

Configuration Manual

MSc Research Project
Data Analytics

Zohaib Rasool
Student ID: 23256796

School of Computing
National College of Ireland

Supervisor: Vladimir Milosavljevic

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Zohaib Rasool
…….………

Student ID: 23256796
………..……

Programme: Data Analytics
………………………………………………………………

Year: 2024
…………………………..

Module: MSc Research Project
…….………

Supervisor: Vladimir Milosavljevic
…….………

Submission
Due Date:

24/01/2025
…….………

Project Title: Optimized Convolutional-Recurrent Architecture for Detecting Diverse
Crimes in Real-Time
…….………

Word Count:
1507 10
……………………………………… Page Count ……………………………………….……..

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Zohaib Rasool
……

Date: 24/01/2025
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Configuration Manual

Zohaib Rasool
Student ID: 23256796

1 Introduction

The configuration manual provides details about the hardware and software resources used
during the project in the sections 2 and 3 respectively. Not only that but the steps that were
taken to develop this project are also mentioned in section 4.

2 Hardware Configuration

The experiments were conducted on a system equipped with:

• Intel(R) Xeon(R) CPU @ 2.20GHz
• 16 GB RAM
• NVIDIA Tesla P100 GPU 16 GB

3 Software Requirements

Kaggle code IDE1 platform is used where Python served as the programming language to
build the infrastructure and among all the libraries, TensorFlow framework is used for model
implementation with OpenCV for data pre-processing, OS and Pandas for reading file label
to categorize crime and sklearn, matplotlib and numpy for plotting graphs.

4 Project Development

4.1 Setting up default variables and Loading libraries

Figure 1 Default variables and initial libraries

1 https://www.kaggle.com/code

2

Figure 1 shows the intial libraries that are used during the project that is OS to redirect into
directories for dataset, cv2 for image preprocessing, pandas to read the csv files for labels of
crimes and numpy to perform operations on the images and to plot the graphs. Then there are
the default variables including the dataset file directory, number of classes, image resolution,
number of frames that needs to be extracted from each video and the labels directory.

4.2 Loading Video Frames

Figure 2 Function to load video frames

How a frame is extracted from a video and is converted to grayscale is shown in Figure 2.
Each frame after extraction is firstly resized and then converted to grayscale. After that it is
made sure that correct number of frames are present since the videos are of variable lengths
so the last frame is repeated if the video length is less than of a second.

3

4.3 Class Mappings

Figure 3 Class Mapping for each crime category

Figure 3 tells about the mapping that how each crime category is mapped to encode the
categories.

4.4 Loading the complete Dataset and Labels

Figure 4 Function to load dataset and labels

4

The function load_dataset from Figure 4 also uses the function load_video_frames from
Figure 2. What the function (load_dataset) does is that it loads the videos and their
corresponding labels. It iterates through the directory in which all crime videos are organized
in their folder and keeps reading a csv file for the name of the video file and the label for it as
label 0 means that it is just a normal video and the label for class mappings from Figure 3 are
used to encode the crime label into a numerical value. Not only that but the function also
makes sure if the video file is present or not. Warnings are issued if either the folder, csv or
video file is not present and then the function returns video frames with X and its
corresponding labels y.

4.5 Function to view frames

Figure 5 Viewing frame for each crime category

get_class_samples in Figure 5 is just a simple function that only displays a frame from each
crime category and here a matplotlib is used to view the frames. The class_mappings from
Figure 3 are reversed so that they can be displayed on the image since labels will not mean
anything on the figure rather the crime name needs to be displayed.

5

4.6 Splitting Dataset

Figure 6 Dataset splitting into 60-20-20

Dataset in Figure 6 is split into 60% for training, 20% for testing and validation. The test_size
argument in the first train_test_split fucntion actually prepares the variables X_train and
y_train since these are the training data variables. If test_size is to be changed 0.3 and 0.2
then the training data will be 70% and 80% respectively. The next train_test_split function
actually splits the data for testing and validation so there is a 0.5 split. The argument stratify
plays a very important role since it makes sure that all the classes in y are distributed
accordancing to the number of labels that they have so this makes sure that not only the data
but the classes are also distributed equally. Variables x, y, X_temp and y_temp were then
deleted to reserve memory (RAM).

4.7 Checking class distribution and encoding labels

Figure 7 Converting labels to use in model and checking size

The size of train, test and validation data is verified by using print_class_distribution
fucntion here in Figure 7 and then the labels are converted using to_categorical from keras
which converts the labels into a binary matrix format which is required for tensorflow to train
the model. Lastly the code prints the shape of train, test and validation data so that it can be
verified that data and labels are correctly formatted and aligned for the use in model training.

6

4.8 Models

Figure 8 Version 1 (V1) Architecture

This code from Figure 8 constructs and trains a video classification model into a by using
tensorflow and keras. It begins by creating a build_model function that accepts the number
of dimensions in the input video data (input_shape) and the total number of classes
(num_classes) in the output. First we concatenate the video frames and apply a convolution
operation in the spatial & temporal domain which is called Conv3D. After, they pass trough
ConvLSTM2D that enables to model temporal dependencies based on convolutional
operations. The features extracted is then passed through a deconvolutional layer
(Conv3DTranspose) to increase its spatial dimensions then flattened to a 1D array. A Dense
layer having 128 neurons forms the fully connected layers and the network includes a
Dropout layer, with a drop rate of 50% to minimize overfitting. Lastly, the model produces
the softmax layer which gives the 13 class probability distribution for multi-class
classification. The above model is built with Adam optimizer, categorical_crossentropy loss
function and accuracy as the metric where the optimizer’s learning rate is set to 0.001 by
default. The structure and the details such as parameters of built model are displayed using
the model.summary(). The model in ready for training, while the input shape variables which
include the frames_per_video, image_height and image_width which are properly defined in
Figure 1. Figure 9, Figure 10, Figure 11 are architectures of Version 2 (V2), Version 3 (V3),
Version 4 (V4) and Version 5 (V5) respectively. They all follow the same code structure
except the fact that they have more of the core layers due to incremental development of the
model.

Figure 9 Version 2 (V2) Architecture

7

Figure 10 Version 3 (V3) Architecture

Figure 11 Version 4 (V4) and Version 5 (V5) Architecture

V4 and V5 are the same because V5 is only trained for 100 epochs and V4 is trained for 10 as
to see that how epochs affect the model’s performance.

4.9 Model Evaluation and Plotting Results

Figure 12 Test accuracy and loss

The code in Figure 12 is used to check that how the model is performing over test data and to
print the results. Figure 13 displays the code where model’s training and validation accuracy
and loss is being plotted to visualize the model’s performance when it was in its training
phase over each epoch.

8

Figure 13 Plots for training accuracy and loss

The plot_prediction function in Figure 14 is used to visualize model’s prediction over test
dataset by displaying the true and predicted labels over the images. After creating a reverse
mapping of the original class_mappings, the fuction selects 10 images for normal class and
rest are for the other different classes meaning 20 since 30 is the default parameter set for
sample of images. After then selecting the random indexes, it then appends the variables and
then shuffles them and after that a plot is being made by using the index (idx) and selecting
images from X_test, true labels from y_test and then predicting the labels using
model.predict.

Figure 14 Model performance over test images

9

Figure 15 AUC-ROC score

For AUC-ROC score, sklearn has been used as shown Figure 15. Firstly y_test labels are
one hot encoded using label_binarize and predictions are made using model.predict and then
the AUC is calculated by using roc _auc_score function where average='macro' is used to
compute the average AUC across all classes and multi_class='ovr' for a one-vs-rest strategy.
In Figure 16, the plot for AUC-ROC is made where the false and true postive rate is first
calculated (fpr and tpr) and then the plot is being made where a diagonal dashed line is made
from [0, 1] to [0, 1] in order to represent a baseline of 0.5 AUC and ROC curves for rest of
the classes are plotted.

Figure 16 AUC-ROC plots

10

Figure 17 Bar plots for precision, recall and F1-Score

The code in Figure 17 evaluates and plots the precision, recall and F1-Score where the
plotting is done on the basis of each class. The metrics of each class are called with easy to
identify labels on the bars as well as color differences for easy distinction. Also the weighted
average is printed to provide a summary of all the mertrics.

	1 Introduction
	2 Hardware Configuration
	3 Software Requirements
	4 Project Development
	4.1 Setting up default variables and Loading libraries
	4.2 Loading Video Frames
	4.3 Class Mappings
	4.4 Loading the complete Dataset and Labels
	4.5 Function to view frames
	4.6 Splitting Dataset
	4.7 Checking class distribution and encoding labels
	4.8 Models
	4.9 Model Evaluation and Plotting Results

