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Configuration Manual
Mohib Ur Rehman

Student ID: x23256541

1​ Introduction
This configuration manual walks through the different stages of code development for the 
evaluation of trading signal providers research project. These stages include:

●​      Data Collection
●​      Data Filtration
●​      Data Preprocessing
●​      Feature Engineering
●​      Model Implementation

2​ System Configuration​
2.1 Hardware Specifications

Figure 1 shows the hardware configuration which was used for this research 
project. The project uses a 10th Gen Intel(R) Core™ i5-10310U @ 1.70 GHz 
processor and 32 GB (31.8 GB usable) installed DDR4 RAM. The type of system 
used is a 64-bit operating system.

Figure 1, Hardware Specification​

2.1 Software Specifications and libraries​
Visual Studio Code is used as the Integrated Development Environment. Python 3.9 is 

used as the programming language for the implementation of this project.
The libraries used and their version is shared in figure 2.
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Figure 2, requirements.txt

Data Collection

This research utilizes the SNscrape Python library to collect text messages from Telegram. 
For each trading signal provider, 3,000 messages are scraped up to the current point in time. 
The implementation is detailed in the Scraper.py file in figure 3, which employs the 
snstelegram module from the SNscrape library. Data from five Telegram signal providers is 
gathered using their respective Telegram URLs and stored in the file located at 
./data/telegram_channel_data.csv.
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Figure 3, Telegram Scraper

Data Filtration​

In the first phase of data filtration, carried out in the classifier_train.py script, raw data 
collected from Telegram is filtered to exclude messages that do not contain trading signals. 
This process begins by labeling the data using the is_trading_signal function in figure 4. The 
labeled data is then saved as ./data/telegram_channel_data.csv.

Next, preprocessing is performed using the pre_process_text function to prepare the data for 
training. Once preprocessing is complete, the refined data is passed to the train_model 
function in figure 5, where a machine learning algorithm is trained on the labeled dataset. 
This training process leverages custom feature extraction methods provided by the 
Feature_extractor class in figure 6.

Finally, the trained model's weights are saved in the model directory using the save_model 
function, enabling its application to new datasets in subsequent phases.
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figure 3.1, Model file directory

Figure 4, Trading signal classifier overview
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Figure 5, Random forest classifier training
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Figure 6, Custom Feature Extractor

Figure 6.1, Main Function for trading signal classifier

Implementing the saved model on the actual data:

The code presented in Figure 7, corresponds to the `tradingsignalclassifier.py` Python file. It 
begins with the same `Feature_extractor` class utilized in the previous module for custom 
feature extraction. The trained model is then loaded using the `load_model` function, as 
shown in Figure 8. 
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Subsequently, predictions are made on the input CSV file, adding a new boolean column to 
each row. In this column, a value of `0` indicates a non trading signal, while `1` denotes the 
presence of a trading signal. 

Finally, all rows containing trading signals are filtered using the `create_filtered_csv` 
function, also depicted in Figure 9. The resulting filtered data is saved as a new CSV file 
named `filtered_telegram_channel_data.csv` in the same `data` folder.

Figure 7, Custom Feature Extractor
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Figure 8, Model Implementation and csv generation

Figure 9, Model prediction and saving prediction

Data Preprocessing
The Python file `extractionPipeline.py` contains three classes dedicated to data preprocessing 
using regular expressions. 

1) CryptoSignalFormatter

This class addresses formatting issues in text messages that arise after removing Unicode 
special symbols and characters. 
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- The `split_camel_case` function (Figure 10) splits text where words are joined together in 
camel case format.  
- The `format_take_profit_targets` function (Figure 11) standardizes all variations of how 
profit targets are written into a consistent format.  
- The `format_signal` function (Figure N) organizes key entities such as Coin Name, Targets, 
Stop Loss, and others, creating logical separations between them.  
- Finally, the `final_cleanup` function (Figure N) removes unnecessary characters and 
eliminates double spaces in the text for a cleaner output.

Figure 10, camelcase Split function
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Figure 11, Formatting Targets

Figure 12, Cleaning up text

2) SignalParser

The `SignalParser` class, depicted in Figure 13, implements two utility functions: 
`find_numbers_after_keyword` and `find_numbers_before_keyword`. These functions 
address the challenge of variations in how different trading signal providers write targets. 

The solution involves identifying specific keywords in the text, such as "targets," and 
extracting the numbers that follow or precede these keywords. However, this approach may 
also capture unrelated numbers, such as target indexes or stop-loss values. These functions 
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are designed to help parse and differentiate relevant numerical data from unrelated figures 
within the text as shown in figure 14.

Figure 13, Signal parser utility functions
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Figure 14, Finding all targets

3) SignalValidator

The `SignalValidator` class in figure 15, is responsible for logically verifying and cleaning 
the data processed by the previous class. It applies several validation checks to ensure the 
integrity of the trading signal data:  

- Stop Loss Validation: Ensures that the stop-loss value is less than the first target.  
- Entry Point Validation: Verifies that the entry point is also less than the first target.  
- clean_stoploss Function (Figure 16): Identifies the actual stop-loss value, even if it is 
mentioned as a percentage in some messages, and converts it into a usable format.  
- clean_targets Function (Figure 17): Ensures that the target values are in increasing order and 
removes any outliers in the target list that fall outside the standard deviation of the array.  
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This class helps refine the processed data, ensuring consistency and accuracy before further 
analysis.

Figure 15, Signal Validator

figure 16, clean stoploss function
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Figure 17, clean targets function

All these classes collectively form a pipeline-based approach, with each class serving a 
distinct purpose. The `SignalPipeline` class, depicted in Figure 18, integrates these 
components in a specific sequence to ensure efficient and orderly data processing. 

The `main` function in Figure 19 demonstrates the implementation of this pipeline. It 
processes data from the `filtered_telegram_channel_data.csv` file, applies the pipeline steps, 
and outputs the refined results to a file named `./data/extracted_signals.csv`. This structured 
workflow ensures the accurate extraction and validation of trading signals.
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Figure 18, Signal pipeline architechture
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Figure 19, main function

BackTesting​

The backtesting module, implemented in feature_engineering.py, gathers historical price data 
for each cryptocurrency mentioned in the text messages as shown in Figure 20. Using this 
data, several key factors are utilized to create feature-engineered columns, as illustrated in 
Figure 21. These columns provide insights and metrics essential for analyzing trading 
performance. The resulting analysis is then saved in a file named 
`./data/trading_analysis_results.csv`, enabling further evaluation and refinement of the 
trading strategies.
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figure 20, OHLCV Historical data collection
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Figure 21, Feature Engineering

19



Figure 21, Feature Engineering
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Figure 21, Feature Engineering
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Figure 22, Saving results in csv

Model Implementation​
The final phase of this implementation builds upon the feature-engineered data produced by 
the backtesting module. This code in featureengineering.py as shown in figure 23, involves 
applying clustering algorithms to categorize trading signals into one of three different groups:

a) "Bad" trading signals.
b) "Average" trading signals.
c) "Good" trading signals.

The clustering process utilizes the engineered features, which may include metrics such as 
price movements, volatility, profit-to-risk ratios, and other key performance indicators 
derived during the backtesting stage. These features are used to group the trading signals 
based on their performance patterns and characteristics.

By predicting these clustered values, the implementation provides a straightforward and 
interpretable classification of the trading signals. This categorization helps users or systems 
quickly identify the quality of signals, facilitating better decision-making in trading 
strategies. The results of this clustering phase can be further analyzed to refine signal 
generation or inform future trading methodologies.
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Figure 23, Model Implementation
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figure 24, Cluster Named Mapping
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