

Configuration Manual

MSc Research Project

Data Analytics

Keith Scully

Student ID: X22186344

School of Computing

National College of Ireland

Supervisor: Mohammed Hasanuzzaman

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Keith Scully

Student ID:

X22186344

Programme:

Data Analytics

Year:

2024

Module:

MSc Research Project

Supervisor:

Mohammed Hasanuzzaman

Submission Due Date: 12th December 2024

Project Title:

Investigating the Application of Tree-Based Machine

Learning Techniques to Predict the Margin of Safety in

Potential Stock Investments

Word Count:

1,372 Page Count: 10

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date: 11/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Keith Scully

Student ID: X22186344

1 Introduction

This manual describes the procedure for implementing the project. It includes hardware and

software configurations along with detailed steps on how to execute the project code and re-

producing the project outputs.

2 System Configuration

The following system configuration is required for this project, as described in the hardware

and software subsections below, or at least a comparable system configuration that preserves

compatibility of the necessary software and Python libraries.

2.1 Hardware Specification

The system on which this project was developed consisted of the following hardware

specification:

CPU 12th Gen Intel Core i5-12400

GPU n/a

RAM 32GB

Hard Disk WD Black SN770 500GB M.2 SSD

2.2 Software Specification

The development system was using Windows 11 with Python v3.11.5. The project code was

written using Jupyter Lab (v4.2.5) in the Google Chrome web browser. The Python libraries

used in this project can be seen in the figure below.

2

Figure 1: Required Python packages imported to the project.

In the interest of ensuring compatibility, exact versions for all included libraries are provided

as follows:

Library Version

Numpy 2.0.1

Pandas 2.2.2

SciPy 1.13.1

Statsmodels 0.14.2

Ydata_Profiling 4.10.0

SHAP 0.46.0

Matplotlib 3.9.2

Seaborn 0.13.2

SciKit-Learn 1.5.1

XGBoost 2.1.1

LightGBM 4.5.0

The gc, random and pickle libraries are built-in libraries contained within the base Python

installation.

3 Data Loading

The dataset for this project was built specifically for this project using data points from

multiple sources, along with some fields which were manually calculated. The collected data

is stored with the ‘prepared_data.csv’ file. This file can be loaded to the project code using

the Pandas read_csv() function, as per Figure 2.

3

Figure 2: Data loading using Pandas.

A Python dictionary called ‘dtypes’ is defined beforehand to specify that all variables in the

data are loaded using the correct data type, thereby ensuring that subsequent code handles the

data as expected.

4 Data Pre-Processing

The data pre-processing phase will remove some data that is not suitable for modelling, by

defining a list of ticker symbols to drop contained in the ‘tickers_to_drop’ variable. These

records are dropped from the dataframe and the dataframe index is reset using the code

shown in Figure 3.

Figure 3: Dropping unwanted data.

The code can continue to be executed to repeat all data pre-processing tasks, as well as

Exploratory Data Analysis (EDA). Considerable analysis is carried out to prepare for

modelling the data to generate the target variable used later during the data mining phase.

The process taken can be followed in the code and is supported by comments in Markdown

format where necessary.

4

The modelling and generation of the target function is carried out by a complex function

called ‘define_dcf_vales’, some of which can be seen in Figure 4, that when executed will

define the target values in the dataframe.

Figure 4: A partial view of the detailed function for generating the target variable.

During EDA activities in the code, the Ydata_Profiling library will produce a HMTL file in

the code execution folder called ‘Data Profile Report.html’. Once opened in the browser this

file will provide descriptive statistics of all variables in the dataset, with an example shown in

Figure 5 below.

Figure 5: Descriptive statistics from ‘Data Profile Report.html’ file generated by the Ydata_Profiling

library.

5

Extensive EDA activities are carried out through further code execution and supported by

markdown comments as necessary.

5 Data Transformation

Data Transformation primarily involves scaling input features using the Robust Scaler from

SciKit-Learn and can be executed using the code in Figure 6.

Figure 6: Robust scaling applied to the input features.

6 Data Mining

Data Mining phase begins with training a baseline model that will is also utilised for feature

selection using a Random Forest algorithm, as shown in Figure 7. Features are selected based

on highest degree of importance, that are then used in training of all other model instances.

Figure 7: Training of baseline Random Forest model.

The features selected are a combination of features that had an importance value >= 0.1

which is then extended with any other features that had a permutation importance value of

>=0.1, a step complete in the code shown in Figure 8.

6

Figure 8: Feature selection.

A customised train-test split occurs based on grouping of companies and business sectors, as

shown in Figure 9.

Figure 9: Creation of custom train-test split.

Each model is trained using 5-fold cross validation and with hyperparameter optimisation

using the grid search technique. The best model is then chosen based on its performance on

the evaluation set. The code for the part of the process is shown in Figure 10 where the

7

training of the XGBoost model occurs, and very similar steps are followed for each of the

models trained.

Figure 10: XGBoost model training.

7 Evaluation

All trained models are evaluated using common RMSE, MAE and R2 regression metrics,

using code samples such as those in Figure 11.

Figure 11: Determination of the XGBoost model’s evaluation scores.

Scores are then compiled and stored in a new dataframe from which a markdown table is

printed to be copied and used in any markdown cell for displaying the overall results table.

This step is detailed in Figure 12.

8

Figure 12: Collection of scores to produce markdown table.

A separate model is trained using the tuned hyperparameters of the final XGBoost model, but

with an extreme value for the incremental training hyperparameter n_estimators, which

provides sufficient scope for identifying any potential overfitting that may occur in the

model. Evaluations are directed on both the train and test sets, with results extracted from this

evaluation model to plot learning curves and support better understanding of the model fit.

The training, extraction of evaluation results and plotting is carried out in the code shown in

Figure 13.

Figure 13: Evaluation model to determine characteristics of model fit.

SHAP values are calculated using a SHAP explainer object from which a bee-swarm

summary plot is created to show how each feature has impacted predictions in the model, as

shown in Figure 14.

Figure 14: SHAP value extraction and generation of summary plot.

In addition, a tree explainer object is used to generated SHAP values for use in a force plot

which can be utilised for any given observation in the dataset. The code for this is shown in

Figure 15.

9

Figure 15: SHAP value extraction and generation of force plot.

8 Pickle Objects

Using Python’s built-in pickle library, all datasets, models and the robust scaler object, are

pickled and stored as independent files on the system for later use. This step is shown in

Figure 16.

Figure 16: Saving and storing all datasets, models and transformers using the Python pickle library.

9 Pipeline Generation

A pipeline object is created using the pipeline module from SciKit-Learn which contains the fitted scaler and
the pre-trained XGBoost model, which can be used for making predictions on any new data collected at a later
point in time. This pipeline is generated using the code in Figure 17.

10

Figure 17: Generating new pipeline for predictions on new data.

10 Back-Testing

New data was collected particularly for back-testing the model on historical data previously

unseen. This data is stored in the CSV with the filename ‘back_test_data_FY2012.csv’,

which is loaded to the project to make prediction, as shown in Figure 18.

Figure 18: Reading new data for back-test predictions.

With the pipeline available, predictions can then be made using this new pipeline object on

the new unseen data, as shown in Figure 19 below.

Figure 19: Making predictions using the newly created pipeline.

Following predictions made through the pipeline, the back-test dataset is sorted according to

the predicted values and the top 20 ticker symbols are selected to form a theoretical portfolio,

for which more new pricing data had to be collected. This data is collected and stored in the

file ‘monthly gains.xlsx’ in which some final analysis is carried out to compare the

performance of the theoretical portfolio against the wider market.

11 Conclusion

This manual provides all steps required to re-create this project using the provided code

artifact and data files, using the Python programming environment specifications detailed in

this manual, which may be executed using the Jupyter Lab notebook IDE for consistency

with original project development.

