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Evaluating The Performance Of Cryptocurrency
Trading Signal Providers On Social Media Platforms

Mohib Ur Rehman
x23256541

Abstract

The growing volume of trading signals shared across platforms like Telegram
presents both an opportunity and a challenge for cryptocurrency traders. This pa-
per addresses automated classification and evaluation of these trading signals. In
this paper, we introduce a NLP based machine learning methodology to extract
meaningful entities from raw text like coin names, trading pairs, entry points, and
target prices relevant to trading. Developing a backtesting framework to test the
efficacy of these signals on historical performance, measuring profit/loss, Sharpe
ratio and drawdown. To further improve signal analysis, we apply clustering tech-
niques, including KMeans and Gaussian Mixture Models (GMM), to group similar
signals and assess their success rates. Through our results we show that it will be
possible to use NLP and machine learning as a starting point to automate trading
strategy evaluation, leading to insights that will change the way cryptocurrency
traders make decisions and manage risk. We propose a robust framework for op-
timizing trading signal evaluation, that can be applied to other asset classes in
financial markets, such as stocks, commodities, forex, and even bonds.

1 Introduction

Cryptocurrency trading is on rise due to the popularity of digital assets and the expansion
of online trading platforms. With the advantages of decentralisation, transparency and
security, ownership control, resilience to economic crisis, and global reach cryptocurrency
has started to challenge the traditional currency system Subramanian et al. (2024). Social
media and the popularity of crypto influencers provide trading insight to their followers
which is one of the main factors of popularity of cryptocurrency trade. With so many
different crypto currencies in existence, it is easy to see why many traders now make use
of crypto trading signals, — recommendations on when to buy, sell or hold an asset based
on market conditions.

Trading signal providers generate trading signals through studying different ways of
analysis such as technical, fundamental, and sentiment analysis. These trading signals
allow traders to recognize potential opportunities, set up the entry and exit strategies,
defining their risk and directions of the trade N. and D. (2022). Trading signals are a
valuable tool, but keeping in mind that they aren’t foolproof. These signal providers
are humans and can make mistakes, they can misinterpret data or miss the important
information that impacts the market. Some signal providers intentionally misrepresent
information or manipulate signals for their own gain. And it can end up costing traders
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who only use trading signals to make their investment decisions. While some signal
providers may use sophisticated algorithms and analysis techniques and claim to have a
high success rate.

Like any other investment platforms there is so much to choose from — the sheer
amount of available trading signals is overwhelming— and not all of them are trust-
worthy. Up to 80% of these signals are estimated to be fraudulent or misleading as
traders become exposed to scams and large losses Matsuzaki et al. (2023). It is one of the
biggest concern: the risk of having a cryptocurrency’s price artificially inflated through
’pump and dump’ schemes where individuals or groups artificially inflate the price of a
cryptocurrency, luring novice investors and then selling off their holdings while they are
making in profits leaving people in losses at the end of the day. A major risk is misinform-
ation and unreliable trading signals, as the unpredictable nature of the cryptocurrency
market means traders can’t really filter out what is authentic, and what is a fraudulent
or bogus trading signal. When this lack of trustworthiness occurs, it can negatively af-
fect the decision to invest – especially if someone is new to the market. This behaviour
aggravates market volatility, while also leading to price movements deviation from the
actual value of the assets, and therefore disrupting market efficiency. There is a problem
with information asymmetry between signal providers and the rest of the public which
gives an unfair advantage to those who are privileged with the information.In addition,
trading signal providers often promote impulsive behaviour, high reward and high risk
behaviour, including fear of missing out (FOMO) and herd mentality where people want
to trade but don’t have proper research. Because of these risks, there is a need for a
framework that can validate the performance of these signal providers. A framework
that evaluates a provider’s track record with accuracy, responsiveness to market changes
and transparency about their technical expertise or models that they are using.This study
provides a multi-stage pipeline to efficiently evaluate the performance of the post trading
signals made by providers using historical data.

2 Related Work

2.1 Extraction of key information using Machine Learning Mod-
els

Machine learning models combined with text vectorization techniques are of the earliest
techniques used to extract meaningful information from raw data. Reddy et al. (2024)
propose an automated pipeline based on kafka to process real-time twitter posts for a
machine learning analysis of social discourse. The processing of the twitter posts is
conducted using pySpark which allows to perform analytics using K-Means clustering,
Jaccard similarity, and aggregation. To measure the resemblance of the posts with social
justice, jaccard similarity uses a list of words to provide a numerical measure of the tweets
alignment. The research conducted by Wagh and Punde (2018) highlights the challenges
caused in event identification due to the short length of twitter posts and informal lan-
guage. Their research proposes a Semi-supervised approach consisting of components
like tweet crawling, filtering, pre-processing, and event message identification. A training
phase is incorporated in the system for training the model on labelled data including
manually labelled tweets followed by a SVM classifier. The results of the study show that
the Semi-supervised approach outperforms other machine learning techniques such as lo-
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gistic regression and naive bayes models in predicting the class of unseen data. Another
paper presented by Bharati and M.Upadhyaya. (2024) utilises NLP and SVM classifica-
tion for interpreting sarcastic messages on twitter. The authors first highlight the issues
related with the identification of sarcastic posts i.e juxtaposing positive sentiment words
within a negative context and the noise in the messages.. To approach this issue, the au-
thors implemented various NLP techniques for feature extraction, focusing on contextual
features that reflect sarcasm. As sarcasm posts reflect high dimensional spaces and im-
balanced datasets, the authors provide extensive explanation of SVM model in adapting
to such scenarios for producing robust results. Christy and Meeragandhi (2020) utilises a
systematic feature selection procedure to identify the metadata for enhancing clustering
of features by filtering out extra and harmful data. This canopy technique aims to focus
on the data that is beneficial meanwhile, mitigating the overhead of processing caused by
irrelevant data. For the clustering stage, the KMeans algorithm is used due to its simple
implementation and reliability on large datasets.

2.2 Extraction of key information using Generalised Regular
Expressions

Thinking about different ways to extract useful information from unstructured data us-
ing regular expressions. The use of regular expressions for information extraction is a
popular technique for information mining. Mande et al. (2018) highlight in their study
that Regex is a fast technique for text extraction compared to machine learning models
which require contextual information and large resources. Research by Li et al. (2008)
introduces a method called ReLIE, which improves regex learning by starting with basic
predefined patterns and refining them through a series of transformations. This method
is particularly efficient and effective when some initial patterns are available to guide the
process. Another research by Rosenfeld et al. (2017) identifies an automated technique
that creates regex patterns directly from the data itself, without any starting patterns.
This approach is very adaptable and can be applied across various types of text, making
it useful in situations where no initial patterns are available. This research will help us
to use any of these techniques to extract key information. This will help simplify the
diverse writing styles of the signals into a standardised format.

The research conducted by Carloni et al. (2023) introduces an efficient way to use
regex. They use principles of Domain Specific Architectures (DSAs) to produced tailored
architectures for regular expressions therefore allowing the regex systems to run on low
powered IoT devices. Employing this technique on this study can be beneficial as a
tailored system could produce effective results. Another research by Haghighat and Li
(2018) focuses on the utilisation of automata based techniques such as DFA and NFA to
improve the text extraction capability of regex. The authors introduce the concept of
HES which utilizes automata techniques to match thousands of patterns in a reasonable
time. Experiments from the research show that the E-HES method significantly improves
the text matching procedure without showing spatial or temporal limitations.

Generation of an efficient regex expression is one of the key challenges, a perfect bal-
ance between processing time and pattern structure is required to produce an efficient
regex pattern. Zhang et al. (2023) introduce InfeRE in their research which is a paradigm
for step-wise generation of regex expressions. This approach delivers significant improve-
ments over conventional autoregressive models that often fail to capture the real order of
text processing behind regexes.
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2.3 Extraction of key information using large language models

Recent research by Dagdelen et al. (2024) tells the important role of prompt engineering,
specifically for unstructured information extraction tasks such as cryptocurrency signals.
This research tells that detailed prompts solve the problem of accuracy relatively well but
struggle to deal with a wide range of text formats as the contexts and extraction guidelines
become unclear and too specific. Likewise, research by K and R (2019) suggest importance
of schemas to define what and how to extract information, but can be inflexible when
handling new data structures. Entity boundaries are often unclear in unstructured real
world data, a challenge facing LLMs like Llama 2. The problem becomes compounded
in cryptocurrency signals where the language is informal, there are abbreviations, and
formatting is inconsistent, making it a difficult task to extract key details accuracy from.
This is where pre-processing steps such as cleaning text and expanding abbreviations can
help and designing more specific prompts for different formats is a must.

Research by Yang et al. (2023) experiments with the BERT model for processing legal
documents. The researchers of this study introduce a text segmentation approach to over-
come the limitations of 512-token input limit. This text segmentation is not only useful
for lengthy segments but can also be used on smaller input sizes such as for processing
calls in this study. The results of the study show that by analyzing the highest-scoring
text segment can improve the precision of BERT-based classification, reducing manual
review effort by 14% at a 95% recall level. Another study conducted by Bhavya and
M.Nidd. (2023) utilises text segmentation to develop the SegLLM for efficient phone call
segmentation and topic extraction. The results of the study showed superior performance
in segmentation accuracy and topic assignment compared to existing methods.

The study conducted by Fariha et al. (2024) proposes a hybrid approach for automated
analysis and detection of anomaly from unstructured log files. To cater the issue of
unstructured data, the study proposes the use of LLM to construct regular expressions
for parsing the log data and then applies LLM-based parsing and embedding to transform
the raw log data into a format suitable for the deep learning model. This hybrid approach,
therefore provides flexibility in handling unstructured data without the need for manual
feature engineering or parsing rules.

Thus, in summary, LLMs can be adapted for specific extraction tasks in a tailored
manner by sensible prompt design and finetuning if strong data preparation, domain
knowledge, and the thought of going further via a synergy with rule-based systems to
raise accuracy.

3 Methodology

The system follows a multi stage pipeline to create an architecture capable of categorizing
post trading signals efficiently. A Telegram scraper is used to extract raw messages from
trading groups first. These messages often contain a mixture of valid trading signals and
invalid trading signals (e.g, some general discussions on any crypto coin) . A solution
to this is accomplished by the use of a Random Forest Classifier as a data filtration
process. The classifier identifies and filters out valid trading signals (those that actually
produce actionable predictions) using labeled training data. Natural language processing
(NLP) techniques are then applied to standardize the format of different writing styles
within the dataset. This preprocessing step ensures that all the trading signals gets
cleaned, tokenized and formatted to a single standardized format to be analysed. The
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preprocessed signals are then provided for backtesting. In this step the trading signal
is evaluated at that point of time when the trading signal was shared on telegram and
historical data is gathered from BinanceAPI, one for each token listed in the signals.
Backtesting module produces performance metrics like number of targets achieved, stop
loss events, and risk reward ratios. These features allow us to assess how well the trading
signals performed in real market conditions. After feature extraction, trading signals
are grouped into Good, Average and Bad clusters using K-means, Gaussian Mixture
Model (GMM) and Spectral clustering. The final stage of the architecture aggregates the
categorized signals to derive the success rate of each trading signal provider. This multi
stage pipeline flow ensures that signals are first validated, then standardized, analyzed,
and finally categorized providing a comprehensive performance evaluation. By adopting
this structured approach only high quality valid signals are used and the application
of back testing with clustering provides actionable insights from trading signals. The
proposed methodology overview is shown in Figure 1.

Figure 1: Methodology Overview

The Design is divided in 5 phases such that this whole process stream lines the trading
signal evaluation. The First part of this design is Data Collection, The data collection
process involves collecting all the text messages from different trading signal providers
who give their signal on Telegram. This phase stores all their text messages in raw format.
The next phase invloves Data filteration, this phase is intended to gather all the data
stored and pass it to a filteration process, where machine learning classification model is
trained to classify all

3.1 Data Collection

Gathering Telegram data by a scraper tool starts with identifying and selecting popular
Telegram trading signal providers. These groups can be public or private, the providers
are selected focusing on those who are known for providing good, real time trading in-
sights. Obtaining group links or access tokens where possible also means easier access to
private groups. Using scraper tool a set number of messages (3,000 or more) messages
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are scraped after every 2 minutes, respecting rate limits. The data is saved in a format
that can be forwarded to next modules for further processing.

3.2 Data Filtration

This section discusses a systematic keyword-based approach to label our text messages
that distinguishes trading signals and non-trading signals (general conversational mes-
sages). The classification process is designed to comprehensively evaluate the content
of text messages by searching for specific, hierarchically organized trading-related terms.
The keyword search process is classified into four steps. Keywords like Buy, Sell, Long or
Short are used in the first step to identify fundamental market action indicators and sign
of potential trading intent. If the method detects these market action terms, the method
moves to the second step of searching for the entry-related keywords such as ”Entry,”
”Entries,” ”enter,” or ”buy” or ”buying” to determine when a trade was started. The
third step identifies keywords that imply a profit objective (target, targets, take-profit,
tp, tp1) in order to confirm that take-profit targets are mentioned in the messages . The
fourth tier looks at the occurrence of stop-loss related terms including ’stop’, ’stoploss’
or ’sl’ or ’stop loss’ that indicate price when the trade should be terminated. Figure 2
depicts, If all four categories of terms are present, it is assigned as a trade signal, if not,
the message is labelled as a non trade signal. This rigorous and structured methodology
guarantees precise separation of trading signals from general text messages.

Figure 2: Labeling Text Messages

After labeling the text messages, the next step involves creating a machine learn-
ing pipeline that can use this labelled data for trading signal classification. Initial step
of pipeline involves converting text into Term Frequency-Inverse Document Frequency
(TF-IDF) vectorization to give more weights to words that are important like (“Buy”,
“Targets”) should be given more weightage than filler words like (“is”, “the”). Added
custom features to enhance the classification by checking length of the messages, if the
text contains any numerical value that represents price, lookup for trading pairs (e.g.,
“BTC/USDT”) and identifying presence of important keywords like entry price, target
prices, stop-loss, or leverage. This custom feature extraction allows the model to com-
prehend more easily as these are the only features that are needed for further processing.
Figure 3, below represents overall architecture for trading signal classifier.
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Figure 3: Trading Classifier Overview

The classification of trading signals is performed using a Random Forest Classifier
because of its robust classification by aggregating predictions from multiple decision trees.
Once classified, the trading signals are filtered out from the dataset and sent forward for
the next phase of data filtration. Figure 4 provides sample results generated from this
classifier.

Figure 4: Trading Signal Classifier Results
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3.3 Data Preprocessing

The second step is to take the filtered trading signal data, and clean and format it to make
it consistent across all trading signal. The aim of this step is to reduce unstructured,
inconsistent message forms into a more readable while retaining the important trading
information. Here’s an in-depth explanation of how this process is carried out:

3.3.1 Handling Camelcase Words

Camelcased words are most often used in trading signal messages, to elaborate more
multiple words are tied together without spaces like ”EntryTargets” or ”TakeProfit”. In
this step, we do something to make the CamelCase words more clear and we split them
by inserting the space between them. For example: ”EntryTargets” is changed to “Entry
Targets”. ”TakeProfit” becomes “Take Profit”. And this makes the message more human
readable, and it is easier to identify individual parts in the signal.

3.3.2 Formatting Numbers and Targets

Trading signals usually contains many numerical values in between the text , for example,
entry prices, take-profit targets, stop loss. These numbers are often concatenated with
words or some other numbers in the raw text, making it hard to follow the sequence.
Therefore, in order to solve this problem we format the numbers to facilitate spacing
between the number and their appropriate terms or symbols. It is useful to establish
clear differences among different values. For example, if the text contains: ”Target1
1240Target2 1280 Target3 1290” It will be reformatted to: ”Target 1 1240 Target 2 1280
Target 3 1290” Additionally, when take-profit targets are mentioned, regular expressions
(regex) are used to extract these numerical values from the text. The extracted values
are then reordered into a numbered list to enhance clarity and consistency. For example:
”2.3 3.5 4.0” will be transformed into ”1) 2.3 2) 3.5 3) 4.0”. This makes it easier for users
to identify each target in a sequential manner.

3.3.3 Final Cleanup

Once all the above steps are done and the text is properly formatted, a final cleanup
process is performed. This ensures the signal text is free of any extraneous spaces or
formatting errors, such as:

1. Inconsistent punctuation usage

2. Irregular spacing around symbols (such as ”$”, ”%”, or ”/”)

3. Improper word separation

We trim the unnecessary spaces from the trading signal text, also fixing the formatting
issues to keep the trading signal text compact, neat and easy for extraction. Symbols,
numbers, and key trading terms are carefully preserved to retain their significance.
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3.3.4 Extracting Key Entites

Regular expressions are used to extract entities like coin name, entry price, targets, and
stop-loss. The coin name is detected by locating the trading pair, like ”USDT”, which
always followed by coin name (e.g., in ”BTC/USDT”, ”BTC” is the coin name, and
”USDT” is the trading pair). For extracting values like entry price, targets, and stop-
loss, a targeted search is performed using specific keywords such as ”entry”, ”target”,
or ”stop-loss”. Once a keyword is identified in the text, the regex captures the numbers
that follow, continuing until a predefined stopping condition(known as ‘number count‘)
is reached. With this approach the extraction task is performed robustly. Figure 3.3.4,
below provides example illustration, where red-outline represents search window.

Figure 5: Targeted Search Result

3.3.5 Validating Results

The targeted search approach has several limitations, such as including extra informa-
tion that are not even part of the intended targets. For example, stop loss values can
sometimes becomes part of targets as shown in figure 3.3.4 and 5. Furthermore, in many
cases, targets are paired with indexes (1, 2, 3), making accurate extraction more difficult.
Therefore, domain knowledge has to be used to prevent the numbers that belong to one
(stop loss or entry price) shouldn’t belong to another entity. Targets are always higher
than stop loss and entry points; therefore, any value that’s higher should be discarded.
In addition, targets should always be in increasing order. As a solution to the indexing
issue, the system should look for sequential pattern such as 1, 2, 3 that are supposed to be
the indexes and not the target values themselves. And hence, should be removed. Stand-
ard deviation of the list should be implemented such that any number that is an outlier
should be removed. In figure 6, 1.03 is removed because it belongs to Entry price Entity,
and the numbers 1,2,3,4,5,6 are removed because they are out of standard deviation as
well as follow sequential pattern.

9



Figure 6: Validating Results Example

3.4 Backtesting

After the trading signals have been standardized to a common format, they are passed
to a backtesting module and performance features are derived using historical data from
Binance. From the point of time when the trading signal was initiated, historical price
data for the next 20 days is gathered for that particular coin. This historical data is then
used to compute a variety of features that provide insights into the signal’s performance:

1. Percentage Hit : Total number of targets successfully reached divided by total
targets mentioned in the signal.

2. Stoploss Hit : Boolean feature indicating whether stop loss level was hit or not
during the trade duration.

3. Stoploss Duration : How much time the trade was active before stop loss was hit,
if there was one.

4. Max Profit : The highest peak generated from price movements within the time
frame.

5. Max Loss : The lowest trough seen in the trade within the timeframe.

6. Max Drawdown : It represents the risk of substantial losses from the largest peak
to trough decline in the price of the coin during the trade period.

7. Trade Duration : The time that the trade was active, starting from the timestamp
that signal was initiated to close, whether that was from hitting all the targets,
achieving the stop loss, or by completing 20 days of time evaluation with no exit.

3.5 Model Training And Selection

Model selection is carefully analysed and tested throughout all the clustering algorithms
namely KMeans, Spectral Clustering and Gaussian Mixture Model,DBScan, and Hier-
archical Clustering. But the choice of method is based on:

K-means Clustering: For its simplicity and the fact that it can handle large datasets
quickly, this model was chosen. In many cases Kmeans works well, especially when the
clusters are spherical and well separated. It is computationally efficient for large datasets
as it quickly partitions the dataset into a fixed number of clusters.
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Spectral Clustering: The data was not particularly complex, so spectral clustering
was applied. Based on a similarity measure, this algorithm can partition a dataset graph
structure and capture complex patterns in the data. It is however more appropriate than
most for data that can be portrayed as a graph and may be less practical for very large
sized data sets.

Gaussian Mixture Model (GMM): The dataset fit this model by assuming the points
are drawn from a mixture of a number of Gaussian distributions. GMM’s ability to
capture clusters of varying shapes and sizes is done by having a Gaussian for every
cluster. K-means is fast, very fast in fact, but there is no reason that clusters should be
elliptical and GMM is more flexible, especially when the clusters are elliptical, but GMM
can be more computationally intensive.

The features calculated using the backtesting module are passed to each clustering
algorithm, allowing them to categorize each trading signal into one of three categories:
Good, Average, or Bad. Once categorized, the results are aggregated to assess the overall
performance of all trading signal providers. This approach enables a comprehensive
evaluation of the quality of trading signals, providing insights into which providers provide
most profitable trading insights.

4 Design Specification

Figure 7: Design Specification Diagram

The proposed system shown in figure 7 follows a modular and multi-stage pipeline de-
signed to efficiently categorize and analyze post-trading signals. The architecture begins
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with a Telegram scraping tool, implemented using library SNScrape, to extract raw mes-
sages from trading groups. These messages often contain both valid trading signals and
irrelevant data. To address this, a Random Forest Classifier is employed as a data fil-
tration process to identify actionable trading signals. The classifier is trained on labeled
datasets and differentiates between valid signals and non-valid signals (e.g, Discussions).
Following this, natural language processing (NLP) techniques, including tokenization and
normalization, are applied along with Regular Expressions to standardize diverse writing
styles into a unified format, ensuring that named entities like coin name, targets, entry
points can be easily extracted from raw messages. The named entities are stored and
are then subjected to backtesting module, where historical market data is retrieved from
BinanceAPI to evaluate the performance of trad- ing signals at the time they were shared.
Performance metrics such as the number of targets achieved, stop loss achieved, and trade
durations are calculated to provide quantitative insights into the signals’ effectiveness.
Once the backtesting is complete, the signals are categorized into performance-based
clusters (Good, Average, and Bad) using unsupervised learning algorithms such as K-
Means, Gaussian Mixture Models (GMM), and Spectral Clustering. The final stage of
the architecture aggregates these categorized signals to determine the success rates of
individual trading signal providers, offering a comprehensive evaluation of their reliabil-
ity. By implementing this structured approach, the system bridges raw data extraction,
signal validation, and performance analysis, providing a fast and effective solution for
evaluating trading signals.

5 Implementation

5.1 Data Injestion

For the data collection process, we utilized the Python library SNScrape to gather text
messages from Telegram. The focus of our data collection was on five prominent trading
signal providers who actively share trading signals. Their Telegram handles are:

1. Wallstreet Queen Official

2. Crypto Signals Orge

3. Binance Killers VIP Channel

4. Crypto Club Pump Signal

5. WolfxCrypto VIP

From each group, we scraped 3,000 recent text messages, resulting in a comprehensive
dataset of 15,000 messages. The column representation of this dataset is shown in Table
1

5.2 Data Filteration

5.2.1 Creating Labeled Data

The text is first converted into lowercase. A nested conditional block containing filtration
process is implemented. Each stage checks for a specific set of keywords shown in table 2,

12



Column Non-Null Count Dtype
Channel Name 15000 non-null string

Date 15000 non-null string
Time 15000 non-null string

Messages 15000 non-null string

Table 1: DataFrame Summary

such as entry-related, target-related, stop-loss-related, and leverage-related keywords. If
a set of keywords is found in the text, the function moves on to the next stage; otherwise,
it exits early and returns False.

By utilizing set membership checks in function efficiently determine whether any of
the relevant keywords are present in the text. If all the keywords are found the function
returns True.

Keyword Related Keywords
Entry ’entry’,’enter’,’entries’,’buy’,’buying’
Target ’target’,’targets’,’take-profit’,’tp’,’tp1’

Stop-Loss ’stop’,’stoploss’,’sl’,’stop-loss’
Leverage ’leverage’,’lev’,’cross’,’x’

Table 2: Related Keywords Lookup Table

5.2.2 Custom Feature Extractor

After the data is labeled. For each text message feature engineering is done. The new
features are generated such that model will be trained on these features.Table 3 describes
each feature.

Feature Data Type Description
keyword count Integer The total number of keywords identified in the text

has price Boolean Indicates whether a price is mentioned in the text
has trading pair Boolean Indicates the presence of a trading pair in the text

has entry Boolean Indicates whether any entry-related keywords are mentioned.
has target Boolean Indicates whether any target-related keywords are mentioned

has stop loss Boolean Indicates the presence of stop-loss related keywords in the text
has leverage Boolean Indicates if leverage-related keywords are mentioned in the text

Table 3: Custom Feature Description

5.2.3 Pipeline Implementation

The pipeline is constructed using the sklearn.pipeline module and comprises several com-
ponents designed for text classification. Everything is first fed into a TF-IDF vectorizer
with max features = 1000 and common english stop words are ignored and unigrams
and bigrams is considered with (n gram range= (1, 2)). Custom feature extractor fol-
lowed by TF-IDF vectorization is implemented to strengthen the feature space and fed
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into pipeline. Finally, the pipeline concludes with a RandomForestClassifier, from the sk-
learn.ensemble module, set on 200 estimators and class weights set balanced to counteract
the possible existence of class imbalance.

5.2.4 Model Implementation

The pipeline is initiated using K-Fold cross-validation from sklearn.model selection, with
5 folds selected for evaluation. The dataset is split into training and testing subsets
using train test split, allocating 80% of the data for training and 20% for testing. The
model is then trained by applying pipeline.fit on the training data, X train. To generate
predictions, pipeline.predict is utilized on the test data, X test. Predictions labeled as
1 are identified as valid trading signal text messages and are subsequently forwarded to
the next phase of implementation.

5.3 Data Preprocessing

After data filtration, all the valid trading signals are preprocessed and the entities are
extracted using series of operations:

5.3.1 Formatting Text

The messages that contain Unicode characters, extra spaces, acronyms and emojis are
removed using regular expressions with the re library. The substitute function is used
to replace all Unicode characters with an empty string. CamelCase words are separated
such that when an uppercase character is followed by a lowercase character, a space is
inserted between them.

5.3.2 Extracting Entities

The utility functions find numbers before keyword and find numbers after keyword are
implemented to extract numbers that appear before or after a specified keyword in a
given text. Both functions take three parameters: text, which is the input string to
search within; keyword, the term to locate; and max number, which limits the number of
extracted values. The process begins with the re.search function to identify the position
of the keyword in the text. For find numbers after keyword, once the keyword is found,
the text is truncated from the end of the keyword onward using text[match.end():].
Conversely, for find numbers before keyword, the text is sliced up to the start of the
keyword using text[:match.start()]. In both cases, after the text is appropriately
sliced, re.finditer is used to extract all numbers from the truncated text until the
limit set by max number is reached. The extracted numbers are then returned as a list.
This utility function will extract target prices, stop loss prices, entry prices.For coin name,
it was noted that, every single message has the same format, the coin name is always
followed directly by the trading pair ”USDT”. re.findall method is used to find first
occurrence of the word ”USDT”, using that coin name is extracted.

5.3.3 Validating Results

The utility function used to extract target prices, stop-loss prices, and entry prices can
sometimes include extra information, such as index numbers (e.g., 1, 2, 3) that are
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mentioned with the targets. To help mitigate this issue, the clean target function is
employed. It calculates the standard deviation of the list of extracted numbers and
removes any values that significantly deviate from the rest, as these are not valid prices.
This ensures that only correct values are stored in the list.

To handle the issue of extracting index numbers, the is likely index function analyzes
all the numbers in the list and checks for a sequential pattern, such as 1, 2, 3, which
typically indicates indexing rather than price levels. If such a sequence is observed, the
function removes these numbers from the list.

Additionally, the extracted target prices are validated based on common cryptocur-
rency trading rules. For example, target prices should always be in ascending order. The
validation ensures that the list is sorted in increasing order. Furthermore, the stop-loss
and entry prices are checked against the first target price; both the stop-loss and entry
price should always be less than the first target, following standard trading principles.

5.4 Backtesting Using Historical Data

5.4.1 Data Gathering

The first step of backtesting involves retrieving the OHLCV (Open, High, Low, Close,
Volume) historical price data using ‘ccxt‘ Python library. 4 hour candles are used as a
timeframe. For each trading signal shared in Telegram groups, data is gathered starting
from the timestamp when the trading signal was shared on telegram and extending over
the period of next 20 days, covering 120 4-hour candles. Retrieved data contains the
OHLCV values, and stored in the pandas DataFrame for evaluating performance metrics.

5.4.2 Removing Already Achieved Targets

During implementation, it was noted that some of the targets listed in the signals had
already been achieved before the user could react to them. An improvement to address
this is that the system will see if the market price at the signal’s timestamp has already
exceeded any targets. If a target has already been reached, it is discarded for a given
signal from the list of achievable targets. It is done by comparing each target with the
signal price (the price when the signal was initiated). The targets are removed for long
signals if the signal price is higher than, or equal to any of the targets, and for short
signals the targets that are lower than, or equal to, are removed. This filtering ensures
that only valid, unachieved targets are considered for evaluation.

5.4.3 Calculating Performance Metrics

After revising the targets, the following performance metrics are calculated for each signal
based on the OHLCV historical data:

1. Percentage Hit : The system tracks for each signal whether the price of that token
exceeds each of the remaining targets, using a counter variable for each target
achieved it computes the proportion of target hits among the total number of tar-
gets. If all the targets are achieved the evaluation stops.

2. Stoploss Hit : The system monitors whether the the price of that token gets below
the stop-loss at any point of time within 20 days timeframe. When the market price
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reaches the stop-loss level before touching all the targets, stop loss is triggered and
the evaluation stops.

3. Max Profit : High value of each candlestick is compared with the maximum value
seen for all historical OHCV data. After the identification of the highest price for
a given cryptocurrency, the percentage change is calculated using :

Max Profit % Change =
Max Price− Entry Price

Entry Price
× 100

4. Max Loss : Low value of each candlestick is compared with the minimum value
seen for all historical OHCV data. After the identification of the lowest price for a
given cryptocurrency, the percentage change is calculated using

Max Loss % Change =
Entry Price−Min Price

Min Price
× 100

5. Trade Duration : The system continuously monitors exit conditions during each
evaluation iteration. An exit is triggered when either all targets are met or a stop-
loss is achieved. The time duration is calculated by subtracting the timestamp of
the trading signal’s initiation from the timestamp of the triggered event. If no exit
conditions are met within a 20-day evaluation period, the trade duration is capped
at 480 hours (the total number of hours in 20 days).

5.5 Model Training And Evaluation

5.5.1 Feature Weighting and Selection

The model begins by selecting key performance metrics calculated in the backtesting
module. These features include:

Features Description

Percentage Hit The percentage of targets hit.
Stoploss Hit Whether the stop loss was hit or not.
Max Profit The maximum profit achieved during the trade
Max Loss The maximum loss sustained during the trade
Targets Distribution Price difference distribution between each take-profit targets
Moving Average Trend direction and strength
Trade Duration The total active duration of the trade

Table 4: Feature Description

Each of these features has varying importance in the context of evaluating trading
signals. Therefore, a set of predefined weights is assigned to each feature to reflect
its significance in the clustering process. The table 5 below defines all the weights
assigned.
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Feature Weight

Percentage Hit 2

Stop loss Hit 1.5

Max profit 1.5

Max loss 1.5

Targets Distribution 1.0

Trade Duration 1.0

Table 5: Feature Weights Assignment

Percentage Hit has the highest weight (2), while other metrics such as Max profit
and Trade Duration are assigned lower weights (1.0). These weights are used to
influence the clustering algorithms in capturing the most relevant patterns for eval-
uating trading signal performance.

5.5.2 Data Normalization And Weight Application

After the feature selection, the data is normalized using MinMaxScaler. This en-
sures that each feature has been scaled to a standard range (between 0 and 1) so that
features with larger magnitudes (e.g, Max profit) do not dominate the clustering
process.

Once normalized, the assigned weights are applied to each feature. To accomplish
this, we multiply the values of each feature with their respective weights associated,
effectively controlling the influence of the features on the results of the clustering.
Thus it can give more weight to more important features, like Percentage Hit over
other less impacting features, Max Loss.

5.5.3 Model Implementation

We used three clustering techniques to group trading signals: KMeans, Spectral
Clustering, and Gaussian Mixture Model (GMM), table 6 shows tuning range for
all the models and the implementation is as follows:

- KMeans : From sklearn.cluster, we set n clusters=3, random state=42, and
n init=’auto’. The model was trained using the fit predict function, and the
results were stored in a column called ‘k means cluster‘.

- Spectral Clustering : Also from ‘sklearn.cluster‘, we used n clusters=3, random state=42,
affinity=’nearest neighbors’, and gamma=0.02. The clustering results, ob-
tained via fit predict, were stored in the ‘spectral cluster‘ column.

- Gaussian Mixture Model (GMM): Using sklearn.mixture, we set n components=3,
random state=42, and covariance type=’spherical’. The output was saved in
a column named ‘gmm cluster‘.

To evaluate the performance of these clustering methods, we calculated the Silhouette
score for each one using the silhouette score function from sklearn.metrics.

The challenge we faced was that the clustering results were just numerical labels
(e.g., 0, 1, 2), and we can’t assume that 0 is ’bad’ signal. To address this, we
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calculated a ’composite score’ by grouping the signals by their cluster label and
aggregating the average ’percentage hit’ for each cluster.

We chose ‘percentage hit‘ because it indicates how many targets were hit by a
trading signal. A high ‘percentage hit‘ suggests a strong signal, regardless of other
metrics. Finally, we mapped the clusters to meaningful labels: the cluster with
the highest composite score was labeled as ”Good,” the lowest as ”Bad,” and the
middle as ”Average.”

Model Hyperparameters Tuning Range

K Nearest Neighbour n clusters = 3
random state = 42
n init = ’auto’

n clusters = [1,10]
n init = ’auto’ or [1,inf]

Spectral Clustering n clusters = 3
random state = 42
affinity = ’rbf’

n clusters = [1,10]
affinity =
[’nearest neighbors’, ’rbf’,
’precomputed’]

Gaussian Mixture Model n components = 3
random state = 42
covariance type = ’spherical’

n components = [1,10]
covariance type = [’full’,
’tied’, ’diag’, ’spherical’]

Table 6: Clustering Models Hyperparameter Configuration

6 Evaluation

6.1 Case Study 1: Clustering Analysis Using Principle Com-
ponent Analysis (PCA)

This study examines how three different clustering algorithms namely Gaussian
Mixture Model (GMM), Spectral Clustering, and K-Means classify the trading sig-
nals from various providers based on their performance. Figure 8, below helps
understand how each algorithm categorizes the signals and how well they separate
on horizontal axis by means of different performance levels. To make the analysis-
plot, Principal Component Analysis (PCA) was applied to reduce the complexity
of the high-dimensional data. This transformation allowed the performance metrics
to be visualized in a two-dimensional space, with the first two principal compon-
ents (PCA1 and PCA2) explaining 61.85% and 15.06% of the variance, respectively,
offering a clear representation of the data’s spread.

In each of the three clustering models, the trading signals were grouped into three
categories based on their success rates: good-performing signals were represented
by green clusters, average signals by yellow clusters, and poor-performing signals
by red clusters. The clustering performance was evaluated using silhouette scores,
which measure how well the signals were grouped.
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Figure 8: Clustering Scatterplots

K-Means achieved a silhouette score of 0.589, indicating decent horizontal separa-
tion between clusters. While the algorithm clearly separated the three groups, it
struggled with distinguishing between ”Good” and ”Average” signals, with some
”Average” signals being misclassified as ”Good.”

The GMM model performed the best, achieving the highest silhouette score of 0.61.
This model showed the clearest horizontal separation between clusters, especially
the ”Bad” cluster. However, it did occasionally misclassify some ”Average” signals
as ”Good,” although this was less frequent than in K-Means. GMM’s strong per-
formance is reflected in the very little overlap between clusters and its ability to
define clear boundaries.

Spectral Clustering, on the other hand, performed the weakest, with the lowest
silhouette score of 0.482. This model struggled to separate the ”Average” and
”Bad” signals, often misclassifying ”Bad” signals as ”Average.” Despite correctly
identifying the very poor signals as ”Bad,” its significant overlap between clusters
contributed to its lower score.

Overall, GMM emerged as the most reliable clustering method due to its strong
separation of signals and minimal misclassification. Therefore, GMM’s results will
be used in further analysis.

6.2 Case Study 2: Clustering Results Analysis by Trading
Signal Provider

In this case study, we study how the GMM cluster categorizes each trading signal
provider based on their performance category. As shown in Figure 9, the signals
from CryptoSignals orge are overwhelmingly classified as ”Bad,” with 83.3% of the
signals falling into poor category. In contrast, the counts for ”Good” and ”Average”
quality signals are very low. BinanceKillersVip stands out among all the trading
signal providers, with 32.2% of its signals classified as ”Good” and 39.1% classified
as ”Average.” This result cumulates to a total of 71.3% being either ”Good” or
”Average,” which is considered a strong performance. The other providers, namely
wallstreetofficial and cryptoclubpumpsignal, show more mixed results, with the
majority of their signals being classified as ”Average.”
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Figure 9: GMM Countplot For Each Provider

6.3 Case Study 3: Clustering Results Statistics Analysis

In this case study the performance of each signal provider using Gausian mixture
Model (GMM) clustering is evaluated via several performance metrics.

Table 7 provides an overview of the distribution of signals across three categories:
Good, Average, and Bad. This table shows that Bad signals (571) significantly
outnumber Good signals (223), indicating that most of the signals are not reliable.

Signal Type Total Count
Average 273
Bad 571
Good 223

Table 7: Total Counts by Signal Type

Table 8 extends this analysis to show specific breakdown of each signal types by
providers, respectively. For instance, CryptoSignals Orge is shown to have a par-
ticularly high number of Bad signals (374) underperforming in relation with other
signal providers like BinanceKillersVipChannel, whose signal distribution is much
balanced.

Metric BinanceKillersVipChannel CryptoSignals Orge cryptoclubpumpsignal wallstreetqueenofficial
Average 119 26 33 65
Bad 87 374 35 97
Good 98 49 19 65

Table 8: Signal Counts by Channel
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Furthermore, Table 9 delves into the success rate of each provider and finds that
BinanceKillersVipChannel proves to be having the highest percentage of successful
signals in all categories. In contrast, CryptoSignals Orge‘s performance is much
lower, further emphasizing its unreliability.

Signal Type Channel Count Mean Std Dev Min Max
Average BinanceKillersVipChannel 119 29.62 8.45 19.31 44.44

CryptoSignals Orge 26 27.69 7.57 16.67 32.94
cryptoclubpumpsignal 33 27.78 7.98 13.21 33.38
wallstreetqueenofficial 65 29.56 7.73 14.29 42.12

Bad BinanceKillersVipChannel 87 5.41 5.17 0.00 14.29
CryptoSignals Orge 374 0.53 2.94 0.00 18.27

cryptoclubpumpsignal 35 5.71 8.03 0.00 14.31
wallstreetqueenofficial 97 7.83 6.31 0.00 16.67

Good BinanceKillersVipChannel 98 58.58 11.94 37.50 100.00
CryptoSignals Orge 49 68.00 13.68 51.12 88.75

cryptoclubpumpsignal 19 69.30 12.75 53.00 100.00
wallstreetqueenofficial 65 63.69 14.60 37.50 100.00

Table 9: Percentage Hit Statistics by Signal Type and Channel

Lastly, Table 10 consolidates all the performance metrics into a comprehensive over-
view, where we can equitably compare success rate,profit, loss, and signal duration
by provider. From this table we can clearly see that BinanceKillersVipChannel is
the top performing provider while CryptoSignals Orge is not capable of returning
a good risk adjusted returns and are always close to low success rates.

Metric CryptoSignals Orge BinanceKillersVipChannel wallstreetqueenofficial cryptoclubpumpsignal
Total Signals 449.00 304.00 227.00 87.00

Success Rate (%) 19.38 78.51 73.70 63.56
Avg Profit 5.34 14.65 11.94 12.86
Avg Loss 0.32 -9.68 -0.33 2.44

Avg Duration (hrs) 51.80 280.41 371.90 194.74

Table 10: Channel Performance Overview

6.4 Discussion

6.4.1 Overview of experimental design

The goal of these experiments was to evaluate the performance and compare the
results of different trading signal providers using KMeans, Gaussian mixture models
(GMM) and Spectral clustering. The success rate of each provider were tested
by categorizing the input signals as Good, Average, or Bad signals, and through
an analysis of the following performance metrics: success rates, maximum profit,
maximum loss, and average durations of the signals. This work provided an overall
assessment of the performances using logical reasoning and the statistics produced
with the help of historical data.
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Experiments were designed so that clustering models can cluster the signals by their
characteristics. This choice in design permitted identification of patterns both in
each provider’s signal behavior and in the differences in that behavior over time.
Several of these experiments were met with success, but were heavily dependent
on the quality of the data supplied and the underlying assumptions made in the
clustering models, which introduces certain limitations that need to be critically
discussed.

6.4.2 Evaluation of the Results

KMeans and GMM Clustering : One of the most notable findings was the
consistency between GMM and Kmeans clustering methods particularly with the
performance of CryptoSignals Orge being have an entirely different fundamental ar-
chitechture it still primarily labelled them as Bad. This alligns with the hypothesis
that CryptoSignals Orge are unreliable trading signal providers. From the results
we can deduce that these models are good at identifying underperforming providers
as both clustering methods provided almost same classification. This supports the
literature done by, Chen et al. (2019) who evaluate the quality of trading signals in
algorithmic trading using models similar to those used here and observed that trad-
ing signals with lower accuracy are more often found in ’poor category’. Though,
the cluster boundaries used by both models have not been examined in detail to
better understand what classifying factors contributions in segregation.
Performance Metrics Analysis : The performance metrics, including success
rate, average profit, maximum profit, maximum loss, provided valuable insights into
the profitability and risk associated with each provider’s signals. For instance, Bin-
anceKillersVipChannel demonstrated a strong performance across all metrics, with
high success rates and favorable profit statistics in the Good signal category. This is
consistent with prior studies that suggest that providers with more balanced success
rates tend to offer more reliable signals. On the other hand, CryptoSignals Orge
showed dismal results, with low success rates and minimal profit, confirming its
status as a less reliable provider. However, a major limitation of the performance
metrics is the reliance on historical data, which may not always accurately reflect
future performance. The use of historical success rates and profit margins, while in-
formative, assumes that past performance is indicative of future results—a common
pitfall in trading signal evaluations. It would be beneficial to extend the analysis to
include backtesting in a dynamic market environment, where external factors such
as market shifts or unexpected events (e.g., economic news) could influence signal
success.
Analysis of Signal Duration : The average duration of signals was another
area of interest. While some providers, such as CryptoSignals Orge, exhibited
much shorter signal durations, others like BinanceKillersVipChannel provided sig-
nals with much longer durations. This may indicate differing trading strategies,
with longer-duration signals possibly suggesting a more strategic, long-term ap-
proach to trading. However, it would be essential to analyze the win rate relative
to duration—whether short-duration signals are consistently more volatile or more
likely to result in loss. Future experiments could look into clustering signals based
on duration and performance to discern whether the length of time a signal remains
active is a predictor of success.
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6.4.3 Critique of Experiment Design and Suggestions for Improvement

While the design of the experiments provided useful insights, there are several areas
where improvements could be made to enhance the results:

Data Quality and Granularity: The clustering models and performance metrics
were based on historical trading signals. However, the data used in these experi-
ments lacked additional context that might have been important, such as market
conditions, asset volatility, or trader behavior. A more granular dataset, incorpor-
ating real-time data and market features, could improve the predictive power of the
models.
Feature Selection: The experiments relied on basic signal features (e.g., profit,
loss, duration). Future experiments could incorporate more sophisticated features
such as market momentum, asset correlations, and even sentiment analysis from
social media or news sources. This would provide a more complete picture of the
signal’s potential value.
Data Extraction: A more robust approach for extracting signal details (e.g.,
coin name, targets, entry prices) should involve the use of large language models.
Trained on massive datasets, these models would automatically and accurately ex-
tract relevant trading information from any given text, improving the reliability of
the data processing.
BTC Influence on ALT coins: Another factor to consider is the price movement
of Bitcoin (BTC), as many altcoins tend to follow the same trend as BTC. It’s im-
portant to note for whether a price change in an altcoin was driven by technical
analysis or simply a result of BTC’s price fluctuation.
Clustering Methodology: While KMeans, GMM, and Spectral Clustering were
all effective in certain respects, further refinement of these models could be bene-
ficial. For instance, using Hierarchical Clustering or DBSCAN could reveal more
granular differences between providers, especially in the presence of noise or out-
liers.
Signal Categorization: The classification into Good, Average, and Bad signals
was somewhat broad. A finer categorization could improve the accuracy of the
results. For instance, instead of categorization, a regression result would be more
insightful.

7 Conclusion and Future Work

This research successfully achieved its primary objective of evaluating the perform-
ance of trading signals through a comprehensive multi-step architecture. The find-
ings highlight the strengths and limitations of the techniques employed. One signi-
ficant insight was the use of regular expressions for named entity extraction. While
these were robust and flexible, they struggled to capture patterns across diverse
and inconsistent text formats, especially from new signal providers. Despite refine-
ment efforts, the variability in textual data resulted in a high probability of missing
entities presented in non-standard formats. For datasets with such variation, the
study concludes that pretrained large language models (LLMs) are a more effective
solution for data extraction, although requiring substantial computational resources
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and fine-tuning. Using a custom knowledge base and providing a large amount of
training data, can detect named entities like coin names, targets, stop loss in a more
reliable way. In comparison to the clustering algorithms, revealing varied classific-
ation. We deduced that simpler algorithms such as KMeans were less effective for
higher dimensional data, as they depend on linear separations and only accomplish
the ability to understand only single dimensional relationships. On the other hand,
the performance of the Gaussian Mixture Model (GMM) and Spectral Clustering,
had more pronounced boundaries between the clusters and fewer misclassifications.
These results indicate that GMM followed by Spectral clustering are preferable for
datasets with complicated feature distributions. To complement future work in-
corporating more advanced clustering techniques such as Hierarchical Clustering
and DBSCAN could result in more refined signal groupings. Finally, this research
quantified the performance of trading signal providers. Among those analyzed, Bin-
anceKillersVIP emerged as the most profitable provider, while CryptoSignal Orge
consistently underperformed. The hypothesis was validated through multiple clus-
tering algorithms, all of which produced consistent results. This study provides
a strong foundation for future enhancements in trading signal evaluation, offering
actionable insights and establishing a starting point for developing better solutions
in this domain.
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