===y

)
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Data Analytics

Aruna Saravanapandian
Student ID: x22182349

School of Computing
National College of Ireland

Supervisor: Prof. Mohammed Hasanuzzaman

Student
Name:

Student ID:
Programme:
Module:
Lecturer:
Submission

Due Date:

Project Title:

Word Count:

I hereby certify
pertaining to res
contribution will

‘-—
National College of Ireland \ National

College
Ireland

MSc Project Submission Sheet

School of Computing
Aruna Saravanapandian

Prediction of Resource utilization in cloud computing using machine
learning

698 10
... Page Count: ...

that the information contained in this (my submission) is information
earch I conducted for this project. All information other than my own
be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet ma
required to use t
author's written
action.

Signature:

Date:

terial must be referenced in the bibliography section. Students are
he Referencing Standard specified in the report template. To use other
or electronic work is illegal (plagiarism) and may result in disciplinary

Aruna Saravanapandian

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

copies)

Attach a completed copy of this sheet to each project (including multiple | o

Attach a Mood
submission, to

le submission receipt of the online project O
each project (including multiple copies).

not sufficient to

You must ensure that you retain a HARD COPY of the project, o
both for your own reference and in case a project is lost or mislaid. It is

keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (

if applicable):

Configuration Manual

Aruna Saravanapandian
X22182349

1 Introduction
This document allows us to setup the environment required for the research project along with

the hardware and the software requirements. The instructions for the research work is included
in the document such as data preprocessing, data transformation, model building, evaluation.

2 Hardware and Software Requirements

2.1 Hardware configuration

The research has been performed in a personal machine with the following configuration with
8GB of RAM, 64-bit operating system, and Intel core i7 processor.

2.2 Software configuration

The programming language used is Python 3.11.5, along with Jupyter notebook as the
Integrated development environment.

3 Implementation

3.1 Data collection

The dataset that is used for the research project is obtained from the open-source dataset Kaggle
as shown in Figure 1.

Google 2019 Cluster sample -7 New Notebook @

DataCard Code (8) Discussion (0) Suggestions (0)

~ View mare

borg_traces_data.csv (328.31 MB) LD Version 1 (32831 MB)

Detail Compact Column

About this file Add Suggestion Summary

9. The trace describes

h it

Figure 1 : Dataset from kaggle

3.2 Importing libraries

The necessary python libraries that are required for the project are installed. The libraries allow
the data to allow the exploratory data analysis, preprocessing, model building and evaluation
as seen in Figure 2.

import numpy as np

import pandas as pd

import re

import time

from sklearn.preprocessing import OneHotEncoder

from sklearn.model selection import train_test split

from sklearn.preprocessing import MinMaxScaler

from sklearn.linear model import LinearRegression, Ridge, Lasso
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.tree impert DecisionTreeRegressor

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import Sequential, layers

from tensorflow.keras.layers import Dense

from sklearn.metrics import mean_squared error, mean_absolute error, r2 score

Figure 2: Importing libraries
3.3 Reading the input file

The input data file is borg_traces_data.csv is the file obtained from Kaggle and is read using
the pd.readcsv() function as shown in Figure 3.

Read the input doto

resource = pd.read_csv('borg_traces data.csy’, index_col=f)

resource. head)
Figure 3 : Reading the input file

3.4 Data Visualization

The Figure 4 shows the histogram of the data and their distribution across the values.

000

150000
12508
100100
00
Sabé
25900

150000
128000

10000

ST

250000

00000

150000

100200

sa060

Figure 4 : Shows the histogram of the data

3.5 Analysing the missing data

The missing data is analysed and the column with higher than 75 percent of the data that is

missing is removed in Figure 5.

o missing values visualization
15034
30068
45102
60136

q

scheduler

start_time
ge

ge

user

collection_name

scheduling_class

stance_index

time
type
resource_request

collection_id
event

_type
failed

end _time

average_usage

maximum_usa

priority

alloc_collection_id
cluster

collection_logical_name

start_after_collection_ids

machine id

ple_usa
assigned_memory
page_cache_memory
cycles_per_instruction

memory_accesses_per_instruction
sample_rate

collection_type
cpu_usage distribution
tail_cpu_usage_distribution

vertical_scalin

instance_events

collections_events,
random_sam)

Figure 5: visualization of the missing data

time instance_events type allectian_id scheduling class collection type
a0 1
#oon § 0000 s
%000 |
10000
280000 4
S000 0000 o
300aco |
w000
swcan ¢ oo o 100001
"o AnG0ed +
0000 + 20000
2000 0080 {
e LE 4 » a o — .
o 1 4 8 1 60 2% 3B 13 100 a 2z 4 & &8] 1 H 3 00 02 04 OB 88 LD
te1n 1a11
priority allo_collection_id stance irdex mishine_id collections_events type
240604 Boz00
23000
ET
2000
200000 159000
b0
10000
0800
¥ [
o W 0 ;o a0 0 w800 09000 130008 []
1811
vertical_scaling start_time end_time — assigned_memony
230008 §
fo000 o000
00000 § Sooao S0p00 |
150008 1] 2000
30 1
Sisih e
Leosan 1
10000 23000 —_—
cobe T 10000 10800
& @
e 15 s 25 an aoe 635 05 635 100 as as 10 70 25 #8 nS 10 15 10 25
1802 1e12
page_cache_memony cycles_per_instruction MEMOry_BCESLES per insriction sample_rate
oo
a0
130000 1 nome
100000 T Leommn =000
so0ca
b | el
so00a
10200 §
w00
109000
BO60A T 10000
[* o
D03 3507 0004 GM0E OO EEE) 000 a3 D04 oos 0o n: 04 o8 o0R 11
failad

1.0

-0.6

-0.4

0.2

0.0

3.6 Data Preprocessing

The outliers are determined in Figure 6 and removed.

Determining Outliers

0.10

0.08 4

quest_cpu
o
(=]
(=]

resource_re
o
(=3
s

0.02 1

Figure 6: outlier detection

3.7 Data Normalisation

The variables are normalised using minmaxscaler() as shown in Figure 7.

Normalizing the variables

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Figure 7: MinMaxScaler for normalisation

3.8 Model building

The machine learning models and statistical models like linear regression, ridge regression,
lasso regression, Random Forest regression, Decision tree regression, gradient boosting
regression and Artificial neural network as shown in Figure 8,9,10,11,12,13,14 respectively.

Linear Regression

[41]: from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
model = LinearRegression()
start = time.time()

#Training model with Training data
model.fit(X_train, y_ train)

+ LinearRegression

LinearRegression()

linear_execution_time = round(time.time()-start,2)

y_pred = model.predict(X_test)

Figure 8: Linear regression

~ Ridge Regression
from sklearn.linear_model import Ridge
model = Ridge(alpha=1.8)
start = time.time()

#Training model with Training data

model.fit(X_train, y_train)

v Ridge
Ridge()
ridge_execution_time = round(time.time()-start,2)
y_pred = model.predict(X_test)
Figure 9: Ridge regression
Lasso Regression
from sklearn.linear _model impert Lasso
model = Lasso(alpha=0.0061)
start = time.time()

#Training model with Training data
model.fit(X _train, y_train)

& Lasso
Lasso(alpha=0.0001)
lasso_execution_time = round(time.time()-start,2)

y_pred = model.predict(X_test)

Figure 10: Lasso regression

Random Forest Regression

from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor(n_estimators=18, random_state=42)
start = time.time()

#Training model with Training data
model.fit(X_train, y_train)

- RandomForestRegressor

RandomForestRegressor(n_estimators=16, random_state=42)

random_execution_time = round(time.time()-start,2)
y_pred = model.predict(X_test)

Figure 11: Random forest regression

Gradient Boosting Regression

from sklearn.ensemble import GradientBoostingRegressor
model = GradientBoostingRegressor(n_estimators=1@, learning_rate=8.1, max_depth=3, random_state=42)
start = time.time()

#Training model with Training data
model.fit(X_train, y_train)

v GradientBoostingRegressor

GradientBoostingRegressor(n_estimators=1@, random_state=42)

gradient_execution_time = round(time.time()-start,2)
y_pred = model.predict(X_test)

Figure 12: Gradient boosting regression

Decision Tree Regression

from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor()
start = time.time()

#Training model with Training data

model.fit(X_train, y_train)

* DecisionTreeRegressor

DecisionTreeRegressor()

decision execution_time = round(time.time()-start,2)

y_pred = model.predict(X_test)

Figure 13: Decision tree regression

6

rezl:

Aritificial Neural Network

import tensorflow as tf
from tenscrflow import keras

from tenscrflow.keras import Sequential, layers
from tensorflow.keras.layers import Dense

model = keras.Sequential[

keras.layers.Dense(32, input_shape=(4%,), activaticn="relu'},
keras.layers.Dense(1s, activation = 'relu'),

keras.layers.Dense(l)

n

C:%Wsersh\Ramad\AppData‘Local\ProgramsiPython\Python311hLibysite-packageshkeras'srcilayershcoredense. py:87: UserkWarning: D
imput_dim™ argument to 2 layer. when using Sequential models, prefer using an ~Input(shape)” object as the first layer in
super(}._ init_ (activity regularizer-activity regularizer, **kwargs)

model. summary |)

Model: "sequential™

Layer (type) OQutput Shape Param #
dense (Dense) (Mone, 32) 1,472
dense_1 {Dense) (Mane, 16) 528
dense_2 {Dense) (Mane, 1} 17

Total params: 2,817 (7.88 KB)

Trainable params: 2,817 (7.88 KB)
Non-trainable params: @ (@.88 B)

model.compile{optimizer="adam', less="mse', metrics=['mae']}

start = time.time()

ann = medel.fit{X train, y_train, epochs=18, batch_size=32, validation split-e.2, verbose=1)

Figure 14: Artificial Neural Network

3.9 Evaluation

The outcome of the models with all the features in Figure 15 and without the feature removed
as shown in Figure 16.

metrics = pd.DataFrame({"Model": models, "R2"

print(metrics)

[RNE, T SENUTRN S]

Model R2

Linear Regression @.547141

Ridge Regression @.547167

Lasso Regression ©.425282

Random Regression @.521258
Decision Regression @.900014
Gradient Regression ©.493325
Artificial Neural Network ©.832437

Execution Time

1.97
1.18
1.21
15.35
2.04
4.69
120.52

00000 09

: r2_score, "MSE": mse,

MSE MAE RMSE
000016 ©.002850 0.003992
090016 ©.002852 ©.003992
000020 ©.003438 0.004497
000003 ©.008553 0.001665
090804 ©.000580 ©.001876
000018 ©.203274 ©.004222
090006 ©.001376 ©.002428

"MAE": mae, "RMSE" : rsme, "Execution Time": execution_time})

Figure 15: Evaluation of model with all the features

metrics = pd.DataFrame({"Model":

print(metrics)

2] Linear
1 Ridge
2 Lasso
3 Random
4 Decision
5 Gradient
6

Model
Regression
Regression
Regression
Regression
Regression
Regression

Artificial Neural Network

Execution Time

[} 1.18
1 9.17
2 9.30
3 16.21
4 2.60
5 4.59
6 120.34

References

models,

R2
538796
538481
872922
926811
900484
492490
819923

[IR)

"R2": r2_score,

MSE
eesol7
eeeel7
0een33
000003
000004
eegols
0e8006

MAE
0.002960
9.0802961
9.004557
9.000555
0.000580
9.0803292
9.001454

DO 0000

"MSE": mse,

RMSE
004063
004065
085711
001669
061871
084226
082517

"MAE" :

mae,

"RMSE"

rsme, "Execution Time": execution_time})

Figure 16: Evaluation of model with features removed

