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1 Introduction 
 

This manual describes the procedure for implementing the project. It includes hardware and 

software configurations along with detailed steps on how to execute the project code and re-

producing the project outputs. 

 

2 System Configuration 
 

The following system configuration is required for this project, as described in the hardware 

and software subsections below, or at least a comparable system configuration that preserves 

compatibility of the necessary software and Python libraries. 

2.1 Hardware Specification 

The system on which this project was developed consisted of the following hardware 

specification: 
 

CPU 12th Gen Intel Core i5-12400 

GPU n/a 

RAM 32GB 

Hard Disk WD Black SN770 500GB M.2 SSD 

2.2 Software Specification 
 

The development system was using Windows 11 with Python v3.11.5. The project code was 

written using Jupyter Lab (v4.2.5) in the Google Chrome web browser. The Python libraries 

used in this project can be seen in the figure below.  
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Figure 1: Required Python packages imported to the project. 
  

 

In the interest of ensuring compatibility, exact versions for all included libraries are provided 

as follows: 
 

Library Version 

Numpy 2.0.1 

Pandas 2.2.2 

SciPy 1.13.1 

Statsmodels 0.14.2 

Ydata_Profiling 4.10.0 

SHAP 0.46.0 

Matplotlib 3.9.2 

Seaborn 0.13.2 

SciKit-Learn 1.5.1 

XGBoost 2.1.1 

LightGBM 4.5.0 

 

The gc, random and pickle libraries are built-in libraries contained within the base Python 

installation. 
 

3 Data Loading 
 

The dataset for this project was built specifically for this project using data points from 

multiple sources, along with some fields which were manually calculated. The collected data 

is stored with the ‘prepared_data.csv’ file. This file can be loaded to the project code using 

the Pandas read_csv() function, as per Figure 2. 
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Figure 2: Data loading using Pandas. 

 

 

A Python dictionary called ‘dtypes’ is defined beforehand to specify that all variables in the 

data are loaded using the correct data type, thereby ensuring that subsequent code handles the 

data as expected.   

   

 

4 Data Pre-Processing 
 

The data pre-processing phase will remove some data that is not suitable for modelling, by 

defining a list of ticker symbols to drop contained in the ‘tickers_to_drop’ variable. These 

records are dropped from the dataframe and the dataframe index is reset using the code 

shown in Figure 3. 

 

 

 
 

Figure 3: Dropping unwanted data. 

 

The code can continue to be executed to repeat all data pre-processing tasks, as well as 

Exploratory Data Analysis (EDA). Considerable analysis is carried out to prepare for 

modelling the data to generate the target variable used later during the data mining phase. 

The process taken can be followed in the code and is supported by comments in Markdown 

format where necessary. 
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The modelling and generation of the target function is carried out by a complex function 

called ‘define_dcf_vales’, some of which can be seen in Figure 4, that when executed will 

define the target values in the dataframe. 

 

 
 

Figure 4: A partial view of the detailed function for generating the target variable. 

 

During EDA activities in the code, the Ydata_Profiling library will produce a HMTL file in 

the code execution folder called ‘Data Profile Report.html’. Once opened in the browser this 

file will provide descriptive statistics of all variables in the dataset, with an example shown in 

Figure 5 below. 

 

 

 
 
Figure 5: Descriptive statistics from ‘Data Profile Report.html’ file generated by the Ydata_Profiling 

library. 
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Extensive EDA activities are carried out through further code execution and supported by 

markdown comments as necessary. 

 

 

5 Data Transformation 
 

Data Transformation primarily involves scaling input features using the Robust Scaler from 

SciKit-Learn and can be executed using the code in Figure 6. 
 

 
 

Figure 6: Robust scaling applied to the input features. 
 
 

6 Data Mining 
 

Data Mining phase begins with training a baseline model that will is also utilised for feature 

selection using a Random Forest algorithm, as shown in Figure 7. Features are selected based 

on highest degree of importance, that are then used in training of all other model instances. 
 

 
 

Figure 7: Training of baseline Random Forest model. 
 

The features selected are a combination of features that had an importance value >= 0.1 

which is then extended with any other features that had a permutation importance value of 

>=0.1, a step complete in the code shown in Figure 8. 
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Figure 8: Feature selection. 

 

A customised train-test split occurs based on grouping of companies and business sectors, as 

shown in Figure 9. 

 

 
 

Figure 9: Creation of custom train-test split. 

 

Each model is trained using 5-fold cross validation and with hyperparameter optimisation 

using the grid search technique. The best model is then chosen based on its performance on 

the evaluation set. The code for the part of the process is shown in Figure 10 where the 
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training of the XGBoost model occurs, and very similar steps are followed for each of the 

models trained. 

 

 
 

Figure 10: XGBoost model training. 
 
 

7 Evaluation 
 

All trained models are evaluated using common RMSE, MAE and R2 regression metrics, 

using code samples such as those in Figure 11. 

 

 
 

Figure 11: Determination of the XGBoost model’s evaluation scores. 
 

Scores are then compiled and stored in a new dataframe from which a markdown table is 

printed to be copied and used in any markdown cell for displaying the overall results table. 

This step is detailed in Figure 12. 
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Figure 12: Collection of scores to produce markdown table. 
 

A separate model is trained using the tuned hyperparameters of the final XGBoost model, but 

with an extreme value for the incremental training hyperparameter n_estimators, which 

provides sufficient scope for identifying any potential overfitting that may occur in the 

model. Evaluations are directed on both the train and test sets, with results extracted from this 

evaluation model to plot learning curves and support better understanding of the model fit. 

The training, extraction of evaluation results and plotting is carried out in the code shown in 

Figure 13. 
 

 
 

Figure 13: Evaluation model to determine characteristics of model fit. 
 

SHAP values are calculated using a SHAP explainer object from which a bee-swarm 

summary plot is created to show how each feature has impacted predictions in the model, as 

shown in Figure 14.  

 

 
 

Figure 14: SHAP value extraction and generation of summary plot. 

 

In addition, a tree explainer object is used to generated SHAP values for use in a force plot 

which can be utilised for any given observation in the dataset. The code for this is shown in 

Figure 15. 
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Figure 15: SHAP value extraction and generation of force plot. 

 

  

8 Pickle Objects 
 

Using Python’s built-in pickle library, all datasets, models and the robust scaler object, are 

pickled and stored as independent files on the system for later use. This step is shown in 

Figure 16. 

 

 
 

Figure 16: Saving and storing all datasets, models and transformers using the Python pickle library. 

 
 

9 Pipeline Generation 
 
A pipeline object is created using the pipeline module from SciKit-Learn which contains the fitted scaler and 
the pre-trained XGBoost model, which can be used for making predictions on any new data collected at a later 
point in time. This pipeline is generated using the code in Figure 17. 
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Figure 17: Generating new pipeline for predictions on new data. 
 

10 Back-Testing 
 

New data was collected particularly for back-testing the model on historical data previously 

unseen. This data is stored in the CSV with the filename ‘back_test_data_FY2012.csv’, 

which is loaded to the project to make prediction, as shown in Figure 18. 

 

 
 

Figure 18: Reading new data for back-test predictions. 

 

With the pipeline available, predictions can then be made using this new pipeline object on 

the new unseen data, as shown in Figure 19 below. 

 

 
 

Figure 19: Making predictions using the newly created pipeline. 

 

Following predictions made through the pipeline, the back-test dataset is sorted according to 

the predicted values and the top 20 ticker symbols are selected to form a theoretical portfolio, 

for which more new pricing data had to be collected. This data is collected and stored in the 

file ‘monthly gains.xlsx’ in which some final analysis is carried out to compare the 

performance of the theoretical portfolio against the wider market. 

 
 

11 Conclusion 
 

This manual provides all steps required to re-create this project using the provided code 

artifact and data files, using the Python programming environment specifications detailed in 

this manual, which may be executed using the Jupyter Lab notebook IDE for consistency 

with original project development. 


