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Abstract 

This research proposes a new solution to real-time crime detection by expanding the 
Convolutional Recurrent Auto Encoder (CR-AE) model to detect 12 different types of 
crimes and typical scenes based on video surveillance data. This work utilizes an 
incremental model development approach where Conv3D, ConvLSTM2D, and 
Conv3DTranspose are used to capture spatio-temporal features. Out of the four versions 
of the model developed the best performing model was Version 2 (V2) when the data was 
split into 80-10-10 data split. The proposed model testing accuracy was 84.34% with AUC 
and F1-score being 0.97 and 0.83 respectively, suggesting it would be useful for feature 
extraction and computational requirements. V2 showed an intermediate depth which 
allowed it to generalize well across different crime scenes as it outperformed models with 
higher depth like V4 and V5 that seemed to over-fit. The trade-off relationship found in 
this work between model complexity and available data is critical if the performance of 
models is to be maximized. There is an evident efficiency of the suggested system, yet, its 
weaknesses include the usage of video data only and occasional classification errors. 
Potential future work can include the addition of audio features, more data augmentation 
and the use of attention mechanisms to increase resilience and architecture flexibility. This 
research provides a number of improvements over previous work in automated crime 
detection and presents a solid basis for the application of intelligent surveillance in more 
realistic environments. 

 

1 Introduction 

1.1 Background 
 
The Global Organized Crime Index 2023 tells that organized crime continues to grow around 
the world, with 83% of the world’s population living in high-crime situations1. In order to 
protect people and public property, Closed-Circuit Television (CCTV) systems have been 
installed in almost every corner such as transportation zones, markets, residential areas, schools 
and hospitals. The main goal is to identify any abnormal incident whether it is an accident, 
theft, robbery, shooting and many other events in the most accurate and timely manner because 
social public safety is the priority of the surveillance systems. Unfortunately, these systems 
require humanly resources that is not only tedious but involves a number of shortcomings 
including wastage of time, increased error in anomaly detection and general inefficiency 
because one person has to monitor hundreds of screens at the same time and there are human 
lives at stake. To continuously monitor video surveillance systems at a faster rate with the most 
efficient computing resources, emerging technologies in light computation and deep learning 
algorithms including Convolutional Neural Network (CNN) and Long Short-Term Memory 

                                                                 
 
1 https://globalinitiative.net/analysis/ocindex-2023 
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Networks (LSTM) provide an opportunity for the identification of a range of crimes with higher 
accuracy and less biases as stated by (Annem & Pavuluri, 2023). These approaches are intended 
to solve important issues, including lack of clarity of the crime definitions, the paucity of the 
labelled crime datasets, and the non-stationary and intricate environment of the real world. 
Thus, this research aims at using lightweight yet sound computational approaches to investigate 
efficient solutions towards multiple crime identification. 

1.2 Motivation 
 
The motivation for this work comes from the increasing demand for real time crime detection 
surveillance systems that should detect criminal activities with high accuracy and which are 
capable to be tuned for various real-world problem contexts. The Office of National Statistics 
finds a notable crime increase in robbery, violence with injury and fraud and consumer and 
retail fraud2. With more than 1 billion security cameras all over the world3, Conventional 
methods of surveillance are generally inadequate in responding to dynamic environments and 
therefore may fail to timely detect crucial events or may classify the events inaccurately. 
Moreover, reliance on computationally expensive hardware as a component of such systems 
may confine the implementation of such systems in regions with restrained infrastructure or 
processing power. As mentioned by (Bijoor, Alugubelly, & Aggarwal, 2023), These challenges 
along with the steady increase of various types of crimes underlines a need for research on light 
weight computing approaches which facilitate real time, accurate and efficient crime detection 
systems. 
 

1.3 Research Question 
 
How can diverse crime detection be more accurate and reliable with lightweight computing 
resources? 
 
1.4 Research Objective 
 
This work focuses on designing and implementing an Auto Encoder Convolutional Long Short 
Term Memory Networks (AE-ConvLSTM) for detecting 12 categories of crimes and 
differentiating normal situation in video footage. To that end, this study aims to systematically 
increase the layers in its architecture and test various splits of the dataset to achieve the best 
accuracy, temporal comprehension, and computational time. The specific objectives are as 
follows: 
 

1. AE-ConvLSTM with an encoder-decoder structure with Conv3D, ConvLSTM2D, 
and Conv3DTranspose layers. 

2. Incrementally build up on the different versions of the model (from V1 to V5, V5 
being the final), each time incorporating layers of each major core type in order to 
test its performance implications. 

3. Vary the ratio of training, validation and test data split in a wide range like 60-20-
20, 70-15-15 and 80-10-10 to see the impact of data division. 

4. Compare the results for all the versions of the model with respect to accuracy, 
precision, recall, F1-Score and AUC-ROC score. 

                                                                 
 
2 https://www.ons.gov.uk/peoplepopulationandcommunity/crimeandjustice/bulletins/crimeinenglandandwales/yearendingjune2024 
3 https://www.cnbc.com/2019/12/06/one-billion-surveillance-cameras-will-be-watching-globally-in-2021.html 
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5. Determine which configuration yields the best results with differentiating the type 
of crime and best accuracy. 

 
 
2 Related Work 
 
The use of deep learning in particular and artificial intelligence in general for crime detection 
has transformed modern surveillance systems. CCTV networks are being installed more 
frequently as a result of the increased need for automated procedures that can keep an eye on 
criminal activity. The progress of such technologies is evaluated in this literature review, 
beginning with the application of transfer learning and pre-trained models made to address 
limited data problems. It also elaborates on the idea of more specialized deep learning models 
made to detect specific kinds of crimes, pointing out the specialized development procedure 
required to lower false positives and boost the model's overall effectiveness.   
 

2.1 Leveraging Transfer Learning for Real-Time Surveillance 
Applications 

 
Working with transfer learning allows to prevent lengthy training processes and achieve high 
accuracy rates due to the use of the models previously trained by other individuals. In their 
paper, (Ilyas, Obaid, & Bawany, 2023) discuss how to use transfer learning to improve 
aggressive activities in video surveillance. When working on videos, it's crucial to keep in mind 
that pre-existing models like Residual Neural Network (ResNet) and Visual Geometry Group 
(VGGNet) are used to extract features from the video's frames. These models are then trained 
for improved fine-tuning for specific purposes, including violence detection. The primary 
advantage is that these pre-trained networks perform effectively when fine-tuned on a new task 
with low quantities of data, requiring less specialized material from the domain. In a similar 
vein, (Mathur, Chintala, & Rajeswari, 2022) used audio signals and video footage to detect 
illegal activity. By adding scream detection, an additional warning that indicates a threat, this 
study broadens the application of deep learning. While both pieces aim to improve the 
effectiveness of real-time monitoring, the former is more focused on visual data presentation, 
while the later suggests an audio-visual approach to the issue of precise detection, especially 
in environments that are difficult to identify. 
 In the paper by (Viswanatha, et al., 2024), the authors who have proposed evaluating pre-
trained CNN models, considered models like ResNet50, MobileNet, and EfficientNet for 
evaluation. All these models were trained on a total of 2,766 video samples; violent and non-
violent; using transfer learning approaches. It can be seen that for fine-grained feature 
extraction and achieving the highest F1-score of 96% ResNet50 was utilized while for 
achieving the results with the constraint of resources MobileNet outperformed.  (Xue, Chen, & 
Fang, 2020) suggested conceiving the spatial temporal feature maps as Video Energy Vectors 
(VEV), reducing the dimension to time series vectors. In addition to being highly accurate, this 
approach was integrated with Support Vector Machines (SVM) for classification which 
improved computational speed enabling real time anomaly detection on high-speed video 
feeds. 
 These studies demonstrate the growing availability of deep learning in video surveillance 
by demonstrating the transition from visual-only to visual-and-audio detection systems. The 
deep learning model that has been created for architecture for various criminal acts will be 
described in the following part. 
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2.2 Advanced Deep Learning Architectures for Crime Detection 
 
A new CNN architecture for criminal recognition, more especially, theft and assault is 
presented in the study by (Nojor, et al., 2022). By focussing on particular traits associated with 
these actions, this study also highlights the necessity of designing the neural network in a 
unique manner that is suitable for the type of crime. Therefore, the model's flexibility and fine-
tuning are crucial for increasing accuracy across a range of use scenarios. Then, by combining 
both 2D and 3D, (Jan & Khan, 2022) application expands on the current CNN usage pattern 
and provides extensive coverage of illegal activity. This is because the model can now include 
both static and dynamic aspects of the video data, which guarantees accurate detection of 
complex behaviours like assault and vandalism. Because the study's main focus is on the 
surveillance system's application, concerns like its resilience and flexibility must be the main 
focus. 
 Researchers proposed to design deep learning models for solving crime issues where 
advanced architectures and augmentation features are utilized to handle determined crime 
situations. Similarly, in (Vosta & Yow, 2022) the authors used ResNet50 for spatial analysis 
and ConvLSTM for temporal analysis. Training on video sequences, the model detected acts 
of violence; the binary classification accuracy was 81.71% based on AUC. For pose 
information, (Kilic & Tuceryan, 2024) used Google Mediapipe on pose detection and 
DeepFace on emotion detection. These features were input to the Vision Transformer (ViT) 
with 4 encoder layers and 8 attention heads with which it was able to recognize behavioral 
patterns commonly associated with shoplifting with a success rate of 95%. Building on this,  
(Kilic & Tuceryan, 2024) used activity information derived from optical flow to capture 
temporal activity movement, raising accuracy to 96%. 
 However, in order to identify suspicious activity, (Singla & Chadha, 2023) used the object 
detection concepts that have been established using a combination of traditional machine 
learning techniques and advanced modern processes. This study demonstrates how to improve 
the detection of abnormalities in crowded environments by combining machine learning 
techniques with traditional methods like background subtraction. Because the dual technique 
checks the detected object with the database of behavioural patterns linked to criminals, it also 
addresses false positives. 
 The propensity to create better and more specialised detection models is demonstrated by 
the comparison of specialised models. This section illustrates the shift from general object 
detection to specific crime detection systems. This paper's following section will outline how 
these models are used in real-world situations and go into additional detail about the moral 
ramifications. 
 
2.3 Challenges in Real-Time Systems and Computational Trade-Offs 
 
The authors of the paper by (Sivakumar, V, R, & S, 2021) describe a number of features of 
real-time crime detection systems in relation to their real-world use. This study demonstrates 
the ability to manage live video streams and sound alarms about possible threats almost 
instantly. The paper also highlights the significance of the optimised algorithm, which 
combines the speed and accuracy of improved computer vision models and includes You Only 
Look Once (YOLO) and Single-Shot Detector (SSD). It highlights the reality that, frequently, 
attaining real-time detection performance lowers detection precision, particularly in situations 
where the environment is changing. Here, a counterargument about the morality of these 
technologies is provided by the study by (Pisati, Astya, & Chauhan, 2024). Among the 
noteworthy characteristics mentioned are the potential for selection bias and the necessity of 
developing standards for the use of AI systems. In their writings, the authors emphasise the 
value of transparent and unbiased AI models, particularly in fields like public security where 
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errors can have disastrous results.  (S, M, T, & S, 2022) discuss how CNN architectures can be 
implemented to satisfy the requirements of specific surveillance scenarios. The goal of this 
research is to improve the model architecture so that there is as minimal delay as possible 
between the occurrence of a crime such as vandalism or unauthorised entry and its detection. 
 The problem of increasing the speed of operations while ensuring maximum accuracy is one 
of the critical issues in contemporary systems for criminal identification.  (Jangam, Mohite, 
Nayak, & Nimkar, 2023) used algorithms like Video SUMMarization (VSUMM) and Scale-
Invariant Feature Transform (SIFT) to extract keyframes from concrete video segments, 
compromising narrow number of frames by 90% and duration time by 67% of original result. 
The authors experimented with these methods using action detection models including 
SlowFast and UniformerV2, to achieve 84.53% of average accuracy. (Basthikodi, Vidya, Pinto, 
Basith, & Rao, 2024) used for violence detection while YOLO was used for crowd density 
estimation for dual use. The alerts were implemented in real-time through Telegram 
notifications and the system produced extremely high accuracy of 96%. These methods 
underscore the fact that reducing the computation time comes with a binding inverse 
relationship with the level of detection accuracy that often is rectified in AE-ConvLSTM model 
by employing spatial-temporal analysis alongside efficient forms of encoder-decoder 
architectures. 
 Regarding the efficacy of such systems, it should be noted that while they demonstrate the 
potential for real-time crime detection, there are some moral considerations that merit 
consideration. The ethical implications of using technology like surveillance and the possible 
bias of detection methods on privacy will be examined in the section that follows. 
 
2.4 Dataset Limitations and the Integration of Feature-Rich Models 
 
The work by (Purushotham, et al., 2024) gives important conclusions about the ethics of AI-
driven surveillance in the context of the topic mentioned above. It emphasises how biased data 
can lead to unfair results, which in turn fuel prejudice in society. In order to prevent situations 
that could result in misuse of the available technology, the study lastly questions transparency 
in the design of these systems and in their implementation. Making sure that these technologies 
are not unduly designed to target particular demographics or violate privacy is an ethical 
concern. Furthermore, (Sheela, Balaji, Balaji, & Kumar, 2023) provide a thorough examination 
of the many data sets that have been employed by crime detection researchers. Unbalanced 
datasets that  may accurately depict a range of scenarios and populations are one of the major 
issues that persist in machine learning, according to the report. For instance, the model may 
learn to handle a particular type of crime or set of conditions but perform badly in areas that 
are not as commonly represented in training. This can have the same kind of effect and result 
in bias in the training results. It suggests that larger arrays of data sets, encompassing various 
contexts and types of criminal incidents, must be included. 
 Handling datasets across space and time is always a difficult question in crime detection 
studies.  (Rendón-Segador, Álvarez-García, Salazar-González, & Tommasi, 2023) eliminated 
this through adversarial training and Neural Structured Learning (NSL). The authors added 
graph-based relationships between adversarial neighbours to enhance generalization across 
datasets, resulting in Receiver-operating characteristic curve (ROC) Area Under the Curve 
(AUC) gains of up to 16.50%. Authors (Jyothi, et al., 2023) made the use of face and action 
detection for crime prevention by keeping in mind the ethical considerations which was 
maintained by using Haar-cascade detectors for face detection and MobileNetV2 for action 
classification. However, the authors also pointed to the inherent problems with bias in datasets 
and dependence on high-quality visuals for optimal performance. Enhanced real-time anomaly 
detection and feature analysis of surveillance video based on time series for privacy was done 
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by authors (Xue, Chen, & Fang, 2020) who used customized subsets of the UCF-Crime dataset, 
using Combined-Difference-Image (CDI) techniques to improve the extraction of motion 
features, thus improving the anomaly detection when there is limited resources. 
 In order to overcome these limitations, it is necessary to comprehend and address ethical 
concerns as well as ensure that the databases utilised include crimes of all kinds. The final 
section will outline the field of research and offer suggestions for how it might advance to 
better serve society. 
 
2.5 Advanced Hybrid Architectures for Anomaly Detection 
 
The framework of CR-AE was proposed by (Yang & Wang, 2022) where ConvLSTM has been 
integrated in a single end-to-end model for detecting anomalies in videos. This hybrid model 
performs well in spatial randomness and temporal correlation that allow for effective detection 
of abnormities in video sequences. This CR-AE uses a convolutional decoder for reconstructing 
video frames and computing the reconstruction loss for determining the anomalous points of 
view due to the fact that it is much more complex to reconstruct anomalous videos than normal 
ones. This approach helps avoid the necessity for carrying additional feature extraction, thus 
making the detection pipeline narrower and potentially more efficient. 
 Even though CR-AE achieved near to the state-of-the-art results in UCSD Ped2 and 
ShanghaiTech datasets where frame-level AUCs of 95.60% and 73.10% respectively has been 
obtained, it does not identify the type of anomalies or crimes. However, in doing so it fails to 
differentiate a crime such as theft, assault or vandalism as a sign of disorder rather than 
categorizing all three as deviations that. As a result, this limitation reduces its suitability for 
use where crime categories need to be categorised in detail. Its end-to-end design nonetheless 
provides high generalization capabilities with respect to different datasets and various 
situations. Based on the fact that the model aims at detecting anomalies instead of classifying 
instances or individuals, it posits itself as a generalized solution to real-world video 
surveillance, and this is accompanied by an opportunity for further enhancement to solve 
challenges related to crime type categorization. 
 
2.6 Identification of Research Niche and Future Directions 
 
The detection of crimes through deep learning has seen an improvement in all the following 
aspects: transfer learning, the architectures, real time systems, and datasets. However, some of 
the essential issues and research gaps prevails which shows that there is scope of more research 
in this area. 
 There is one significant limitation: In the realistic setting, transfer learning is used in real-
time detection systems. Although models like ResNet50 and MobileNet are fast in utilizing 
pre-trained weights to reduce training time, a number of areas of application of these models 
are limited by resources and variability of the source datasets. Previous literature mainly tries 
to identify anomaly but does not give much attention to investigate context-specific behavior 
such as type of crime categorization. Thus, the following questions is proposed for future 
studies that how should more flexible architectures be designed in order to incorporate crime 
detection problem with multiple classes without compromising the running time? 
 Regarding specific models in deep learning at the current stage, ViT and hybrid models of 
CNN-LSTM are highly effective in identifying certain types of crime, for example, theft in the 
store or vandalism. Nevertheless, these architectures are frequently fine-tuned for specific 
kinds of crimes and therefore can hardly be applied to other types of crimes. Moreover, pose, 
emotion, and activity analysis improve the detection capabilities but are not often incorporated 
into a single framework to encompass a broad range of crimes classifications. It is inevitable 



7 
 

 

that future work should focus on merging such contextual features with spatial-temporal 
modeling for developing manageable and transferable work. 
 Even though heavy development has been done in the real-time systems, computation is still 
a trade-off. Milestone-based methods such as keyframe extraction and fast object detection 
(e.g., YOLO, SlowFast) enhance processing rates but degrade recognition performance, 
especially in crowded scenes with multiple activities. It is high time for architectures that can 
be implemented in real-time application while providing a high level of multiple class crime 
detection. Furthermore, these systems need to be scalable to support large scale integration into 
existing public safety infrastructures, a problem due to the resource constraints in many of these 
networks. 
 Data set limitation also persists as a serious issue in the examination of crime detection. The 
consequences of having an imbalance dataset are that it may bring bias when training which 
has poor generality in a variety of situations or different type of crime. Despite or perhaps due 
to these high-level approaches, new methods such as adversarial training and neural structured 
learning provide a much-needed improvement in generalisation but often with lower levels of 
fine-grained control needed for inherently vibrant and multi-class crime datasets. These 
shortcomings will of course persist and will require diverse and feature rich datasets to mitigate 
and develop models that work efficiently in real world scenarios. 
 Finally, despite the innovative structure of the more complex hybrid models, such as the 
CR-AE, the models are developed for spatial-temporal predictions and none is effective in 
crime type classification. This limitation makes it important for the hybrid architectures to not 
only recognize the existence of a crime event but also categorize it. Solutions to such models 
should include efficient spatial-temporal mechanisms, effective features depending on their 
contexts and the ability to classify through a vehicular ad hoc network. 
 These gaps are handled by AE-ConvLSTM model due to the combination of transfer 
learning, the enhanced architectures and the spatial temporal modeling. It solves the problems 
of the existing approaches by using Conv3D, ConvLSTM, and Conv3DTranspose in an 
incremental setup that can be expanded to accommodate new layers and future developments. 
Thus, with simultaneous detection and classification of 12 crime types, the need in detailed 
crime typification is satisfied simultaneously with meeting the requirement of generalization 
across datasets with systematic performance validation with respect to varying data splits. Such 
a basis has been established by the current work at a level characterized by scalability, 
efficiency, and flexibility, making further development possible in the future. 
 
3 Research Methodology 
 
This section of the paper includes a detailed elaboration of the research method used to design 
and test the deep learning model for crime detection. This is the most important part and it 
incorporates a number of steps and approaches and the hybrid artificial neural networks 
features with special focus on the CR-AE. This paper depicts the stages of the methodology to 
include data selection and pre-processing, model design, training and validation and justifiable 
use of evaluation metrics. Figure 1 depicts an overview of the complete methodology followed 
in the research, highlighting the major steps taken which are described in the following 
sections. 
 

 
Figure 1 Overview of Research Methodology 
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3.1 Data Selection and Preparation 

The dataset utilized for this research is the DCSASS4 dataset, which includes videos 
categorized into 13 classes: five major crimes and seven minor crimes, together with a normal 
type. This variety also means that the dataset corresponds to the needs of practical observation, 
where various types of accidents need to be detected. 
 The Normal category rate best this list with a total of 5,846 frames; this might be because 
a lot of legitimate acts go unnoticed in surveillance videos. Analyzing the crime categories in 
Figure 2, the most frequent one is Burglary and the frequency totals 523 frames, while the 
second place belongs to Arrest with 497 frames and Robbery category has 489 frames. Other 
important categories include Abuse which has 372 frames, Shooting with 304 frames and 
Stealing with 322 frames and many others. Similarly, rare are event categories that include 
Road Accidents containing 97 frames and Explosion containing 158 frames that show that the 
dataset covers a variety of criminal events. 
 This distribution reinforces the coverage of our dataset to construct a model capable of 
identifying and classify various kinds of crimes in video surveillance systems. 

Figure 2 Distribution of classes 

This dataset was selected based on its broad spectrum of crime situations; this means the model 
can be tested on various kinds of crime situations. To ensure the consistency and reliability of 
the data: 

• Crime videos were sorted into directories by crime category, and labels in Comma
Separated Value (CSV) files corresponded to the folders.

• Clips were taken from full videos and then converted to frames which were then
modified to have the same size of 256x256 resolution. Blending was removed in order
to decrease computational burden, nevertheless, significant outlines were preserved by
channelling picture into grayscale.

• In the shorter videos, if a few frames were observed to be skimmed, the final frame is
to be used, while in the longer videos, the videos were first subsampled to have an
equivalent number of frames as the rest of the videos.

4 https://www.kaggle.com/datasets/mateohervas/dcsass-dataset 
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 A sample of the output of the step is illustrated in Figure 3 thereby guaranteeing the 
qualitative nature of the raw data to be used for further processing. 
 

Figure 3 Sample of each frame from each category of crime 
 

3.2 Model Architecture 
 
The hybrid model is based on the CR-AE which has been presented for the first time from 
(Yang & Wang, 2022). The architecture incorporates: 
 

• Conv3D Layers: Analyzing video frames, these extract spatial features from video 
frames. 

• ConvLSTM2D Layers: These preserve temporal dependencies and further reshape 
temporal patterns. 

• Conv3DTranspose Layers: These upsample the feature maps making reconstruction 
as well as classification easy. 

 
 The incremental enhancement approach, proposed in this research for the first time, 
involved step by step addition of layers to measure its effectiveness in terms of classification 
accuracy and time complexity. A typically used methodology was employed in this model 
where the model was trained to look for anomalies but the range of the work was broadened, 
meaning it aimed to identify certain crime types instead of that is there a crime or not only in 
the AE-ConvLSTM framework which is illustrated in Figure 4. 
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Figure 4 Overall architecture of the proposed AE-ConvLSTM model 
 
3.3 Training and Validation 
 
The dataset was split into training, validation, and test sets using stratified sampling to preserve 
class distribution: 
 

• Configuration 1: 60% Training, 20% Testing, 20% Validation 
• Configuration 2: 70% Training, 15% Testing, 15% Validation 
• Configuration 3: 80% Training, 10% Testing, 10% Validation 
 

 The target variables were its labels and since multi-class classification was to be performed 
on it, the labels were one-hot encoded. The optimizer used here is the Adam optimizer that 
updates its learning rate to 0.001 due to the possibility of adaptive learning. In training, 10 
epochs were used (only V5 which is the same architecture as of V4 was trained for 100 epochs), 
with batch size of 8 and the use of early stopping to minimize over-learning. 
 
3.4 Evaluation and Statistical Analysis 
 
To evaluate the model's performance: 
 

• Metrics such as accuracy, precision, recall, and F1-score were computed for each class. 
• AUC-ROC curves were plotted to assess the model’s discrimination ability across 

classes. 
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 Additionally, comparisons were drawn with the state-of-the-art methods discussed in the 
related work section, highlighting improvements in accuracy and computational efficiency 
achieved through the incremental design approach. 
 
4 Design Specification 
 

Figure 5 Design Process Flow for Crime Detection 

This proposed system in Figure 5 aims at a three tier architecture model which includes the 
Data Tier, Logic Tier and Presentation Tier. This architecture provides a good distributed, 
flexibly scalable, and efficient way to implement and manage the crime detection system. 
Every level has specific tasks; by doing so, it provides solutions to data preparation, model 
computations, and results delivery. 
 The first tier is the data tier with specific roles include sourcing, collecting, preprocessing 
and arranging of raw video data to be analyzed. Data preprocessing is the process of cleaning 
the data and essential steps are crucial for normalizing the inputs. First, the frames of videos 
are resized to 256 x 256 spatial dimension to reduce computational burden and improve 
consistency of the spatial dimension. The pixel intensity values are scaled to be between 0 and 
1 it makes the training process more stable and faster. 
 This feature is achieved through some temporal information preservation by sampling same 
number if frames from each of the video sequences while at the same time avoiding over-
complexity and poor manufacturing of features. The labels of each video sequence are then 
one-hot encoded for the data to be in a ready format for multi-class classification. This 
preprocessing helps make the data clean, more structured and most importantly preparing the 
layers for the analysis done in the next layers.  
 The logic tier consists of the essential aspects of the system, and contains the execution of 
the deep learning model by using Tensorflow. The architecture is tailored to process space-
time features of video data. The input layer takes sequences of preprocess videos in a format 
of (frames, height, width, channels). 
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 Spatial feature extraction is done through a set of Conv3D, which perform patterns like 
movement and object shapes from individual frames. These layers gradually decrease in spatial 
sampling while enhancing its feature map to be meaningful. The dependency between time 
frames in videos is also captured by ConvLSTM2D, which captures sequences typical of 
specific crimes. The temporal and spatial analysis combine to allow the system to identify 
dynamic patterns in space over time. 
   Layers are used for reconstruction and upscaling of the feature maps of the extracted 
spatial-temporal features. This reconstruction helps altering ‘interpretability’ and in fact, 
augments the model capacity to bring accurate predictions. Last but not least, the reconstructed 
features are flattened and fed to dense layers; the softmax activation function transforms the 
features to the 13 output classes which give probabilistic values to each type of crime. 
 The model is trained using different configurations for the training, validation, and the 
testing of the model. The training process involves the categorical cross-entropy as the loss 
function and the Adam optimizer for faster update of parameters. The Logic Tier is the core 
layer of the system responsible for complex spatial-temporal computing and providing crime 
type prognosis. 
 The Presentation Tier is on the preparation and presentation of the outcome of the analysis 
in a form that is understandable by the user. The outputs of the system are aligned and 
interpreted on this tier to make sense and be useful to its users. 
 In the presentation tier the results are illustrated using matplotlib by using different 
illustrative methods such as ROC for all crime categories and accuracy for all classes to show 
classification performance of the model. Other measurement tools such as precision, recall 
and F1 Score give a more detailed understanding of the when the model is right and when it 
is wrong. Next to each input video sequence, the predicted class as well as the confidence 
scores for each class are then displayed, providing an informative view on the models output. 
 Indeed, the presentation tier can be further developed in real-world applications to include 
real-time alerting systems in response to criminal activities based on the generated model. This 
tier makes not only the result of the system reflection the degree of reliability and usefulness 
in criminology field, but also its preparedness for being an effective tool in crime detection and 
prevention. 
 Python is the programming language used throughout and even throughout the real-time 
crime prevention in surveillance videos, this three-tier architecture promotes a proper and 
orderly manner to follow. Due to the modularity of the approach it is flexible, possible to state 
that it has a clear division of labor, and new changes can be integrated easily, so it seems to be 
very reliable in terms of meeting the difficulties of crime detection. 
 
5 Implementation 
 
This section incorporates a set of significant steps in the process of the system’s 
implementation – data preparation, including data arrangement and pre-processing, and the 
development, evaluation, and testing of the model. This section captures how the data was pre-
processed, how the model was built incrementally as well as how the established evaluation 
metric was used to evaluate the performance of the model. The Integrated Development 
Environment (IDE) used during the development of the complete system was Kaggle’s 
provided code editor because of the fact that Kaggle provides the most hardware resources with 
the best computation and usage capacity and not only that but the libraries used during the 
development are also discussed. 
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5.1 Data Arrangement and Reading 
 
For this implementation, the dataset which consisted of videos grouped into crime category 
with each category included label information in CSV format files. The implementation started 
with the use of these CSV files to gain filenames and labels; which form a mapping between 
videos and categories. Employing some of Python libraries such as Pandas and OS, each video 
clip was recognized, and its path was built dynamically starting with the category folder and 
the specific filename of the video. 
 For better processing the implementation involved additional features of error checking to 
effectively deal with mistakenly missing or wrongly placed files from the CSV structures and 
the actual folder structures. The systematic arrangement ensured that all data could be read and 
processed by the model without the model realising the difference. 
 
5.2  Frame Extraction and Labelling  
 
After the video files were identified from folders as shown in Figure 6, frames were extracted 
from each of the videos using OpenCV. Each video was then split into a one number of frames 
so that across the entire sample timestamps were equally represented. The number of frames 
was set to be optimal on what can provide good temporal characterization without being much 
computational expensive. 
 Every frame obtained was given a label equalling the category of its associated video 
according to the CSV mapping. This approach allowed every frame to be labelled and 
processed by the model collectively with its associated categories for individual frames. If the 
number of frames in the video was not enough to reach the fixed frame number, the last frame 
was used several times for the needed number of frames and in longer videos, frames were 
sampled at equal time intervals. 
 

 
Figure 6 Folder structure of DCSASS dataset 

 
5.3 Grayscale Conversion  
 
In order to lower the dimensionality of the feature space and also avert computational load all 
the frames were changed to black and white. This step also helped in preserving some of the 
spatial features needed for crime detection and at the same time reducing on the amount of data 
which resulted in low computation cost. The frames were also resized to 256x256 pixels to 
standardize input dimensions, ensuring compatibility with the Conv3D layers used in the 
model. 
 The grayscale conversion was done using OpenCV and the cv2.cvtColor() function was 
used for the same. This made the data less large while preserving features such as object 
boundaries and motion profiles which are vital in crime tracking. 
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5.4 Incremental Model Development 
 
As for the design and optimization of the architecture for detecting different types of crime, an 
incremental approach was chosen as a more successful strategy. Through constructing four 
versions of the model, the precise methodology of the work allowed not only to keep the 
acceptable computational parameters and accommodate the detailed spatial-temporal 
properties of the given dataset. This section elaborates why and how each version was 
constructed and what can be learnt from an iterative approach. 
 
5.4.1  Version 1 (V1): Foundational Framework 
 
The first version with the breakdown of architecture shown in Table 1 provided a basic 
structure which consists of only one layer to perform space-time feature extraction and 
synthesis. V1 included Conv3D Layer which extracted minimum spatial characteristics of the 
input video frames like movements and stationary objects. There is also the ConvLSTM2D 
Layer that captured temporal relationships of frames in order to identify temporal patterns in 
dynamic action. Finally, the Conv3DTranspose layer reconstructed the spatial-temporal 
features into a higher-dimensional space, making it easier to interpret and classify. 
 This version gave a starting point of how the basic layers behave and how they engage 
themselves on the dataset. Despite being less complex, V1 had low computational demands 
necessary for detecting intricate actions or detailed behaviour, especially where variations 
prevailed in videos. 
 

Table 1 Architecture breakdown of Version 1 
Layer Input Kernel Size Stride Output Connected  To 

Input 1 x 256 x 256 - - 1 x 256 x 256 Conv3D 

Conv3D 1 x 256 x 256 3 x 3 x 3 1x2x2   128 x 128 x 64 ConvLSTM2D 

ConvLSTM2D 128 x 128 x 64 3 x 3 - 128 x 128 x 64 Conv3DTranspose 

Conv3DTranspose 128 x 128 x 64 3 x 3 x 3 1x2x2   256 x 256 x 64 Flatten 

 
5.4.2  Version 2 (V2): Improved Modelling for Spatial-Temporal Data 
 
In V2, as shown in Table 2, a second layer was added to each of the core components and this 
enhancement helped the model to capture better the level of spatial details and more resilient 
temporal relationships. Thus more abstract spatial pyramids like overlapping parts or fine 
movement could be detected by deepening the network with the Conv3D layers. The 
ConvLSTM2D layers became capable of recognizing longer sequences, enhancing their 
function for extended or recurrent movements. Conv3DTranspose layers improved the 
reconstruction process and made it possible to capture fine grained detail of spatial-temporal 
interactions. 
 The performance increase was evident in the model and especially for crime types involving 
motions such as assaults. While it expanded the depth it also brought with it the potential for 
overfitting which needs more careful tuning and regularization and validation. 
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Table 2 Architecture breakdown of Version 2 
Layer Input Kernel Size Stride Output Connected  To 

Input 1 x 256 x 256 - - 1 x 256 x 256 Conv3D 

Conv3D 1 x 256 x 256 3 x 3 x 3 1x2x2   128 x 128 x 64 Conv3D_1 + 
ConvLSTM2D 

Conv3D_1 128 x 128 x 64 3 x 3 x 3 1x2x2   64 x 64 x32 ConvLSTM2D_1 + 
Conv3DTranspose 

ConvLSTM2D 128 x 128 x 64 3 x 3 - 128 x 128 x 64 Conv3DTranspose_1 

ConvLSTM2D_1 64 x 64 x32 3 x 3 - 64 x 64 x32 Conv3DTranspose 

Conv3DTranspose 64 x 64 x32 3 x 3 x 3 1x2x2   128 x 128 x 64 Conv3DTranspose_1 

Conv3DTranspose_1 128 x 128 x 64 3 x 3 x 3 1x2x2   256 x 256 x 64 Flatten 

 
5.4.3  Version 3 (V3): Complex Feature Hierarchies 
 
V3 added The third level for every primary component predominately enhancing the depth of 
the model from V2 as displayed in Table 3. V3 seek to overcome some of the weaknesses 
spotted on this version to allow the network to capture complex spatial-temporal relationships 
existing in the dataset. Conv3D Layers with three layers, the network is capable to learn the 
spatial hierarchies and recognize the details differences of the shape or movement of the objects 
in a video. New to ConvLSTM2D layer, these layers were now able to understand multi-step 
temporal patterns which increase the rate of correct action detection span over time. 
Concerning the Conv3DTranspose Layers, the added depth was useful in more precise 
reconstruction of high level features hence improving on the models spatial-temporal mapping 
features to classes. 
 V3 showed enhanced accuracy and performance, although the training process was 
proportional to the computational overhead. Thus, the complexity grew higher, and this 
required a far more rigorous analysis to check the applicability on other data. 
 

Table 3 Architecture breakdown of Version 3 
Layer Input Kernel Size Stride Output Connected  To 

Input 1 x 256 x 256 - - 1 x 256 x 256 Conv3D 

Conv3D 1 x 256 x 256 3 x 3 x 3 1x2x2   128 x 128 x 64 Conv3D_1 + 
ConvLSTM2D 

Conv3D_1 128 x 128 x 64 3 x 3 x 3 1x2x2   64 x 64 x32 Conv3D_2 + 
ConvLSTM2D_1 

Conv3D_2 64 x 64 x32 3 x 3 x 3 1x2x2   32 x 32 x 16 ConvLSTM2D_2 + 
Conv3DTranspose  

ConvLSTM2D 128 x 128 x 64 3 x 3 - 128 x 128 x 64 Conv3DTranspose_2 

ConvLSTM2D_1 64 x 64 x32 3 x 3 - 64 x 64 x32 Conv3DTranspose_1 

ConvLSTM2D_2 32 x 32 x 16 3 x 3 - 32 x 32 x 16 Conv3DTranspose 

Conv3DTranspose 32 x 32 x 16 3 x 3 x 3 1x2x2   64 x 64 x32 Conv3DTranspose_1 

Conv3DTranspose_1 64 x 64 x32 3 x 3 x 3 1x2x2   128 x 128 x 64 Conv3DTranspose_2 

Conv3DTranspose_2 128 x 128 x 64 3 x 3 x 3 1x2x2   256 x 256 x 64 Flatten 
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5.4.4  Version 4 (V4): Spatial-Temporal Pattern: Exploring the Last Inch 
 
In the last version, the V4, clearly proved to be the most developed version of the model, as 
the four layers were provided for each of the core components illustrated in Table 4. This depth 
was intended to engage the spatial-temporal characteristics in the dataset in a manner that, the 
model can solve even the most complicated patterns of crime. As for the special features, the 
four Conv3D actually constructed dense and multi-scale representations of the spatial regimes, 
ranging from low-level components, such as edges and contours, to high-level organization 
units of objects and scenes. The temporal dynamics are now being handled by the four 
ConvLSTM2D layers that offered enriched depth in following sequenced patterns to identify 
minor temporal patterns in dynamic actions. After the reconstruction where the 
Conv3DTranspose layers help in enhancing and enlarging features, it is guaranteed that 
necessary cooperation between extracted patterns and their related crime categories was 
established. 
 As it can be noted, a model for V4 had better performance in most evaluation criteria but 
much costlier to compute. The concept was intentionally more complex than necessary for 
simplicity’s sake but provided higher resolution, commonly needed for live monitoring. 
 

Table 4 Architecture breakdown of Version 4 
Layer Input Kernel Size Stride Output Connected  To 

Input 1 x 256 x 256 - - 1 x 256 x 256 Conv3D 

Conv3D 1 x 256 x 256 3 x 3 x 3 1x2x2   128 x 128 x 64 Conv3D_1 + 
ConvLSTM2D 

Conv3D_1 128 x 128 x 64 3 x 3 x 3 1x2x2   64 x 64 x32 Conv3D_2 + 
ConvLSTM2D_1 

Conv3D_2 64 x 64 x32 3 x 3 x 3 1x2x2   32 x 32 x 32 Conv3D_3 + 
ConvLSTM2D_2 

Conv3D_3 32 x 32 x 32 3 x 3 x 3 1x1x1   32 x 32 x 16 ConvLSTM2D_3 + 
Conv3DTranspose 

ConvLSTM2D 128 x 128 x 64 3 x 3 - 128 x 128 x 64 Conv3DTranspose_3 

ConvLSTM2D_1 64 x 64 x32 3 x 3 - 64 x 64 x32 Conv3DTranspose_2 

ConvLSTM2D_2 32 x 32 x 32 3 x 3 - 32 x 32 x 32 Conv3DTranspose_1 

ConvLSTM2D_3 32 x 32 x 16 3 x 3 - 32 x 32 x 32 Conv3DTranspose 

Conv3DTranspose 32 x 32 x 16 3 x 3 x 3 1x1x1   32 x 32 x 32 Conv3DTranspose_1 

Conv3DTranspose_1 32 x 32 x 32 3 x 3 x 3 1x2x2   64 x 64 x32 Conv3DTranspose_2 

Conv3DTranspose_2 64 x 64 x32 3 x 3 x 3 1x2x2   128 x 128 x 64 Conv3DTranspose_3 

Conv3DTranspose_3 128 x 128 x 64 3 x 3 x 3 1x2x2   256 x 256 x 64 Flatten 

 
5.4.5 Rationale for Incremental Development 
 
This paved way to the incremental approach because by implementing architectural depth 
systematically, this was able to uncover both the strengths and weaknesses of the model in 
extracting, modeling and reconstructing features. All the versions were useful as they gave an 
understanding of the fact which aspects of the model were strong, and which parts may in fact 
be costly in terms of time and resources. This approach meant that the final architecture, V4, 
was grounded in data and actually implementable in the real world. 
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5.5 Data Splitting Configurations 

To evaluate the model's performance under different conditions, three configurations of data 
splits were experimented with: 70-15-15, 60-20-20, 80-10-10. Different proportions of data 
were allocated for training/validation/testing for each configuration in order to perform a 
comprehensive study of the model’s capability of learning and generalizing. 

5.5.1  60-20-20 Split: Balanced Training and Testing 

In the first configuration 60% of the data was used for training, 20% for validation, and 20% 
for testing. With this split, a good amount of data was reserved for validation and testing and 
this configuration was particularly useful for: 

• How well can the model generalize to new data.
• A way to reduce the risk of overfitting since validating on a relatively large validation

set.
• To provide a robust test set for final performance evaluation.

This configuration allowed a robust evaluation of a model’s generalization, but limited training 
set size reduced the model’s exposure to novel patterns and thus would impede its ability to 
learn more sophisticated features. 

5.5.2  70-15-15 Split: Emphasizing Training 

In the second case, 70% of the data was for training with 15% percent each for validation and 
testing. This was mostly a split to give the model more data to learn from, so that its spatial 
temporal patterns could be captured. The benefits of this configuration included: 

• Greater exposure to diverse samples leading to increased training accuracy.
• For rare crime types there were enhanced feature extraction capabilities.

Although this configuration was able to cope with the reduced validation and test sets, 
generalization was not properly evaluated with this configuration; this would be more suitable 
for scenarios that require maximal training accuracy. 

5.5.3  80-10-10 Split: Maximizing Learning Capacity 

Finally, the data was divided into 80% for training and 20% for validation and testing each 
taking 10%. Such a split favoured the model's learning capability as it spent a large bulk of the 
dataset in form of feature extraction and temporal modelling. This configuration was ideal for: 

• Preventing overfitting of the deeper models (i.e. V4) as it needed huge data for training.
• To address the data requirement for the rare crime categories, which the model hasn’t

seen during training.

This configuration improved learning by the model, however the small validation and test sets 
rendered it impossible to fully evaluate the model’s performance. The extra validation 
techniques, such as cross validation, that were needed to validate the robustness of this set of 
parameters were highlighted by this trade-off. 
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5.5.4 Rationale for Multiple Configurations 
 
To learn how the training set size affects the model’s performance, the implementation tested 
training set size by experimenting with different data splits. Results showed how model’s 
ability to generalize was impacted by balance between training and validation/testing data and 
provided guidelines for allocating data in similar tasks.  
 
6 Results and Evaluation 
 
This section of the paper presents the evaluation outcomes of the different model versions for 
the three data split setting levels (60-20-20, 70-15-15, and 80-10-10). The presented analysis 
helps recognize the most effective models in each configuration and understand their 
effectiveness compared to others. The architectures are versioned 1 to 5 where V5 has the same 
configuration as the V4 but this architecture has been trained for 100 epochs. The metrics used 
for evaluation are accuracy � 𝑇𝑇𝑇𝑇+ 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
�, precision � 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
�, recall � 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
�, F1-Score  

�2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

� and ROC AUC score where ROC curve is plotted with True Positive Rate 

(TPR) � 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

� on y axis and False Positive Rate (FPR) � 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

� on x axis and AUC score is 

calculated �� (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) ⋅ (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+1+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
𝟐𝟐

𝑛𝑛−1

𝑖𝑖=1
� where n is number of points in ROC 

curve and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 are coordinates of ROC curve at i-th threshold. TP, TN, FP and FN are 
True Positive, True Negative, False Positive and False Negative respectively.  
 
6.1 Configuration 1: 60% Training, 20% Testing, 20% Validation 
 

Table 5 Evaluation metrics results in Configuration 1  
Version Training Accuracy  Testing Accuracy Validation Accuracy AUC Precision Recall  F1-Score 

V1 0.9026 0.8138 0.7961 0.96 0.8003 0.8074 0.7943 
V2 0.8859 0.7896 0.7838 0.95 0.7892 0.7859 0.7704 
V3 0.9022 0.8149 0.7982 0.96 0.8052 0.8058 0.7946 
V4 0.5987 0.6139 0.5994 0.50 0.3586 0.5989 0.4486 
V5 0.9909 0.8101 0.8017 0.92 0.7949 0.7966 0.7844 

 
Version 3 (V3) performed well in the 60-20-20 configuration as the results for all the models 
can be seen in Table 5. V3 has the testing accuracy of 81.49%, the validation accuracy of 
79.82%, AUC of 0.96 and the F1-score of 0.79. In V3, the three-layer structure enabled the 
features of spatial and temporal simultaneously, making V3 exhibit consistent performance 
with the training, validation, and testing set. 
 Although V1 achieved competitive performance with slightly lower AUC (0.96) and testing 
accuracy (81.38%) and the F1-score (0.79), V1 indicated its inefficiency in comparison to V3. 
On the other hand, when the networks are configured in this way, V4 obtained only 61.39% of 
accuracy on the learning set, most probably because of the deeper architecture of this net which 
was over-trained on the small learning sample. V5 has an outstanding training accuracy at 
99.09% but it has not generalizable well, this is evident from the F1-score of 0.78. 
 Since previously V3 showed very good performance relatively to other networks, we can 
state that due to the split the necessary depth of the network was achieved to extract features 
without overfitting. That made V3 the most efficient for the 60-20-20 configuration. 
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6.2 Configuration 2: 70% Training, 15% Testing, 15% Validation 
 

Table 6 Evaluation metrics results in Configuration 2 
Version Training Accuracy  Testing Accuracy Validation Accuracy AUC Precision Recall  F1-Score 

V1 0.9187 0.7737 0.8060 0.94 0.7814 0.7794 0.7671 
V2 0.7757 0.6739 0.6646 0.77 0.6528 0.6578 0.6047 
V3 0.8937 0.7796 0.8320 0.96 0.8001 0.8012 0.7898 
V4 0.8915 0.7909 0.8176 0.97 0.7983 0.8026 0.7975 
V5 0.9923 0.7883 0.8238 0.92 0.7991 0.8033 0.7958 

Among all the presented configurations as shown in Table 6 of the proposed 70-15-15 
architecture, it is identifiable that Version 4 (V4) allowed for reaching the highest results in 
testing – 79.09%, validation accuracy of 81.76%, AUC of 0.97 and F1-score of 0.80. 
Incorporated in a deeper architecture, V4 was able to utilise the extra training data properly 
and thereafter retrieve a variety sophisticated spatial-temporal features and outstanding 
performance across all indexes of assessment. 
 Although V3 achieved a testing accuracy of 77.96% and an F1-score of 0.79, V4 was 
slightly better and offered superior specific class performance in terms of precision and recall 
which are 0.79 and 0.80 respectively. Indeed, the testing accuracy of V1 turned out to be 
77.37%; however, lacking depth, the network failed to perform better than the models under 
consideration. V5 responded equally well to training records with a 99.23% training accuracy, 
but the testing and validation results suggest overfitting. 
 The reason of V4’s good result in this configuration was attributed to the benefits of the 
expanded training dataset with the richer structure of the network. From its performance, the 
relationship between the model’s complexity level and the division of data set used for learning 
and testing is brought out clearly. 
 
6.3 Configuration 3: 80% Training, 10% Testing, 10% Validation  
 

Table 7 Evaluation metrics results in Configuration 3 
Version Training Accuracy  Testing Accuracy Validation Accuracy AUC Precision Recall  F1-Score 

V1 0.9098 0.8337 0.8207 0.98 0.8358 0.8340 0.8243 
V2 0.8831 0.8434 0.8371 0.97 0.8372 0.8402 0.8309 
V3 0.8960 0.8263 0.8207 0.97 0.8258 0.8279 0.8208 
V4 0.8851 0.8350 0.8289 0.98 0.8328 0.8350 0.8272 
V5 0.9848 0.8015 0.8012 0.92 0.7848 0.7848 0.7751 

 
Analysing the results of container throughput distribution between terminals in the 80-10-10 
configuration in Table 7, Version 2 (V2) performed the best of all. They obtained a testing 
accuracy of 84.34%, the validation accuracy of 83.71%, an AUC of 0.97 and an F1-score of 
0.83. The relatively low depth of V2 ensured that spatial-temporal patterns essential for 
predicting could be unveiled effectively without incurring a risk of overfitting common with 
deeper models. 
 V1 made a high testing accuracy of 83.37% and an F1 score of 0.82 but due to its less 
complex structure it was unable to identify some broad panorama of crime. Likewise, to the 
first version, the testing accuracy and F1 score of the V3 were 82.63% and 0.82, respectively. 
As seen from the results, V4 and V5, which it is deeper than V2, underperformed in this split 
because of overfitting, where the F1-score and the Validation accuracy are slightly lower than 
V2. 
 The outcome of this split shows that while relative model complexity is a good thing, equal 
model complexities are even better on V2. It gave a high accuracy in generalization between 
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the validation and testing datasets while having high precision and recall and therefore was the 
most reliable in this configuration. 
 
6.4 Best-Performing Model Analysis 
 
In all the configurations, the highest performance was recorded in Version 2 (V2) using 80-10-
10 data division. V2’s success can be attributed to several factors: 
 

1. Moderate Depth: The balanced architecture of V2 precept and model these salient 
features were extracted without compromising on generalization. 

2. Sufficient Training Data: The 80-10-10 split offered a sufficient number of training 
examples, which allowed V2 to be trained on how to group the data and recognize 
multiple patterns. 

3. Class-Specific Performance: Precision, recall, and F1-score remained above the 
threshold level for all types of crime types, which testified to the stable and accurate 
predictions of V2. 

4. Efficient Resource Utilization: Thus, for a given problem, V2 was as accurate, or even 
more accurate, than deeper models including V4 and V5, with less computational cost. 

 

 Figure 7 Accuracy and Loss with each epoch 
 

 From Figure 7, the accuracy graph representing the epoch contains the training and 
validation values and it shows that the validation accuracy follows the training curve very well 
without much overfitting. The loss graph also supports the model’s stability by illustrating the 
downwards trend in training and validation loss. 
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Figure 8 Precision, Recall and F1-Score against each class 
 
 The bar chart of precision, recall, and F1-score from Figure 8 gives an insight into the 
model’s per class classification performance. As with most classes, the precision and recall 
values are approximately balanced, however, recall for “Shoplifting” and “Road Accidents” is 
slightly lower indicating possible difficulties in detecting these activities under some 
circumstances. 
 

 
Figure 9 AUC-ROC Curve 

Lastly, ROC analysis shows very high classification performance measure by AUC for all 
classes The AUC values range from 0.90 to imply high discriminant capability. For instance, 
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Arson, Burglary and Shooting classes, the model achieved AUC scores close to 1 meaning that 
the model is closely aligned with the its capacity in detecting pattems of these specific classes 
in the spatio-temporal plane. 

Figure 10 True/Predicted crime labels by Version 2 

The results from Figure 10 point out that the model architecture and data splits should 
correspond to the needs of the given problem. The evaluation of V2 has shown that it is rather 
resistant and flexible ensuring the most accurate crime identification in real-time video 
surveillance. 
 
7 Discussion 
 
The findings adapted from the model development in increments and different splits of the data 
are informative to evaluate the effectiveness and inefficiencies of the suggested crime detection 
system. The obtained results were discussed in the context of the overall research area and in 
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particular in relation to the CR-AE model of  (Yang & Wang, 2022). Though this study is an 
extension of their spatial temporal modelling framework, many modifications as well as several 
special issues were noted while applying these methods for multi class crime detection. 
 By far, the most enlightening aspect of the proposed model development approach was the 
incremental model development for analysing the levels of complexity involved in 
architectures that delivered the best performance possible. Versions 2 (V2) and 3 (V3) again 
showed better performance, as per the results observed by (Yang & Wang, 2022) in their study, 
the integration of ConvLSTM layers is useful for anomaly detection as it also captures the 
temporal patterns. Nonetheless, the more complex ones such as the Versions 4 (V4) and the 
Versions 5 (V5) seemed to overfit especially with smaller training sets. This support the fact 
that depth and data availability are vital dimensions to consider with an aim of improving 
generalization. 
 However, some of these areas of strength were illuminated as opportunities for further 
development in the experimental design. Three splits as shown in Table 8, further showed that 
as the training set increases or the test set decreases, the capacity of generalization reduces. 
The improvement of the performance in the 80-10-10 split can therefore be attributed to large 
training data sets, although the small sizes of the validation and testing sets raised issues to the 
stability of the evaluation. The aforementioned limitation could be solved by the use of cross-
validation methods where at least part of transformed data is used in cross validation. 
Furthermore, the chosen evaluation criteria could be expanded to perform class-oriented 
analysis in order to detect the patterns of misclassification, which is particularly relevant for 
the less frequent types of crime, such as shoplifting or arson. 
 

Table 8 Breakdown of frames in different data splits 
Configuration Training Testing Validation 

60 – 20 – 20 5855 1952 1952 
70 – 15 – 15 6831 1464 1464 
80 – 10 – 10 7807 976 976 

  
 Due to the modularity of the architecture of deeper models such as V4 and V5 this is an area 
of research that could lead to a significant scaling of the models while reducing their 
complexity and generally maintaining their performance.  
 It is possible to state that further changes may be made to enhance data diversity by using 
data augmentation techniques such as frame rotation, scaling and temporal jittering. Even 
integration of some transfer learning approaches with more trained models such as ResNet or 
EfficientNet could also minimize the training time and foster the performance especially for 
the classes that have few data representations. Lastly, the use of contextual inputs such as audio 
data proposed by (Mathur, Chintala, & Rajeswari, 2022) could also improve the system’s 
insight as well as its reliability. 
 

8 Conclusion and Future Work 
 
Conclusively, research is provided on incremental development for the model based on 
Convolutional-LSTM autoencoder to enhance spatial-temporal features and classification 
results. The analysis examined depths of architecture on four iterations of the model for 
performance improvements under different configurations of data splits. The specific research 
questions and goals were that what is the most effective model for the simultaneous detection 
of multiple crimes, based on the available data and different evaluation scenarios and What 
configuration of the proposed model should be used for real-time implementation. 
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 The results show that this research achieved its goals and answered the posed research 
question effectively. Specifically, all the tested models, such as V2 and V3, have reported high 
accuracy, AUC and F1-score for each configuration, especially where a large dataset was used 
for training. The incremental development approach was equally successful in achieving the 
goal of finding the right levels of the model that balances complexity with generalization 
capabilities, with the best candidates of the models achieving the level of performance of 
reaching up to 12 crime types and normal scenarios levels. These findings therefore offer a 
great advance in enhancing real time crime identification for surveillance purposes. 
 However, the present study has several limitations despite the positive findings. Since the 
presented approach focuses solely on videos and does not introduce other input modalities, the 
model may fail when there are occlusions or when the lighting conditions are low. Moreover, 
the sophisticated deeper models such as V4 and V5 showed overfitting during training in the 
configuration with smaller training sets, and it is likely that better regularization algorithms or 
multimodal data blending could be useful in the future. Despite the clear and comprehensive 
evaluation of the individual components, some aspects could have been approached with cross-
validation or extending with more real-world datasets testing. 
 There are several tremendous implications as can be evidenced from this research. 
Therefore, this work is useful to the development of more improved and efficient real time 
crime detection methodologies and overall goals of mega city policing enhanced automated 
surveillance systems where the general public benefit by reduction of security threats. The 
scalability of the model with respect to the various crime categories also emphasizes how the 
model could be implemented in smart city surveillance and security, policing, and public 
safety. 
 Subsequently, future research will consist of the addition of audio features to the framework, 
alongside multimedia approaches that use video alongside IoT sensor data or other contextual 
data. Examining attention mechanisms as part of the architecture’s design might yield 
enhancements to spatial-temporal feature extraction and overall performance in challenging 
situations. Moreover, it can be quite useful for commercial purposes of using the model this 
could be optimized to work on edge devices with low resource constraint environments. 
Besides the improvement of the methods, aspects of ethical nature, like the concern with 
privacy or approaches for overcoming bias, should become more important in further work on 
the development of systems for crime detection. 
 Therefore, this research has established an efficient and relevant strategy in crime detection 
by applying this innovative technique. Thus, strengthening its premises and widening the range 
of its perspective, the consequent research and development actions can make use of this study 
as a starting point for further enlarging the capacities and possibilities of the automated 
surveillance and contributing to the common benefit of the society. 
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