‘

\‘ .
National
Collegeof

[reland

Configuration Manual

Final MSc Research Project
Data Analytics

Sanjay Rajendra Raut
Student ID: x22196901

School of Computing
National College of Ireland

Supervisor: Dr. Abid Yagoob

‘—-
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee Ireland
School of Computing
Student Name: Sanjay Rajendra Raut
Student ID: 22196901
Programme: Master’s in data Analytics
Year: 2024
Module: Msc In Research Project
Supervisor: Dr. Abid Yaqgoob
Submission Due Date: 29/01/2025
Project Title: Personalized Health and Nutrition Recommendations
Using Machine Learning
Word Count: 713
Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: = Sanjay Raut........cccoociiiiinnnn

Date: = 29/01/2025.....cciii

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple O
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Sanjay Rajendra Raut
Student ID: x22196901

1 Introduction

This configuration manual allows one to learn how to configure and perform the scripts
required to analyze dietary data. This document covers the constraints of the computer
system that is needed to execute the workflow, library dependencies, how to get the datasets,
how to execute the workflow, and some basic troubleshooting.

Thus, this manual covers the gap between the notebook and the analysis objectives and
provides an algorithm on how to repeat the results. Below are elaborated all the software and
hardware requirements as well as steps to prepare the dataset.

2 Hardware Requirements

Processor: Minimum Intel Core i5 or AMD equivalent

Memory (RAM): At least 8 GB (16 GB recommended for larger datasets)
Operating System: Windows 10, macQOS, or Linux (64-bit recommended)

Storage: 20 GB of free disk space

GPU (optional): NVIDIA GPU with at least 4 GB VRAM for faster computation in
clustering tasks

3 Software Requirements

Programming Language: Python 3.8 or later
IDE/Environment:
o Jupyter Notebook (via Anaconda Navigator or standalone)
e VS Code (Visual Studio Code)
e PyCharm
Additional Tools:
o A browser for opening Jupyter Notebook
« Git for version control (optional but recommended for collaborative work)

4 Library Package Requirements

The following Python libraries are required to execute the notebook. Use the pip command to
install them:
General Libraries

e pandas (Data manipulation and analysis)

« numpy (Numerical computations)

e seaborn (Data visualization)

Machine Learning and Preprocessing
e scikit-learn
o lterativelmputer
« StandardScaler
e KMeans
o PCA (Principal Component Analysis)
« RandomForestClassifier
o LabelEncoder
o train_test_split
 classification_report
e accuracy_score
e GridSearchCV
e catboost
o CatBoostClassifier
e imbalanced-learn
e SMOTE (Synthetic Minority Oversampling Technique)
Deep Learning
o tensorflow
e Sequential
¢ Dense
Other Utilities
o networkx (Graph-based visualizations)
o matplotlib (Graph plotting)
« joblib (Saving and loading models)

+0
28

153

import pandas as pd + B ¥
import numpy as np

import seaborn as sns

from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import KMeans

from sklearn.decomposition import PCA

import matplotlib.pyplot as plt

from matplotlib import pyplot as plt

import networkx as nx

from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import classification_report, accuracy_score
from sklearn.preprocessing import LabelEncoder

from catboost import CatBoostClassifier

from imblearn.over_sampling import SMOTE

from catboost import CatBoostClassifier

from sklearn.model_selection import GridSearchCV

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

import joblib

Figure 1. Packages Used

5 Dataset Description

A dataset consists of a total of 1,800 observations and 97 independent variables that outlines
the various aspects of an individual’s diet. It includes some major category wise variables
like survey _id, Age in years, Sex, exercise frequency and so on with many more variables

2

that will also illustrate the key picture. This data set will provide enhanced capability of
exploring patterns in age, gender, exercise, and other activities affecting health. It can be
rightly aligned to facilitate data preprocessing, EDA and techniques in enhanced modeling.
Because of its broad coverage, the dataset is particularly useful in research that deals with the
potential relation between diet and lifestyle on the one hand, and health outcomes on the
other hand.

The dataset utilized in this study was sourced from the GitHub repository linked to the
research paper “Dietary Patterns and the Gut Microbiome” (DOI:
10.1016/j.ajcn.2022.02.001). The dataset discussed here was originally compiled by
American Gut Project for gathering information from diverse demographic, lifestyle, and
dietary variables. Using this well curated and known dataset, this study takes advantage of
secondary data to analyze dietary patterns and their interactions with individual attributes.

6 Dataset Preparation and Pre-processing

The dataset preparation includes reading into Metadata.csv and performing an overview scan
for null values and corrupt values. Empty values are managed using Iterativelmputer for
precision, whereas duplicate records and ambiguous labeling are avoided.

from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer

Find columns with missing values
missing_columns = data.columns[data.isnuwll().any()}].tolist()
miszsing_columns

["sample_id_microbiome’,
"SAMPLE_NAME",
"shannon',
‘observed_otus",
"chaol',

"simpson’,
*faith_pd"]

iter_imputer = Iterativelmputer{max_iter=18, random_state=8)

Figure 2: Imputer Code For Missing Value

StandardScaler evaluates correlation and LabelEncoder standardizes scales for analysis and
compatibility. The lack of balance in data is handled by oversampling, using SMOTE, and
the feature set is split into train and test data using train_test_split to provide accurate
assessment of the model.

7 Applying K-Means Clustering

In this research, the K-Means Clustering algorithm was employed to analyze dietary data and
identify two primary groups.

1) Healthy

2)Unhealthy

https://github.com/danone/dp5.analysis/tree/main/Data

Applying K-Means clustering (2 clusters for Healthy, Unhealthy)
kmeans = KMeans(n_clusters=2, random_state=42)
clusters = kmeans.fit_predict(dietary_data_imputed)

Adding cluster Labels to the dataset
datal 'Diet_Cluster'] = clusters

from sklearn.ensemble import RandomForestClassifier
dietary_data = dataldietary_columns]

Normalize the data for the RandomForest(lassifier
scaler = StandardScaler()
dietary_data_scaled = scaler.fit_transform(dietary_data)

Train a Random Forest Classifier to estimate feature importance
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(dietary_data_scaled, clusters)

RandomForestClassifier(random_state=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Figure 3. K-Means Cluster Code

8 Model Building

Applied six Machine Learning models namely; Random Forest, Gradient Boosting, SVM,
Neural Networks, CatBoost, and LightGBM. The Random Forest model, after
hyperparameter optimization and SMOTE method.

Random Forest

Training a Random Forest Classifier

rf_model = RandomForestClassifier(n_estimators=10@,random_state=42)

rf_model.fit(X_train, y_train)
RandomrFerestClassifier(random_state=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Moking predictions on the test set
y_pred = rf_model.predict(X_test)

Evaoluating the model
classification_report_output = classification_report(y_test, y pred)

accuracy = accuracy_score(y_test, y_pred)

print{classification_report_output)

precision recall f1-score support

e a.73 a.75 e.74 244

1 8.45 8.42 e.43 116

accuracy 2.64 360
macre avg 8.59 8.59 e.59 360
weighted avg 8.64 9.64 .64 360

accuracy

8.6444444444444445
Figure 4: Random Forest Code

4

Hyperparameter On Random Forest

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV

Defining parameter grid for Random Forest
param_grid_rf = |
‘n_estimators': [1e8, 280, 309],
‘'max_depth': [5, 18, 15],
‘min_samples_split': [2, 5, 18],
‘min_samples_leaf’': [1, 2, 4]

Performing Grid Search for Random Forest
grid_search_rf = GridSearchCV(
RandomForestClassifier{random_state=42),
param_grid_rf,
cv=5,
scoring="accuracy’,
n_jobs=-
)

grid_search_rf.fit(X_train, y_train)

Best parameters and performance
best_params_rf = grid_search_rf.best_params_
best_score_rf = grid_search_rf.best_score_

Evaluating the best model on the test set
best_rf_model = grid_search_rf.best_estimator_
y_pred_best_rf = best_rf_model.predict(X_test)

classification_report_best_rf = classification_report(y_test, y_pred_best_rf)
accuracy_best_rf = accuracy_score(y_test, y_pred_best_rf)
print{best_params_rf)best_score_rf

print("Classification Report of Random Forest")
print{classification_report_best_r¥)

Classification Report of Random Forest

precision recall fi-score support

a a.73 a.96 e.83 244

1 a.76 a.24 e.37 116

accuracy e.73 360
macro avg a.74 a9.60 e.s0 360
weighted avg 8.74 8.73 e.68 360

print{accuracy_best_rf)

B.7385555555555555

Figure 5: Hyperparameter on Random Forest

Gradient Boosting
from sklearn.ensemble import GradientBoostingClassifier

Troining o Gradient Boosting Classifier
gb_model = GradientBoostingClassifier{(random_state=42)
gb_model.fit(X_train, y_train)

GradientBoostingClassifier{random_state=42)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML repr ion is to render, please try loading this page with nbviewer.org.

Maoking predictions on the updoted test set using Grodient Boosting
y_pred_gb = gb_model.predict(X_test)

Evalucting the Gradient Boosting model
classification_report_gb = classification_report(y_test, y_pred_gb)

accuracy_gb = accuracy_score(y_test, y_pred_gb)

print{"Classification Report For Gradient Boost™ ,classification_report_gb)

Classification Report For Gradient Boost precision recall fl-score
e a.73 a.95 e.s83 244
1 e.73 a.26 e.3s 116
accuracy e.73 360
macro avg a.73 a.81 e.se 3se
weighted avg a.73 8.73 e.ss8 368

print("Accuracy For Gradient Boost", accuracy_gb)

Accuracy For Gradient Boost B.7385555555555555

Figure 6: Gradient Boosting
5

support

XGBoost
from xgboost import XGBClassifier

Training an XGBoost Claossifier
xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='mlogloss', random_state=42)
xgb_model.fit(X_train, y_train)

XGBClassifier(base_score=None, booster=None, callbacks=None,
colsample_bylevel=Ncone, cclsample_byncde=None,
colsample_bytree=None, device=None, early_stopping_rounds=Ncne,
enable_categorical=False, eval_metric="mlogless’,
feature_types=None, gamma=Ncne, grow_pclicy=None,
importance_type=None, interactiocon_constraints=None,
learning_rate=None, max_bin=None, max_cat_threshold=None,
max_cat_to_onehot=None, max_delta_step=None, max_depth=Ncne,
max_leaves=None, min_child_weight=None, missing=nan,
monotone_constraints=None, multi_strategy=None, n_estimatcrs=None,
n_jobs=None, num_parallel_tree=None, random_state=22, ...)

in a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Moking predictions on the test set using XGBoost
y_pred_xgb = xgb_model.predict(X_test)

Evalugting the XGBoost wmodel
classification_report_xgb = classification_report(y_test, y_pred_xgb)

accuracy_xgb = accuracy_score(y_test, y_pred_xgb)

print{"Classification Report For XGBoost"” ,classification_report_xgb)

Ciassification Report fFor XGBoost precision recall fl-score support
e a.73 a.a7 e.se 244
1 a.55% a.34 e.42 116
accuracy e.7e 380
macro avg a.64 a.6e e.sl 362
weighted avg a8.67 a.7e e.s7 368

print{"Accuracy fFor XGBoost", accuracy_xgb)

Accuracy For XGBoost ©.6972222222222222

Figure 7: XGBoost

SVM

from sklearn.svm import SWC

Troining aon 5vM Classifier

svm_model = SVC(kernel="linsar', random_state=42)

svm_model .. fit{X_train, y_train)
SVWC(kernel="linear', random_state=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Moking predictions on the test set using SWM
y_pred_svm = svm_model.predict{X test)

EFwvolugstimg the 5vM model
classification_report_swm = classification_report(y_ test, y_pred_swvm}

accuracy_Svm = accuracy_score(y_test, y_pred_swm)

print{"Classification Report For 5VM" ,classification_report_swvm)

Classification Report For SWM precisian recall fl-score support
-] 8.72 8.99 B.E3 244
1 8.91 @.18 B.3g 11&
accuracy B.73 ELT-]
macro avg 8.82 8.59 B.57 11
weighted avg a.78 a.73 B.86 368

print{"Accuracy For 5VM", accuracy_swm)

Accuracy For WM B.73B8555555555555%

Figure 8: SVM

Catboost
from catboost import CatBoostClassifier

Train a CatBoost Classifier
catboost_model = CatBoostClassifier(
iterations=508,
learning_rate=0.1,
depth=6,
random_state=42,
verbose=False

Fit the model on the training dato
catboost_model.fit(X_train, y_train)
<catboost.core.CatBoostClassifier at @x16ab2cl2b7e>

Make predictions on the test set
y_pred_catboost = catboost_model.predict(X_test)

Evaluote the CatBoost model
classification_report_catboost = classification_report(y_test, y_pred_catboost)

accuracy_catboost = accuracy_score(y_test, y_pred_catboost)

print("Classification Report of Catboost")
print(classification_report_catboost)

Classification Report of Catboost

precision recall fl-score support

e a.72 a.87 e.79 244

1 8.52 @.30 .38 116

accuracy 8.89 360
macro avg 8.62 8.59 8.59 360
weighted avg 9.66 8.69 8.66 360

print{"Accuracy For Catboost", accuracy_catboost)

Accuracy For Catboost 8.6861111111111111

Figure 9: Catboost

Lightgbm
from lightgbm import LGBMClassifier

Train o LightGBM Classifier
lgbm_model = LGBMClassifier(
boosting_type="gbdt',

num_leaves=31,
learning_rate=e.1,
n_estimators=1e8,
random_state=42

Fit the model on the training data
1gbm_model.fit(X_train, y_train)

[LightGBM] [Info] Number of positive: 462, number of negative: 978

[LightGBM] [Info] Autc-choosing row-wise multi-threading, the overhead of testing was 8.8@3275 seconds.
You can set ~force_row_wise=true to remove the overhead.

And if memory is not enough, you can set ~force_col_wise=true .

[LightGBM] [Info] Total Bins 83

[LightGBM] [Info] Number of data points in the train set: 1449, number of used features: 9

[LightGBM] [Info] [binary:BoostfFromScore]: pavg=9.320833 -> initscore=-2.749945

[LightGBM] [Info] Start training from score -©.749945
LGBMClassifier{random_state=42)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is ble tor d pl try loading this page with nbviewer.org.

Moke predictions on the test set
y_pred_lgbm = lgbm _model.predict(X_test)

Evaluate the LightGBM model
classification_report_lgbm = classification_report(y_test, y_pred_lgbm)

accuracy_lgbm = accuracy_score{y_test, y_pred_lgbm)

print("Classification Report For LightS8GM")
print{classification_report_lgbm)

Classification Report For LightBGM

precision recall fl-score support

e e.73 a.9e e.se 244

1 a.58 a.28 e.38 118

accuracy a.7e 3682
macro avg a.65 a.59 e.s9 368
weighted avg 8.68 a.7e 8.87 360

print("Accuracy”™, accuracy_lgbm)

Accuracy ©.7927777777777777

Figure 10: Lightbgm

import tensorflow as tf
from tensorflow.keras.models import Seguential
from tensorflow.keras.layers import Dense

swild the model
Build the model

model Sequential(

Dense(&84, activation="relu', input_dim=X_train.shape[1]),
Dense(32, activation="relu'),

Dense(16, activation="relu'),

Dense(len(y.unique()), activation='softmax') # Output Layer

Compile the model

model.compile(optimizer='adam’, loss='sparse_categorical_crossentropy', metrics=['accuracy'])

Irain the model

model.fit(X_train, y_train, epochs=5@, batch_size=32, validation_split=0.2)

Evaluate on test set

loss, accuracy = model.evaluate(X_test, y_test)
print("Neural Network Accuracy:", accuracy)

Figure 11: Neural Network

Saving the best Random Forest model from GridSearchCV
import joblib

Sove the best Rondom Forest model from GridSearchil
model_filename = "best_rf_model.pkl’
joblib.dump(best_rf model, model_filename)
print{f"Model sawed as "{model_filename}"")

Model saved as "best_rf_model.pkl®

Lood the saved model
loaded_model = joblib.load{'best_rf_model.pkl')

Example prediction
y_pred_esxample = loaded_model.predict{X_test)
print{"Example Predictions:", y_pred_example)

Example Predictions: [@8 0B aplapapdoeedpapranlapdpopapeananas
g 08 L=] 1 &

a
a
-]
-]
a
a
a
-]

oW W e o
L
Lo S
[
T @ DD @ e T
[
[T S SO
L= S
R E
L=
L T O L
L=
mom DD @
momm R m e
L -
oD S S D @ @ e
Lo
LI]
HErERRE R E
&S & & & & %
H oD@ e e e e
eSS S S ©

a
a
-]
-]
a
a
a
-]
a

L0 I T
L
=@ D D @ e @ DS
DRI
T T S T T @
[
L=
| HH R R R R R
H R R R R @
L= I
FFRER PR R
L= I
L= O

Figure 12: Saving Final Model

9 Troubleshooting
Library Not Found: Missing libraries need to be installed using the pip install and follow
this syntax command.

<library_name>command.

File Path Errors: Make sure that the dataset file is located in right path.

Runtime Errors: Debug by commenting out a portion of code, identifying a particular cell
which is causing issues, or use of the print statement.

