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1 Introduction
This document allows us to setup the environment required for the research project along with

the hardware and the software requirements. The instructions for the research work is included
in the document such as data preprocessing, data transformation, model building, evaluation.

2 Hardware and Software Requirements

2.1 Hardware configuration

The research has been performed in a personal machine with the following configuration with
8GB of RAM, 64-bit operating system, and Intel core i7 processor.

2.2 Software configuration

The programming language used is Python 3.11.5, along with Jupyter notebook as the
Integrated development environment.

3 Implementation

3.1 Data collection

The dataset that is used for the research project is obtained from the open-source dataset Kaggle
as shown in Figure 1.
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Figure 1 : Dataset from kaggle



3.2 Importing libraries

The necessary python libraries that are required for the project are installed. The libraries allow
the data to allow the exploratory data analysis, preprocessing, model building and evaluation
as seen in Figure 2.

import numpy as np

import pandas as pd

import re

import time

from sklearn.preprocessing import OneHotEncoder

from sklearn.model selection import train_test split

from sklearn.preprocessing import MinMaxScaler

from sklearn.linear model import LinearRegression, Ridge, Lasso
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.tree impert DecisionTreeRegressor

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import Sequential, layers

from tensorflow.keras.layers import Dense

from sklearn.metrics import mean_squared error, mean_absolute error, r2 score

Figure 2: Importing libraries
3.3 Reading the input file

The input data file is borg_traces_data.csv is the file obtained from Kaggle and is read using
the pd.readcsv() function as shown in Figure 3.

# Read the input doto

resource = pd.read_csv('borg_traces data.csy’, index_col=f)

resource. head )
Figure 3 : Reading the input file

3.4 Data Visualization

The Figure 4 shows the histogram of the data and their distribution across the values.
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Figure 4 : Shows the histogram of the data

3.5 Analysing the missing data

The missing data is analysed and the column with higher than 75 percent of the data that is

missing is removed in Figure 5.
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Figure 5: visualization of the missing data
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3.6 Data Preprocessing

The outliers are determined in Figure 6 and removed.

Determining Outliers
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Figure 6: outlier detection

3.7 Data Normalisation

The variables are normalised using minmaxscaler() as shown in Figure 7.

Normalizing the variables

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Figure 7: MinMaxScaler for normalisation

3.8 Model building

The machine learning models and statistical models like linear regression, ridge regression,
lasso regression, Random Forest regression, Decision tree regression, gradient boosting
regression and Artificial neural network as shown in Figure 8,9,10,11,12,13,14 respectively.



Linear Regression

[41]: from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
model = LinearRegression()
start = time.time()

#Training model with Training data
model.fit(X_train, y_ train)

+  LinearRegression

LinearRegression()

linear_execution_time = round(time.time()-start,2)

y_pred = model.predict(X_test)

Figure 8: Linear regression

~ Ridge Regression
from sklearn.linear_model import Ridge
model = Ridge(alpha=1.8)
start = time.time()

#Training model with Training data

model.fit(X_train, y_train)

v Ridge
Ridge()
ridge_execution_time = round(time.time()-start,2)
y_pred = model.predict(X_test)
Figure 9: Ridge regression
Lasso Regression
from sklearn.linear _model impert Lasso
model = Lasso(alpha=0.0061)
start = time.time()

#Training model with Training data
model.fit(X _train, y_train)

& Lasso
Lasso(alpha=0.0001)
lasso_execution_time = round(time.time()-start,2)

y_pred = model.predict(X_test)

Figure 10: Lasso regression



Random Forest Regression

from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor(n_estimators=18, random_state=42)
start = time.time()

#Training model with Training data
model.fit(X_train, y_train)

- RandomForestRegressor

RandomForestRegressor(n_estimators=16, random_state=42)

random_execution_time = round(time.time()-start,2)
y_pred = model.predict(X_test)

Figure 11: Random forest regression

Gradient Boosting Regression

from sklearn.ensemble import GradientBoostingRegressor
model = GradientBoostingRegressor(n_estimators=1@, learning_rate=8.1, max_depth=3, random_state=42)
start = time.time()

#Training model with Training data
model.fit(X_train, y_train)

v GradientBoostingRegressor

GradientBoostingRegressor(n_estimators=1@, random_state=42)

gradient_execution_time = round(time.time()-start,2)
y_pred = model.predict(X_test)

Figure 12: Gradient boosting regression

Decision Tree Regression

from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor()
start = time.time()

#Training model with Training data

model.fit(X_train, y_train)

* DecisionTreeRegressor

DecisionTreeRegressor()

decision execution_time = round(time.time()-start,2)

y_pred = model.predict(X_test)

Figure 13: Decision tree regression
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Aritificial Neural Network

import tensorflow as tf
from tenscrflow import keras

from tenscrflow.keras import Sequential, layers
from tensorflow.keras.layers import Dense

model = keras.Sequential[

keras.layers.Dense(32, input_shape=(4%,), activaticn="relu'},
keras.layers.Dense(1s, activation = 'relu'),

keras.layers.Dense(l)

n

C:%Wsersh\Ramad\AppData‘Local\ProgramsiPython\Python311hLibysite-packageshkeras'srcilayershcoredense. py:87: UserkWarning: D
imput_dim™ argument to 2 layer. when using Sequential models, prefer using an ~Input(shape)” object as the first layer in
super(}._ init_ (activity regularizer-activity regularizer, **kwargs)

model. summary | )

Model: "sequential™

Layer (type) OQutput Shape Param #
dense (Dense) (Mone, 32) 1,472
dense_1 {Dense) (Mane, 16) 528
dense_2 {Dense) (Mane, 1} 17

Total params: 2,817 (7.88 KB)

Trainable params: 2,817 (7.88 KB)
Non-trainable params: @ (@.88 B)

model.compile{optimizer="adam', less="mse', metrics=['mae']}

start = time.time()

ann = medel.fit{X train, y_train, epochs=18, batch_size=32, validation split-e.2, verbose=1)

Figure 14: Artificial Neural Network

3.9 Evaluation

The outcome of the models with all the features in Figure 15 and without the feature removed
as shown in Figure 16.

metrics = pd.DataFrame({"Model": models, "R2"

print(metrics)

[ RNE, T SENUTRN S ]

Model R2

Linear Regression @.547141

Ridge Regression @.547167

Lasso Regression ©.425282

Random Regression @.521258
Decision Regression @.900014
Gradient Regression ©.493325
Artificial Neural Network ©.832437

Execution Time

1.97
1.18
1.21
15.35
2.04
4.69
120.52

00000 09

: r2_score, "MSE": mse,

MSE MAE RMSE
000016 ©.002850 0.003992
090016 ©.002852 ©.003992
000020 ©.003438 0.004497
000003 ©.008553 0.001665
090804 ©.000580 ©.001876
000018 ©.203274 ©.004222
090006 ©.001376 ©.002428

"MAE": mae, "RMSE" : rsme, "Execution Time": execution_time})

Figure 15: Evaluation of model with all the features



metrics = pd.DataFrame({"Model":

print(metrics)

2] Linear
1 Ridge
2 Lasso
3 Random
4 Decision
5 Gradient
6

Model
Regression
Regression
Regression
Regression
Regression
Regression

Artificial Neural Network

Execution Time

[} 1.18
1 9.17
2 9.30
3 16.21
4 2.60
5 4.59
6 120.34

References

models,

R2
538796
538481
872922
926811
900484
492490
819923

[ IR )

"R2": r2_score,

MSE
eesol7
eeeel7
0een33
000003
000004
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0e8006

MAE
0.002960
9.0802961
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9.0803292
9.001454

DO 0000
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RMSE
004063
004065
085711
001669
061871
084226
082517

"MAE" :
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"RMSE"

rsme, "Execution Time": execution_time})

Figure 16: Evaluation of model with features removed



