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1 Hardware Requirements

The hardware used for this research study is an Asus TUF Gaming F15 with 8GB RAM
and an operating system, as shown below:
Oper’a‘tlng Systemn: Windows 11 Home Single Language 64-bit (10.0, Build 26100}
Language: English (Regional Setting: English)
System Manufacturer: ASUSTeK COMPUTER INC.
System Model: ASUS TUF Gaming F15 FX506HF_FX506HF
BIOS: FX506HF.312
Processor: 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz (12 CPUs), ~2.7GHz
Memory: 8192MB RAM

Page file: 27600MB used, 2858MB available
Direct Version: Directx 12

Check for WHQL digital signatures

DxDiag 10.00.26100.2454 64-bit Unicode Copyright © Microsoft. All rights reserved.

Help Next Page Save All Information... Exit

Figure 1: Hardware Requirements

2  Software Requirements

To implement this thesis/research project using the Python programming language in
Jupyter Notebook. Figure 2 illustrates the use of Jupyter Notebook 7.0.8 under Anaconda
Navigator.
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Figure 2. Software Requirements
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3  Implementation

The implementation of the code for the entire research project has been done in 2 files.

These are:

e CT_Scan_Kidney Disease_copy.ipynb

e Kidney Disease_Code.ipynb

The following libraries were used during implementation of the research project:

Library Version

Library Version

Python 3.10.12

Python 3.10.12

TensorFlow 2.13.0

TensorFlow 2.13.0

keras 2.13.1 Keras 2.13.1
NumPy 1.24.3 NumPy 1.24.3
Pandas 2.0.3 Pandas 2.0.3

Matplotlib 3.7.2

Matplotlib 3.7.2

Scikit-learn 1.3.0

Scikit-learn 1.3.0

OpenCV-python 4.8.1

OpenCV-python 4.8.1

PIL (Pillow) 9.5.0

PIL (Pillow) 9.5.0

Accelerate 1.1.0

Accelerate 1.1.0

Grad-CAM 14.7

Grad-CAM 1.4.7

Kaggle 1.5.13

Kaggle 1.5.13

Jupiter 1.0.0

Jupiter 1.0.0

Table No 1. Library Specification

4 Dataset Description

® This research uses a CT scan of kidney images, which show different classifications
such as normal, stone, cyst, and tumor. You can access the dataset on Kaggle at the
following URL: https://www.kaggle.com/datasets/nazmul0087/ct-kidney-dataset-
normal-cyst-tumor-and-stone.



https://www.kaggle.com/datasets/nazmul0087/ct-kidney-dataset-normal-cyst-tumor-and-stone
https://www.kaggle.com/datasets/nazmul0087/ct-kidney-dataset-normal-cyst-tumor-and-stone

® The collection comprises 12,446 images that have been classified as cyst, normal, stone,
and tumor. The main job was to classify images based on the type of kidney disease

5  Data pre-processing

The figure below outlines the process of uploading the dataset to the Jupyter Notebook
environment, followed by its processing using the notebook
"CT_Scan_Kidney_Disease_copy.ipynb." Data preprocessing includes resizing CT images
to have a standard size (224x224 in both dimensions), normalizing pixel intensities, and
applying data augmentation (horizontal flipping and zooming). This guarantees optimal
training and evaluation of the data.

Dataset Downloaded & Unzipped:

th open('C:/Users/dhee
kaggle_json json.

headers
A kaggle_json[ 'key

dataset_url
response = requests.get(dataset_url, headers-headers)

th open(’ct-kidney-dat
f.urite(response.
print("Dataset dowl
th zipfile.ZipF
zip_ref.extrac

print("Dataset unzipped successfully!®

Dataset downloaded successfully!
Dataset unzipped successfully!

Figure 1. Dataset downloaded using API key and downloaded successfully

split "train’, 'va on", "test']:
split_path os.pat (dataset_path, split)
print( izi i split_path 1
resize_images(split_path, target_size)

print( i 7 i 4 split_path b}

Resizing images in ./ct_kidney/split_dataset\train...

Finished resizing images in ./ct_kidney/split_dataset\train.
Resizing images in ./fct_kidney/split dataset\validation...
Finished resizing images in ./ct_kidney/split_dataset\walidation.
Resizing images in ./ct_kidney/split_dataset\test...

Finished resizing images in ./ct_kidney/split_dataset\test.

: ofct_kidmey/split dataset\train\Cyst\Cyst- (984).jpg, Size: (224, 224)

: oSt _kidney/split dataset\train\Cyst\Cyst- (3352).jpg, Size: (224, 224)
i ofct_kidmey/split_dataset\train\Cyst\Cyst- (382).jpg, 5ize: (224,

» _fct kidmey/split dataset\train\Cyst\Cyst- (188).jpE,
1 ofct_kidmey/split_dataset\train\Cyst\Cyst- (B27).jpe, [
: ofct_kidmey/split dataset)train\Mormal\Normal- (2384).jpg,; 54

: oSt _kidney/split dataset\trainNormal\Mormal- (3783).jpg, 5i

: o fct_kidney/split dataset\trainNormal\Normal- (3674).jpg, Si

» _fct_kidmey/split dataset\train\Mormal\Normal- (21).jpg, Siza:

: fet_kidney/split dataset\train\Normal\Normal- (2518).jpg,

1 oJfct_kidney/split dataset\train\StonevStonme- (1853).jpE, 53

i ofct_kidney/split_dataset\train\Stone\Stome- (9d4&).jpg, Sdze: (224, 224)
: o fet_kidney/split dataset\train'\StonelStome- (1312).9pg, Size: (224, 224)
: Jfct_kidmey/split dataset\train\StonehZStone- (786) .jpg, Size: (224, 224)

Figure 2. Images Downloaded and resized as per the model requirements




6  Normalization Applied on CT Images

To normalize the pixel intensity values of the CT kidney images, | divided each pixel value
by 255.0 using normalization. Such compatibilities with models such as MobileNetV2, as
well as ResNet50, improve convergence and avoid gradient problems.

Preprocessing input was added for ResNet50 to match the model's pretrained requirements.
They used this step to improve generalization of the models and classification accuracy
with respect to kidney conditions while reducing overfitting.

image_path

image_pathl _kidne 1it _d
Image. (image_path) img:
plt.i (img)
plt. ( )
plt.title("Normalized Image")
pit. O

i Image.open(image_pathl) imgl:
plt.ims (imgl)
plt.axis(’on’)
plt.title("Normalized Image™)

Normalized Image
B 5

Figure 3. Shows Normalization of images
7 Pixel Range Across Dataset

print( total min total max]")

Pixel range across dataset: Mins8.8, Max=1.8

Figure 4. Pixel range has been set in between 0 & 1

CT kidney images were normalized so that pixel values are within pixel range [0, 1] by dividing
by 255.0. This preprocessing step gives us consistent input and helps better convergence during
the training process.



8 Data Augmentation on CT images

Data augmentation was done on CT images to improve the model’s generalization. This
included random rotations, flips, zooms, shifts and brightness adjustments to simulate the
variations while maintaining kidney feature integrity.

datagen - ImageDataGenerator(
rotation_range-38,

Figure 5. Data Augmentation

print("“Class Weights:", class_weight_dict)

Class Weights: {0: 0.6128619263344495, 1: 0.8389053653275815, 2: 2.259622367465505, 3: 1.3628996933858957}

Figure 6. Class Weight Checked and balanced
7 CLAHE (Contrast Limited Adaptive Histogram Equalization)
on Dataset

The method has been applied to the CT images dataset to enhance the model accuracy and to
find out the region of the kidney disease during classification.

......

Figure 7. CLAHE has been applied to the images to improve accuracy by enhancing the
contrast of the CT images



8  Model Implementation after applying CLAHE and class
balance

g S
Epoch 3/10

778/778 [ 1s/step - loss: 1.2073 - accuracy: ©.4427 - val_loss: 1.0457 - val_accuracy: 0.6070 - lr: 1.0000e-05
Epoch 4/10

778/778 [ 1s/step - loss: 1.1282 - accuracy: 8.4724 - val_loss: ©.8629 - val_accuracy: 0.6434 - lr: 1.0000e-05
Epoch 5/10

778/778 [ 712s 915ms/step - loss: 1.0563 - accuracy: 0.5144 - val _loss: 0.8388 - val_accuracy: ©.7121 - 1lr: 1.0000e-05)
Epoch 6/10 ‘
778/778 [ 722s 929ms/step - loss: 1.0141 - accuracy: 0.5342 - val _loss: 0.8590 - val_accuracy: ©.6611 - 1lr: 1.0000e-05)

Epoch 7/10

778/778 [ 951s 1s/step - loss: 0.9412 - accuracy: ©.5686 - val_loss: ©.7291 - val_accuracy: 0.71687 - lr: 1.0008e-05
Epoch 8/10

778/778 [ 720s 926ms/step - loss: ©.9096 - accuracy: ©.5901 - val loss: 1.1558 - val_accuracy: ©.3965 - lr: 1.0000e-05§
Epoch 9/10

778/778 [ ] - ETA: @s - loss: 0.8659 - accuracy: 0.6102

Epoch 9: ReducelROnPlateau reducing learning rate to 4.999999873689376e-06.

778/778 [ - 1195s 2s/step - loss: ©.8659 - accuracy: 0.6102 - val _loss: 1.3659 - val_accuracy: 0.3380 - 1lr: 1.0000e-05
Epoch 10/10

778/778 [ - 792s 1s/step - loss: 0.8537 - accuracy: 8.6156 - val loss: 0.6 - val_accuracy: 0.7121 - 1r: 5.0000e-06

Figure 8. Training Vs Validation Performance for EfficientNetBO

primt(“E g W B ]
loss, accuracy model.evaluate{test_generator)
primt( 1 2 loss: accuracy:

Found 12446 images belonging to 4 classes.
Found 7669 images belonging to 4 classes.
Found 6485 images belonging to 4 classes.
Training MobileNetVz...
Epoch 1/1@
14385 4s/step - loss: @. accuracy: val_loss: @.5886 - val_accuracy:

22875 6s/step loss: B. accuracy: val_loss: ©.8428 val_accuracy:
Epoch 3/18
3897389 14855 4s/step loss: B. accuracy: E val_loss: ©.1949 val_accuracy:
Epoch 4/1@
3897389 11445 3s/step loss: B.913 accuracy: val_loss: ©.8869 val_accuracy:
Epoch 5/18
3897389 14285 4s/step loss: B. accuracy: 6 - val_loss: ©.5597 val_accuracy:
Epoch &6/18
3897389 9s/step loss: B.9147 - accuracy: val_loss: ©.1382 val_accuracy:
Epoch 7/18
389/389 4s/step - loss: B.8BES - accuracy: val_loss: @.36B6 - val_accuracy:
Epoch 8/18
389389 3sfstep loss: B.8167 accuracy: val loss: 8.8229 val_accuracy:
Epoch 9/18
3897389 3 dsfstep loss: B.8838 - accuracy: 9 val_loss: 9.8344 val_accuracy:
Epoch 18/18
3897389 11625 3s/step loss: B.9184 - accuracy: val_loss: ©.8258 val_accuracy:
Evaluating MobileNetVa
2837203 [= 995 488ms/step - loss: 8.8223 - accuracy: 6.9984
MobileMetV2 - Los

Figure 9. Training Vs Validation Performance for MobileNetV2




print("Evaluating Net5e )
loss, accuracy model.eval (test_generator)
print( loss:.4 accuracy:

Training ResNet5@...

Epoch 1/18

778/778 - 4607s 6s/step : 0.1017 - accuracy: 9.9668 - val_loss: 5.1116 - val_accuracy: 0.3373
Epoch 2/10

778/778 - 5893s 8s/step : 0.8245 - accuracy: 0.9920 - val_loss: 8.0168 - val_accuracy: 0.9938
Epoch 3/10

778/778 - 4221s 5s/step : 8.8226 - accuracy: ©.9940 - val_loss: 8.1759 - val_accuracy: 0.9511
Epoch 4/18

778/778 - 4961s 6s/step : 0.0202 - accuracy: 8.9951 - val loss: 2.0231e-84 - val_accuracy: 0.9998
Epoch 5/18

778/778 [ - 5136s 7s/step .8020 - accuracy: 0.9996 - val_loss: 2.5257e-85 - val_accuracy: 1.0080
Epoch 6/18

778/778 - 23624s 38s/step 0.0082 - accuracy: ©.9978 - val loss: ©.1471 - val_accuracy: 8.9679
Epoch 7/18

778/778 - 5094s 7s/step : 0.0166 - accuracy: 8.9955 - val loss: 0.4944 - val_accuracy: 0.9460
Epoch 8/18

778/778 - 5187s 7s/step : B.8@99 - accuracy: 8.9968 - val_loss: 8.8014 - val_accuracy: 1.6000
Epoch 9/18

778/778 [== - 5951s 8s/step : 0.8855 - accuracy: 8.9987 - val _loss: 1.5022e-84 - val accuracy: 1.8800
Epoch 18/10

778/778 [ - 4349s 6s/step 1 1.9210e-84 - accuracy: 1.8800 - val_loss: 4.1854e-86 - val_accuracy: 1.6800
Evaluating ResNet5@

486/406 [ =] - 524s 1s/step - loss: 3.9559e-86 - accuracy: 1.8000

ResNet58 - Loss: ©.00800, Accuracy: 1.6800

Figure 10. Training and Validation Performance for ResNetN50

print(” 1 n o ")
loss, accuracy = model.evaluate(test_generator)
print( i loss: accuracy:

Training ImceptionV3...

Epoch 1718

FrRSTIE [ 24435 3s/step - loss: 8.1488 - accuracy: 8.9494 - val loss: 8.8897 - val_accuracy: 8.9988
Epoch 2718

TTEST78 [ 2453s 3s/step loss: ©.8328 - accuracy: ©8.9988 - val loss: 8.8137 val_accuracy: 8.9953
Epoch 3718

TTEST78 [ 25885 3s/step lpss: @.8183 - accuracy: 8. val_loss: @.8135 val_accuracy: 8.9954
Epoch 4718

TTEST78 [ 29245 ds/step loss: B.8319 - accuracy: 8.99 val_loss: 8.8131 val_accuracy: 8.94971
Epoch 5718

TTE/778 [ 23355 3s/step lpss: B.8898 - accuracy: val_loss: 8.8878 val_accuracy:

Epoch 6718

TTEST78 [ 23435 3s/step lpss: B.8252 - accuracy: 8.993 val_loss: @.5383 val_accuracy:

Epoch 7718

FrRSTTE [ 23235 3s/step - loss: 8.8118 - accuracy: 8.99 val_loss: 8.8838 - val_accuracy:

Epoch 8718

TTE/T78 [ 22535 3s/step loss: @.8898 - accuracy: val_loss: 8.8178 val_accuracy:

Epoch 9/18

TIES778 [ 23395 3s/step loss: ©.8123 - accuracy: 8.9965 - val_loss: 1.4697e-84 - val_accuracy: 1.8088
Epoch 18/18

FrRSTTE [ 34435 ds/step - loss: 8.8856 - accuracy: 8.9983 - val_loss: 8.8@49 - val_accuracy: 8.9985
Evaluating InceptionVi.

4867486 [ 2155 53Bms/step - loss: 8.8855 - accuracy: B.9982

Inception¥V3 - Loss: @.8855,

Figure 11. Training and Validation Performance for InceptionV3



vit_model.compile{optimizer-"adam", 55="¢ py", metrics-|[

history - vit_model.fit(train_generator, validaticn_data-validation_generator, epochs-2a2)

Epoch 1/2@
351/3 - s B45cmsfstep - 8 - accuracy: 8.5134 - val 8488 - val_accuracy: 8.6

292s 831ms/step - loss: - accuracy: 8.6423 - val_ 325 - val_accuracy: 8.533
287s B17ms/step - loss: @ - accuracy: @.6628 - val_loss: @ - val_accuracy: @.63
292s 831ms/step - loss: @ - accuracy: 9.6729 - val_loss: - val_accuracy: ©.4879
837ms/step - ] - accuracy: . val_L 5 7 - val_accuracy: @.
s Beems/step - loss: - accuracy: - val_loss: - val_accuracy: @.673
298s B48ms/step - loss: - accuracy: @.7257 - val_loss: - val_accuracy: @.6828
2a83ms/step - los -6549 - accuracy: @.7428 - 5: - val_accuracy: @.5988

78ams/step - & - accuracy: 9.7472 - val_ 5 - val_accuracy: @.6328

351/ S5s 784ms/step - loss: 8.6197 - accuracy: ©.7588 - H - val_accuracy: @.6143
Epoch 11/2

274s 781ms/step - loss: 2 - accuracy: @.7796 - val_loss: - val_accuracy: @.8594

77ms/step - .5 - accuracy: @.7821 - val 5 2 - val_accuracy: ©.5628

78ms/step - } - accuracy: ©.7983 - val_ - val_accuracy: @.7845

351/ 783ms/step - loss: - accuracy: @.8873 - H - val_accuracy: @.7375
Epoch 15/2

2765 786ms/step - loss: - accuracy: @.8144 - val loss: - val_accuracy: @.5224

781ms/step - 5 4 - accuracy: 82271 - val_ - val_accuracy: @.6814

282s g@3ms/step - .4298 - accuracy: - wval_ .6924 - val_accuracy: @.7126

351/ - 175825 5@s/step - los .3987 - accuracy: 8.8459 - CH: - val_accuracy: @.6892
Epoch 13/2

351/ - 2665 758ms/step - los - accuracy: ©.8554 - val_loss: - val_accuracy: @.7271

- accuracy: @.8683 - val_loss: @ - val_accuracy: ©.6498

Figure 12. Training and Validation Performance for Vision Transformer

The performance of these models is important in classifying kidney disease , with
InceptionVV3 achieving 99.82% validation accuracy, followed closely by MobileNetV2 at
99.04%, indicating appropriate generalization. ResNetN50 achieved great performance with
multiple epochs reaching 100% accuracy to identify the kidney disease. Though promising,
the Vision Transformer (ViT) achieved a validation accuracy of only 86.83% but needs more
optimization. InceptionVV3 and ResNet50 were found to be the top performing models overall,
MobileNetV2 offers efficient and reliable results and ViT are promising with further work.

9 Grad-CAM:

Grad-CAM produces heatmaps that identify the important areas in an input image that affects
the model prediction. These heatmaps are then overlaid on top of the original images to create
heatmap overlay images that give an easy understanding of where the model is concentrating
when doing classification. The overlay images allow if the model pays attention to which
features, check its explanation for interaction, and determine bias or problem in decision-
making. Presentations are helpful in analyzing not only the correctly and incorrectly classified
samples, but also in clarifying the model's performance. Such graphical representations are
helpful in analyzing not only the samples correctly and incorrectly classified, which clarifies
the model’s performance.



img_path i it_dataset
img_array - preprocess_input(img_path)

gradcam - grad_cam(model, img array, layer_name-"t
display_gradcam(img_path, gradcam)

Original Image Grad-CAM Heatmap

Figure 13. Grad-CAM Heatmap with Original Image

Grad-CAM Image
== . \

Figure 14. Grad-CAM with Superimposed Image
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