduction, and
evaluation.

from
from
from
from
from
from

sklearn

sklearn.

sklearn
sklearn
sklearn
sklearn

-model_selection import train_test_split # For splitting datasets inte training and tes

preprocessing import StandardScaler # For data normalization

.metrics import silhouette score, accuracy score, classification report # For evaluatio
.cluster import KMeans, DBSCAN, AgglomerativeClustering # For clustering techniques
.decomposition import PCA # For dimensionality reduction

.manifold import TSNE # For data visualization

Figure 7: Machine Learning Libraries

4.5 Deep Learning

Figure [§] illustrate libraries for pretrained models and utilities for deep learning.

4.6 Classification Models

Figure [9] represent libraries for building and training classification models.

4.7 Progress Monitoring

Figure [10] shows the usage of tqdm to track progress during iterations.

4.8 Data Analysis
Figure [11] represent libraries for analyzing and handling data.

from tensorflow.keras.applications import ResMet58 # For feature extraction using ResNet5@
from tensorflow.keras.applications.resnet5@ import preprocess input # For preprocessing images for

Figure 8: Deep learning Libraries

from sklearn.ensemble import RandomForestClassifier # For Random Forest classification
from sklearn.svm import SVC # For Support Vector Machine classification
from xgboost import XGBClassifier # For XGBoost classification

Figure 9: Classification Models Libraries

4.9 External Library Management

Figure [12| shows the libraries to install and manage library versions

5 Dataset

The liver dataset was downloaded from kaggle website. It contain 19261 unlabel image
files grouped in subfolders. The overview of the dataset is shown in Figure
Dataset Link: https://www.kaggle.com/datasets/anassbenfares/liver-images/data

6 Code implementation snippet

6.1 Data Collection and Extraction

Figure 14| shows the Snippet code for mounting Google Drive and extracting dataset from
zipped file.

6.2 Data Preprocessing

Figure 15| provide us with the snippet code for prepocessig all the images into batches for
efficient processing and reducing memory overhead.

6.3 Feature Extraction
6.3.1 GLCM Feature
Figure [16| depicts the code for calculating texture-based features using GLCM.

6.3.2 ResNet50 Features

Figure [17) depicts the code for extracting features using a pretrained ResNet50 model.

from tgdm import tqdm # For progress bars during loops

Figure 10: Progress Monitoring Libraries

import pandas as pd # For working with tabular data

Figure 11: Data Analysis Libraries

6.4 Clustering
6.4.1 KMeans Clustering

Figure [18| shows the Snippet code of applying KMeans for unsupervised clustering.

6.4.2 Agglomerative Clustering
Figure 19| shows the Snippet code of Performing hierarchical clustering.

6.5 Classification

6.5.1 Random forest

Figure 20| shows the Snippet code for training and evaluating a Random Forest classifier
and displays classification reports for the same.

6.5.2 XGBoost

Figure 21| shows the Snippet code for training and evaluating an XGBoost classifier and
displays classification reports for the same.

6.5.3 Support Vector Machine

Figure shows the Snippet code for training and evaluating an SVM classifier and
displays classification reports for the same.

6.6 Data Visualization

6.6.1 Pixel Intensity Analysis
Figure 23| display the Snippet code for plotting the pixel intensity distribution.

6.6.2 PCA Visualization

Figure [24] display the Snippet code for reducing dimensions with PCA and visualizing
clusters.

Ipip install -U scikit-image # Install the latest version of scikit-image
Ipip uninstall scikit-image -y # Uninstall scikit-image
Ipip install scikit-image==0.18.3 # Install a specific version of scikit-image

Figure 12: External Libraries

Liver_images -1 New Notebook

Data Card Code (0) Discussion (0) Suggestions (0)

imgs (131 directories) LoD Version 1 (1.3 GB)
- O imgs
i » 03 volume O
About this directory £ Add Suggestion
» 3 volume
This file does not have a description yet. > 0O volume10

» [volume 100
» 3 volume_101
volume o volume 1 volume 10 volume 100 volume 101 » O3 volume102
29 files 28 files 181 files 276 files 259 files » [volume 103
» 3 volume 104
» O volume 105
» 03 volume_106
c e e] O LS vetmenor
» 03 volume_ 108
» 03 volume_109
» O3 volumen

volume_102 volume_102 volume_104 volume_105 volume_106
266 tiles 214 tiles 194 files 230 tiles 168 tiles

Figure 13: Liver dataset Overview

6.7 Cross Validation

Figure [25| display the code for cross validation to keep consistency for all the stages
performance.

of

Path to the zipped file and the extraction folder
zip_ file path = "/content/drive/My Drive/archive (28).=zip’
extract _to _path — °Jcontent/drive /My Drive/dataset folder'

Check if the dataset is already extracted
if not os.path.exists(extract_to_path):
print("Extracting dataset...™)
with zipfile.zZipFile(zip_ file path, 'r°) as =zip_ref:
zip_ ref.extractall(extract_ to_path)
print("Dataset extracted successfully!™)
else:

print("Dataset folder already exists. Skipping extraction.™)

Werify the dataset folder exists
if os.path.exists(extract_to_path):

print{f"Dataset is ready at: {extract_to_path}™)
else:

print{"Error: Dataset folder not found. Please check your paths.")

Figure 14: Data Collection and Extraction

Inage processing parameters
inage_size = (224, 224) # Resize all images to 224x224
batch size = 500 # Number of images per batch

Step 1: Get all image file paths
all_images = sorted([os.path. join(source_folder, img) for img in os.listdir(source_folder) if img.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff'))])

Step 2: Check existing -npy files

existing batches = [file for file in os.listdir(output_dir) if file.startswith('batch_') and file.endswith('.npy')]
existing batches.sort() # Sort to maintain order

print(f"Existing .npy files: {len(existing_batches)}")

Determine already processed images
processed_images = len(existing_batches) * batch_size
if processed_images >= len(all_images)
print(*All images are already processed. No further action required.")
else:

print(f'Some images are already processed. Resuming from image index {processed images}.

Figure 15: Data Preprocessing code

GLCM feature extraction function
def compute glcm_features(images):
features = []
for img in images:
try:
Fnsure the image is in grayscale
if len(img.shape) == 3 and img.shape[-1] == 3: # Convert RGB to grayscale
img = np.dot(img[..., :3], [©.2989, B.5878, ©.1148])
img = (img ¥ 255).astype(np.uint8) # Scale to 8-bit for GLCM

Compute GLCM

glem = greycomatrix(img, distances=[1], angles=[@], levels=256, symmetric=True, normed=True)

Compute texture properties

contrast = greycoprops{(glcm, 'contrast')[8, @]
dissimilarity = greycoprops(glcm, 'dissimilarity')[@, @]
homogeneity = greycoprops(glcm, 'homogeneity')[8, @]
energy = greycoprops(glcm, 'energy')[8, 8]

correlation = greycoprops(glcm, 'correlation')[@, @]

Append features

features.append([contrast, dissimilarity, homogeneity, energy, correlation])
except Exception as e:

print{(f"Error processing image: {e}")

continue

return np.array(features)

Figure 16: GLCM Feature Extraction

Load the ResNet50 model
resnet_model = ResNet5@(weights="imagenet', include_top=False, pooling='avg') # Global Average Pooling
print("ResNet50 model loaded successfully.")

Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet58 weights_tf_dim ordering_tf kernels_notop.hs
94765736/94765736 ————————— Bs Ous/step
ResNet58 model loaded successfully.

def extract_features(image_paths, batch_size=100, image size=(224, 224)):
features = []
for i in tqdm(range(®, len(image paths), batch_size)):
batch_paths = image_paths[i:i + batch_size]
batch_images = []

for path in batch_paths:
Load and preprocess each image
img = load_img(path, target_size=image size)
img_array = img_to_array(img)
img_array = preprocess_input(img_array) # Preprocess for Reset58
batch_images.append(img_array)
Convert to numpy array and extract features
batch_images = np.array(batch_images)
batch_features = resnet_model.predict (batch_images)
features.append(batch_features)

return np.vstack(features)

Figure 17: ResNetb0 Features

from sklearn.cluster import KMeans

Flatten images for clustering
flat data = combined data.reshape(combined data.shape[®], -1) # Shape: (19261, 224%224%3)

Apply KMeans clustering
num_clusters = 5 # Set the number of clusters
kmeans = KMeans(n_clusters=num_clusters, random_state=42)

labels = kmeans.fit_predict(flat_data)

print (f"Cluster labels for all images: {labels}")

Figure 18: KMeans Clustering

from sklearn.cluster import AgglomerativeClustering

agglo = AgglomerativeClustering(n_clusters=5) # Try with 5 clusters
agglo labels = agglo.fit predict(reduced features)

num_clusters = len(set(agglo_labels))
print(f"Number of clusters: {num_clusters}")

Figure 19: Agglomerative Clustering

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score, classification report

Train a Random Forest model

rf _model = RandomForestClassifier(n_estimators=108, random state=42)
rf_model.fit(X_train, y_train)

Evaluate the model

y_pred = rf_model.predict(X test)

accuracy = accuracy_score(y_test, y_pred)
print(f"Random Forest Accuracy: {accuracy:.2f}")
print(classification_report(y _test, y pred))

Figure 20: Random forest

from xgboost import XGBClassifier

Train an XGBoost model
xgh_model = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42)
xgb model.fit(X train, y train)

Evaluate the model

y_pred_xgb = xgb_model.predict(X_test)
accuracy_xgh = accuracy_score(y_test, y_pred_xgh)
print (f"XGBoost Accuracy: {accuracy xgb:.2f}")
print(classification_report(y_test, y pred_xgb))

Figure 21: XGBoost

from sklearn.svm import SVC
Initialize and train SWVM
svm_model = SVC(kernel="rbf', class_weight="balanced', random_state=42)

svm_model.fit(X_train, y_train)

Predict using SWM

y_pred_svm = svm_model.predict(X_test)
accuracy_svm = accuracy_score(y_test, y_pred_swvm)
print(f"SVM Accuracy: {accuracy_ svm:.2f}")
print("Classification Report for SVM:")
print(classification report(y_test, y pred swvm))

Figure 22: SVM

Select 180 random images for pixel intensity analysis
sample_images = random.sample(all_images, 188)

Gather pixel intensities

pixel wvalues = []

for img_path in sample_images:
img = load_img(img path, target size=(224, 224)) # Resize for consistency
img_array = img_to_array(img) / 255.8 # Normalize pixel values
pixel_ values.extend(img_array.flatten()) # Flatten the array and collect walues

Plot histogram

plt.figure(figsize=(18, 5))

plt.hist(pixel_ values, bins=56, color="blue’', alpha=8.7)
plt.title("Pixel Intensity Distribution™)
plt.xlabel("Pixel Value™)

plt.ylabel{"Frequency")

plt.show()

Figure 23: Pixel Intensity distribution code

from sklearn.decomposition import PCA

Reduce dimensionality for visualization
pca = PCA(n_components=2)
reduced data = pca.fit_transform(flat_data)

Plot the reduced data
plt.figure(figsize=(10, 7))
for cluster in unique:
cluster_points = reduced_data[labels == cluster]
plt.scatter(cluster_points[:, 8], cluster_points[:, 1], label=f"Cluster {cluster}", alpha=8.6)
plt.legend()
plt.title("2D PCA Visualization of Clusters")
plt.show()

Figure 24: PCA Visualization code

#ResNet + KMeans labels
kmeans_labels = cluster_labels
X_train, X_test, y train, y_test = train_test_split(normalized_combined_features, kmeans_labels, test_size=0.2, random state=42)

#ResNet + Agglomerative labels
X_train, X_test, y _train, y_test = train_test_split(normalized_combined_features, agglo labels, test size=0.2, random state=42)

#GLCM + Agglomerative labels
X_train, X_test, y_train, y test = train_test_split(combined features, agglo_ labels, test size=0.2, random_state=42)

#GLCM +kMEANS labels
X_train, X_test, y_train, y_test = train_test_split(combined_features, kmeans_labels, test_size=0.2, random_state=42)

#(GLCM + ResNet) + Kmeans labels
X_train, X_test, y_train, y_test = train_test_split(combined features, kmeans_labels, test_size=0.2, random state=42)

#(GLCM + ResNet) + Agglomerative
X_train, X_test, y_train, y_test = train_test_split(combined features, agglo_labels, test size=0.2, random_state=42)

Figure 25: Cross validation

10

	Introduction
	Hardware Specifications
	Software and language Used
	Python Libraries Used
	File Handling and Data Management
	Data Visualization
	Image Processing
	Machine Learning Utilities
	Deep Learning
	Classification Models
	Progress Monitoring
	Data Analysis
	External Library Management

	Dataset
	Code implementation snippet
	Data Collection and Extraction
	Data Preprocessing
	Feature Extraction
	GLCM Feature
	ResNet50 Features

	Clustering
	KMeans Clustering
	Agglomerative Clustering

	Classification
	Random forest
	XGBoost
	Support Vector Machine

	Data Visualization
	Pixel Intensity Analysis
	PCA Visualization

	Cross Validation

