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PhaseNet and EfficientNet-B0 for Phase Detection 
and Arrival Time Prediction 

Nagalakshmi Ramakrishna 
x23183829 

x23183829@student.ncirl.ie 

 
Abstract 

Seismic phase detection and arrival time prediction are crucial for earthquake 
monitoring and early warning systems. This study evaluates the performance of two 
advanced deep learning models, PhaseNet and EfficientNet-B0, on the INSTANCE dataset 
for phase detection and the picking of P and S waves using spectrogram and waveform 
data. PhaseNet achieved a testing accuracy of 94.7%, demonstrating its effectiveness in 
classifying seismic events. Conversely, EfficientNet-B0 excelled in arrival time prediction, 
achieving a P-wave MAE of 279 ms and an S-wave MAE of 255 ms, surpassing PhaseNet in 
regression tasks. While PhaseNet exhibited faster training convergence, EfficientNet-B0 
delivered superior accuracy and gen- eralization. This paper highlights the 
complementary strengths of PhaseNet and EfficientNet-B0 in seismic phase detection 
and arrival time picking, contributing to advancements in seismic monitoring 
methodologies. 

Keywords: Seismic phase detection, P-wave, S-wave, PhaseNet, EfficientNet- B0, 
Deep learning, Earthquake monitoring, INSTANCE dataset 

 

1 Introduction 

1.1 Background 

Earthquake is a natural disaster which hard to predict and occurs suddenly that results in a 
large scale of properties and in some cases hundreds of losses of lives. They attack when 
least expected – wiping off structures, ripping through concrete roads, and ways of living. 
Some of the fallout remains a state of shock and grief in the affected communities many of 
which take years in rebuilding 
The automatic detection and phase picking of earthquakes are two important aspects of 
seismology research ScienceDirect (2024). The identification of earthquake signals is 
referred to as phase detection, while predicting the arrival times of P and S waves is known 
as phase picking. Phase detection plays a crucial role in the early prediction of earthquakes, 
while phase picking aids in determining the magnitude, pinpointing the hy- pocenter location, 
and conducting spectral analysis. 

Early earthquake detection methods are classified into three main types. The first in- 
volves amplitude- and energy-ratio-based techniques, such as Short-Time Average (STA) 
/Long-Time Average (LTA), effective for seismic event detection (Allen (1978); Withers 
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et al. (1998) ). The second includes waveform similarity-based approaches like template 
matching, which offers high catalog completeness but requires pre-prepared templates, has 
low efficiency, and cannot directly determine seismic phase arrival times (Peng and Zhao 
(2009); Shelly et al. (2007)). The third category, early machine learning-based methods, was 
limited by hardware performance, struggled with complex calculations, and saw limited 
adoption (Wang and Teng (1997); Gentili and Michelini (2006)). 

Deep learning has become a widely utilized and impactful approach across various ap- 
plications. In earthquake monitoring, there is a growing demand for efficient and reliable 
tools to handle the ever-growing volumes of data. With its straightforward conceptual 
framework and the abundance of labeled datasets, earthquake detection and phase pick- ing 
present compelling opportunities for the application of advanced machine learning 
techniques in seismology. ?. 

1.2 Research Question 

”How does the application of the EfficientNet architecture to spectrogram and waveform 
plots of seismic signals compare to PhaseNet in terms of accur- acy and performance for 
phase detection and picking of both P and S waves on the INSTANCE dataset?” 

 

1.3 Research Objectives 

The objectives of this research are as follows. 

• To evaluate the performance of the EfficientNet model for phase detection and 
picking of P and S waves using the INSTANCE dataset. 

• Investigate how raw waveform data and spectrogram representations contribute to 
phase detection and picking accuracy and efficiency in seismic event analysis. 

• To evaluate the performance of the PhaseNet model for phase detection and picking of P 
and S waves using the INSTANCE dataset. 

• Comparison of the performance of EfficientNet and PhaseNet in terms of accuracy and 
efficiency for phase detection and picking of P and S waves on the INSTANCE dataset. 

1.4 Scope of Study 

In this research,By leveraging advanced deep learning algorithms, specifically PhaseNet (Zhu 
and Beroza (2019)) and EfficientNet (Tan and Le (2019)), to enhance earthquake detection 
and seismic wave arrival time picking. PhaseNet, while highly accurate in de- tecting P-wave 
arrivals, has demonstrated challenges in reliably detecting S-waves. To overcome this 
limitation, we explore the potential of EfficientNet, a state-of-the-art model known for its 
scalable architecture across depth, width, and resolution, offering a more efficient solution 
for detecting both P and S waves in seismic data. 
Phase detection and picking techniques often rely on raw ground motion signals, which 
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are processed through neural networks. However, transforming these signals into spec- 
trograms or waveform images can significantly improve the performance of convolutional 
neural networks (CNNs). Spectrograms, which represent the frequency domain of seismic 
signals over time, provide valuable insights into the frequency characteristics of seismic 
events, allowing models to better differentiate between earthquakes and noise. Waveform 
images, on the other hand, retain the temporal dynamics of seismic events, making them 
critical for detecting the precise arrival times of P and S waves. 
While CNNs are commonly designed with a fixed resource budget, their performance can be 
enhanced by scaling them to improve accuracy based on available resources. Efficient- Net 
offers a principled approach to model scaling, achieving remarkable accuracy while 
maintaining computational efficiency. This research aims to evaluate the effectiveness of 
EfficientNet applied to both spectrogram and waveform plots of seismic signals, compar- ing 
its performance to PhaseNet in terms of accuracy, efficiency, and overall robustness. 
Additionally, we investigate the generalizability of both models when trained on the IN- 
STANCE dataset and assess their performance across various seismic signal types and 
environmental conditions. 

2 Related Work 

For decades, the field of seismology has aimed to automate the detection and picking of 
seismic phase arrivals, a critical step in earthquake monitoring and cataloging. These efforts 
have transitioned from conventional energy-based methods to sophisticated deep- learning 
models, offering notable improvements in accuracy, robustness, and efficiency. 

2.1 Conventional Algorithms for Phase Picking and Detection 

The Short-Time Average to Long-Time Average (STA/LTA) method, introduced by Allen (1978), 
remains one of the most widely adopted techniques in seismic phase picking. This method 
calculates the ratio of amplitudes within short- and long-time windows, triggering a detection 
when the ratio exceeds a predefined threshold. STA/LTA’s simplicity made it a cornerstone for 
local earthquake detection, but its limitations, particularly in handling noisy environments 
and weak signals, became evident over time. 

Subsequent enhancements by Withers et al. (1998) introduced adaptive window lengths and 
spectral adjustments, significantly improving the method’s ability to adapt to vari- able noise 

conditions. These refinements extended STA/LTA’s applicability to teleseismic and regional 
events, addressing some of the challenges posed by high-noise environments. Similarly, Baer 
and Kradolfer (1987) proposed an automatic phase picker based on nonlin- ear amplifiers and 

dynamic thresholds. This innovation enabled more precise detection of weak signals, 
providing a solution for applications where traditional STA/LTA struggled. Template matching, 

another influential technique, was introduced by Shelly et al. (2007). By employing cross-
correlation with known earthquake waveforms, this method effectively identified small or 

previously undetected events. However, its reliance on pre- existing templates restricted its 
ability to detect novel seismic phenomena, a significant drawback for real-time applications 

Duputel et al. (2019). Moreover, template matching’s computational demands limited its 
scalability, particularly for large datasets. Similarly, auto-correlation methods have shown 

promise in identifying recurring events but remain 
memory-intensive despite optimizations like fingerprinting Yoon et al. (2015). 
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While these conventional methods laid the foundation for automated phase picking, 
they often struggled with adaptability and computational efficiency, paving the way for 
modern deep-learning approaches. 

2.2 Deep Learning Approaches 

Deep-learning techniques have transformed seismic analysis, addressing limitations in 
traditional methods and enabling the processing of large-scale datasets. These models excel 
in generalizing across diverse conditions, reducing noise, and accurately picking seismic 
phases Mousavi and Beroza (2022). 

PhaseNet and U-Net-Based Models: PhaseNet, introduced by Zhu and Beroza (2019), 
was among the first deep-learning models designed explicitly for seismic phase picking. Built 
on the U-Net architecture, PhaseNet processes three-component seismo- grams and outputs 
probability distributions for P-waves, S-waves, and noise. Trained on over 700,000 labeled 
waveforms from the Northern California Earthquake Data Center, it achieved F1 scores of 
0.896 for P arrivals and 0.801 for S arrivals, surpassing traditional STA/LTA-based methods. 
However, PhaseNet’s reliance on region-specific training data limits its generalizability to new 
geographic regions or areas with insufficient labeled datasets. 

ARRU Phase Picker Liao et al. (2021), a U-Net extension, addresses this limitation by 
integrating soft attention gates (AGs) and recurrent-residual convolution units (RRCUs). These 
architectural enhancements enable ARRU to filter irrelevant waveform responses and 
capture temporal relationships. The model achieved F1 scores of 98.62% for P-phases and 
95.16% for S-phases, demonstrating robust performance across diverse datasets, in- cluding 
unseen Southern California data. This generalizability makes ARRU particularly well-suited for 
large-scale seismic monitoring. 

Despite their success, both PhaseNet and ARRU struggle in regions with unique geolo- gical 
characteristics or noise profiles. To address this, Chai et al. (2020) demonstrated the efficacy of 
transfer learning (TL) in adapting pre-trained models to new datasets. TL has been shown to 
improve precision and recall by up to 10%, significantly reducing manual effort in seismic 
phase picking. When combined with double-difference tomography, TL enhances seismic 
event location accuracy in complex environments like hydraulic fractur- ing. These 
integrations not only improve accuracy but also achieve over 99% reductions in manual 
intervention, underscoring their scalability and efficiency. 

SEA-net and Sequence Attention Models: SEA-net, proposed by Hou et al. (2023), is a 
Sequence Attention Network that combines temporal convolutional layers with attention 
mechanisms. This architecture focuses on critical waveform features, enabling robust 
detection of seismic events amidst noise. SEA-net achieved a 93.8% accuracy and 95.2% 
precision for P- and S-wave detections, significantly outperforming earlier methods like 
PhaseNet. Additionally, SEA-net reduced computational costs by 35%, making it suitable for 
real-time applications like earthquake early warning systems. Compared to traditional 
methods, SEA-net improved P-wave detection rates by 22% and S-wave accuracy by 18%, 
setting a benchmark for precision and computational efficiency. 

Spectrogram-Based Approaches: Spectrograms have emerged as a powerful tool in 
seismic analysis, offering frequency-domain features often overlooked in raw waveform data. 
Choi et al. (2024) demonstrated the effectiveness of transforming seismic signals into 
spectrograms using Short-Time Fourier Transform (STFT). These spectrograms, processed 
through a U-Net architecture, achieved strong performance metrics, including 



5  

an MSE of 0.0031 and an MAE of 0.0177 for precise P-wave arrival detection. Simil- arly, 
CRED Mousavi et al. (2019), a hybrid model combining convolutional layers and bidirectional 
LSTMs, utilized spectrograms to detect microearthquakes as small as 1.3 ML, even under 
noisy conditions. These findings highlight the value of incorporating frequency-domain data 
into seismic phase picking workflows. 

Comparative Studies and Hybrid Models: Comparative analyses between PhaseNet and 
EQTransformer, conducted by Jiang et al. (2021), reveal the strengths and weak- nesses of 
these models. EQTransformer, which integrates CNN and RNN layers with hierarchical 
attention mechanisms, achieved superior precision and recall scores of 99.0% for P-waves and 
96.0% for S-waves on the Stanford Earthquake Dataset (STEAD). While EQTransformer 
outperformed PhaseNet in most scenarios, its increased complexity can hinder efficiency in 
simpler applications. Both models exhibit reduced performance in new regions, emphasizing 
the importance of retraining or transfer learning to address data variability. 

Hybrid models like U-Net++ Guo (2021) incorporate Gaussian noise during training, 
significantly enhancing their robustness to noisy environments. These models outperform 
traditional STA/LTA techniques, particularly in scenarios with high background noise, further 
demonstrating the adaptability of advanced deep-learning architectures. 

Phase Association and Multi-Station Data: Phase association, or the linking of seismic 
phases across multiple stations, is essential for constructing comprehensive earthquake 
catalogs. Traditional approaches often rely on travel-time data, which can struggle in high-
noise environments or during periods of heightened seismicity. FastLink Yu and Wang (2022), 
which leverages CNN-based methods and GPU acceleration, has demonstrated remarkable 
performance in phase association. During the Yangbi Ms 6.4 aftershock sequence, FastLink 
processed over 2 million picks, associating 17,000 events with an accuracy of 93.5%, 
achieving a 12-fold reduction in processing time compared to conventional methods. 

Multi-station data integration, exemplified by ArrayConvNet Shen and Shen (2021), 
further improves model generalization and robustness. By leveraging spatially distributed 
networks, ArrayConvNet achieved 99.4% accuracy in earthquake localization in Hawai’i, 
highlighting the potential of combining spatial and temporal data for enhanced seismic 
monitoring. 

2D Image-Based Models: Several studies have explored treating seismic data as images, 
applying 2D convolutional neural networks (CNNs) to detect and classify seismic phases. MT-
Net ZHANG et al. (2021), an extension of U-Net, leverages 2D convolutional operations on 
spectrograms to enhance the detection of first-arrival phases (FAPs) amidst noise. Similarly, 
Yang et al. (2021) demonstrated the robustness of image-based models in handling diverse 
datasets, showcasing their applicability for long-term monitoring where station 
configurations vary significantly. 

The evolution of seismic phase picking, from foundational STA/LTA methods Al- len 
(1978) to advanced deep-learning models like EQTransformer Mousavi et al. (2020), reflects 
a remarkable trajectory of innovation. By integrating traditional insights with modern 
techniques, seismic monitoring systems continue to push the boundaries of ac- curacy, 
scalability, and adaptability, paving the way for future advancements. 
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3 Methodology 

This research analyzes the performance of the PhaseNet and EfficientNet architectures in 
classifying earthquake and noise signals. The EfficientNet regression model is also employed 
to predict the arrival times of P and S waves. The study adopts a modified CRISP-DM 
methodology, tailored for scientific research, and outlines the steps involved in classifying 
seismic signals using both spectrograms and waveform plots derived from raw seismic data. 

3.1 Problem Understanding 

Seismic phase detection and picking are critical for understanding earthquake dynamics and 
enhancing early warning systems. This research addresses the challenges of ac- curately 
classifying earthquake and noise signals and predicting P and S wave arrival times. The 
objective is to evaluate the effectiveness of deep learning models, specifically PhaseNet and 
EfficientNet, in handling seismic data, leveraging both waveform plots and spectrogram 
representations. 

3.2 Data Understanding 

The INSTANCE dataset is a comprehensive resource of seismic waveform data and 
metadata, specifically designed for machine learning-based analysis. It includes data from 
54,008 earthquakes, amounting to 1,159,249 three-channel waveforms, along with 132,330 
three-channel noise waveforms. Each waveform is accompanied by detailed metadata con- 
taining 115 attributes, providing information about the station, trace, source, path, and 
quality. The dataset spans 19 networks and 620 seismic stations, offering diverse geo- 
graphic and seismic event coverage. For our research, we have used this dataset to train and 
evaluate the PhaseNet and EfficientNet models for classifying seismic signals and predicting 
the arrival times of P and S waves. (Michelini et al. (2021)). 

For this research, we used version 3 of the INSTANCE dataset, which includes wave- 
form data in HDF5 format and metadata in CSV format. Metadata files are linked to 
waveform data through trace names for efficient analysis. 

 

Waveform Data 
Instance.events counts 10k.hdf5 10,000 events 
Instance.events gm 10k.hdf5 10,000 events 
Instance.noise 1k.hdf5 1,000 instances 

Metadata metadata.Instance noise 1k.csv Shape(1000,43) 
metadata.Instance events 10k.csv Shape (10000 ,115) 

Table 1: Dataset Description 

Table 1provides a brief description of the details of the dataset used in this research. 
Since our study focuses on distinguishing between noise and earthquake phases and ac- 
curately picking P and S wave arrivals, we used the event-related HDF5 file. This dataset 
provides labeled seismic events critical for phase detection and picking tasks, whereas the 
ground motion data introduces additional complexity not required for this scope. 

Since the number of events and noise samples are unequal, we utilized additional noise 
data from the main INSTANCE dataset, which originally has a shape of (132,288, 
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43). To prevent model overfitting, we balanced the dataset, ensuring an equal number of 
earthquake and noise samples for phase detection. For phase picking, however, the noise 
data is excluded, as P and S arrival times are only present in the event data 

3.3 Data Pre-processing and Analysis 

Before training the neural network, the dataset was pre-processed to ensure it was well- 
structured and balanced. 
The event data consists of four key types of metadata: source, station, trace, and path 
(event), resulting in a shape of 10, 000 × 115, with each record providing detailed inform- ation 
about seismic events. In contrast, the noise data includes two types of metadata: station 
and trace (noise). The original noise dataset contains 132,288 events, but to maintain a 
balanced dataset and prevent model bias during phase detection, the noise data was 
reduced to 10,000 samples, matching the number of earthquake events. 

 
Spectrogram and Waveform Generation for Phase Detection and Picking 

 
 

 

 
Figure 1: A combined visualization of seismic data: a) Spectrogram and b) Waveform. 

This study utilizes both spectrograms and waveforms to analyze seismic data for phase 
detection and phase picking. Spectrograms, created using short-time Fourier transform 
(STFT), highlight frequency intensity over time, aiding in distinguishing seismic events from 
noise and identifying patterns for P and S wave arrivals. Waveforms, as raw time- series 
representations, are critical for phase picking by allowing precise identification of P and S 
wave arrival times. Waveforms and spectrograms will be generated using the trace name 
(source ID) from the CSV metadata, which matches with waveform data in the HDF5 file. 
Each image will be saved in its respective directory based on the event type (e.g., 
earthquake or noise). Both representations are systematically generated and stored, 
leveraging their strengths to create a robust framework for seismic analysis. 
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Distribution of Station Channels and Network Codes 

 

Figure 2: Distribution of seismic data: (a) station channels and (b) station network codes. 

Figure 2 illustrates the distribution of seismic data based on station channels and network 
codes. Subfigure (a) represents the proportion of station channels in the dataset, cat- 
egorized into four types: HH (38.9%), HN (35.5%), EH (25.2%), and HL (0.4%). These 
categories indicate different seismic instrument configurations, with HH and HN being the 
most dominant, reflecting high-frequency and strong motion data, respectively. 

Subfigure (b) shows the distribution of station network codes, with IV accounting for 
97.0% of the data, MN representing 1.1%, and other networks contributing 2%. The 
dominance of the IV network highlights its extensive coverage and contribution to the 
dataset. 

These distributions provide valuable insights into the dataset’s structure, ensuring a clear 
understanding of the diversity in station channels and networks. Such information is crucial 
for validating the generalizability of models trained on this dataset. 

Relationship Between Source Magnitude and Hypocentral Distance 

Figure 3 shows the relationship between source magnitude and hypocentral distance. Most 
events have magnitudes between 1 and 3 and occur within 200 km of the source. The color 
intensity represents the density of events, with darker shades indicating higher 
concentrations. 

 

Figure 3: Scatter plot showing the relationship between source magnitude and hypocent- ral 
distance. 



9  

Histograms of P and S Arrival Samples 

 

Figure 4: Histograms of arrival samples: (a) P wave arrival samples and (b) S wave arrival 
samples. 

 
Figure 4 shows the distribution of P and S wave arrival samples in the dataset. Subfig- ure (a) 
illustrates the histogram for P wave arrivals, with a peak around 1,750 to 2,000 samples, 
indicating that most P waves arrive in a consistent time range. Subfigure (b) shows the 
histogram for S wave arrivals, with a sharp peak at the start and a more spread-out 
distribution, reflecting greater variability in S wave arrival times. 
These patterns are critical for phase picking, as accurately identifying P and S wave ar- rivals 
depends on understanding their distributions. The concentrated P wave arrivals aid in 
precise picking, while the variability in S arrivals requires models to adapt to a broader range 
of times. 

The target variables for this research are derived from the metadata columns. For phase 
detection, the variable source type is used to classify signals as noise or earthquake. For phase 
picking, the variables trace P arrival time and trace S arrival time are used to determine the 
arrival times of P and S waves, respectively. By following this structured pre-processing 
approach, the dataset is balanced and optimized for robust neural network training and 
evaluation. 

3.4 Modeling 

Once the data was preprocessed, it was prepared for modeling. For phase detection, the 
dataset was divided into training, testing, and validation sets with a 60:20:20 split. Spec- 
trogram images were organized into separate folders using the splitfolders library. The flow 
from directory function was used to load images from the respective train, test, and 
validation directories into data generators. These images were processed in batches of 32 
and resized to the required input dimensions for the neural network architectures: 224 × 224 
× 3 for EfficientNet-B0 and 128 × 128 × 3 for PhaseNet. 

Similarly, waveform data was reshaped and split into training, testing, and validation sets. 
Using the flow from directory function, the waveform data was efficiently loaded and prepared 
for model training and evaluation, ensuring compatibility with the input requirements of the 
respective architectures. 
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For phase picking, the waveform image paths, along with the P and S arrival times, were 
organized into a pandas DataFrame. The data was then split into training, testing, and 
validation sets. Each waveform image path corresponded to an individual waveform image, 
enabling the models to associate the images with their respective P and S arrival times. This 
structured approach ensured the data was well-prepared for training models to accurately 
pick P and S wave arrivals. 

3.5 Evaluation 

The research evaluates the performance of the EfficientNet and PhaseNet models on the 
INSTANCE dataset. The metrics used for classification include Precision,Recall, and the F1-
score. Precision measures the percentage of correct predictions when identifying 
earthquakes, while Recall (or sensitivity) evaluates the percentage of detected earthquakes 
among all actual earthquakes. Since minimizing false negatives is crucial in earthquake 
detection, Recall serves as a more critical metric than Precision. The F1-score combines 
Precision and Recall into a single measure, offering a balanced evaluation of the models’ 
performance. 

For the regression tasks, metrics such as Mean Absolute Percentage Error (MAPE) and 
Mean Squared Error (MSE) were used to assess the models’ ability to predict P and S wave 
arrival times. These metrics indicate how close the predicted values are to the actual values. 
The models’ performance was further validated using baseline errors for comparison, 
ensuring robustness. Additionally, the F1-score, Precision, and Recall were calculated by 
considering a prediction as true positive if it fell within a 0.5-second threshold. This 
comprehensive evaluation framework ensured a reliable assessment of the models’ 
effectiveness in classifying seismic signals and picking phase arrival times. 

4 Design Specification 

4.1 PhaseNet Architecture 

The PhaseNet model, inspired by Zhu and Beroza (2019), has been adapted to a U- Net-like 
architecture designed for spectrogram inputs of size 128 × 128 × 3. The model structure is 
modified from U-Net Ronneberger et al. (2015), a deep neural network origin- ally developed 
for biomedical image processing, to handle 1-D time-series data. Figure 5 represents the 
PhaseNet phase detection architecture. 

The architecture starts with a convolutional layer extracting 32 feature maps using 3 × 3 
kernels, followed by max-pooling to reduce dimensions from 128 × 128 to 64 × 
64.Two additional convolutional layers generate 64 and 128 feature maps, with max- 
pooling further reducing dimensions to 32 × 32 and 16 × 16. A global average pooling layer 
compresses the 16 × 16 × 128 output into a 128-dimensional vector, which is passed through a 
fully connected layer with 256 neurons and ReLU activation. The final softmax layer outputs 
probabilities for ”Earthquake” and ”Noise.” 
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Figure 5: PhaseNet phase detection architecture. 

 
Similarly, a regression-based architecture was developed to predict the P- and S-wave 

arrival times. This model uses a larger input size of 224 × 224 × 3 to accommodate higher-
resolution waveform data and outputs a single continuous value, representing the predicted 
arrival time. The architecture begins with convolutional and max-pooling layers that 
progressively reduce spatial dimensions, followed by a global average pooling layer and a 
fully connected dense layer with a linear activation function, making it suitable for regression 
tasks. 

 
 

 

 
Figure 6: Regression architecture for P- and S-wave arrival time prediction. 

 
Figure 6 illustrates the regression architecture designed to predict the P- and S-wave arrival 

times. 

4.2 EfficientNet-B0 Classification Architecture 

EfficientNet-B0 Tan and Le (2019), a highly efficient convolutional neural network, was 
employed for image classification tasks. EfficientNet is a family of models ranging from B0 to 
B7, designed to balance performance and computational efficiency. EfficientNet-B0 was 
chosen for its optimal trade-off between accuracy and resource consumption, making it ideal 
for the given classification task. 
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Figure 7: EfficientNet-B0 classification architecture. 

 
The architecture first layer is an input layer that accepts images of size 224 × 224 × 3. 

EfficientNet-B0, pre-trained on the ImageNet dataset, serves as the base model, extracting 
features with its efficient convolutional layers. The pre-trained weights in this base model are 
frozen during training to retain the learned representations. The extracted features are passed 
through a global max pooling layer to reduce spatial dimensions while preserving essential 
information. 

To tailor the architecture for classification, a custom head is added. This head includes a fully 
connected dense layer with two outputs, representing the classes for classification. A softmax 
activation function is applied to generate class probabilities. Additionally, dropout and 
batch normalization layers are incorporated for regularization and training stability. The 
complete classification architecture is illustrated in Figure 7. 

While this architecture is well-suited for classifying spectrogram data into discrete 
categories such as ”Earthquake” and ”Noise,” it was modified to handle waveform data for 
regression tasks, such as predicting P- and S-wave arrival times. The modifications include 
replacing the softmax layer with a dense layer containing a single neuron and a linear 
activation function, enabling the model to output continuous values. Additionally, global max 
pooling was replaced with global average pooling to better summarize temporal features for 
regression. 

 

5 Implementation 

The implementation of the research was conducted in Jupyter Notebooks using Python. The 
work was divided into two primary tasks: Phase Detection and Phase Picking. Both tasks 
utilized the INSTANCE dataset, which contains labeled seismic data categorized into 
”Earthquake” and ”Noise” and includes P- and S-wave arrival phase values. The dataset was 
pre-processed to generate either spectrograms or waveform data depending on the specific 
task requirements. 
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5.1 Phase Detection 

For phase detection, once the spectrograms were generated using the metadata and wave- 
form data, the extraction of waveform data was conducted based on the corresponding 
trace numbers. The dataset was then split into 60% training, 20% validation, and 20% 
testing subsets. The Keras flow from directory function was utilized to load and pre- process 
the images, adapting them to the required input sizes for the models: 128×128×3 for PhaseNet 
and 224 × 224 × 3 for EfficientNet-B0. This function also facilitated one-hot encoding, labeling 
”1” for earthquake signals and ”0” for noise. 

To avoid bias, data shuffling was applied during preprocessing. Both models used the 
Adam optimizer with ReLU activation functions, while accuracy and loss were chosen as the 
key evaluation metrics. A checkpoint mechanism was implemented to save the best- 
performing model during training. Training was conducted for 50 epochs, with an early 
stopping function employed to monitor validation loss. With the help of early stopping, 
computational power can be saved by halting training if the loss did not improve for 5 
consecutive epochs. Additionally, checkpoints ensured that the best-performing model was 
saved, preserving optimal results for later evaluation. 

 
 

 

 
 

 
Figure 8: Phase detection Workflow. 

Figure 8 illustrates the overall implementation for the phase detection task. 

5.2 Phase Picking 

For phase picking, waveform images were generated using metadata and waveform data, 
ensuring correct mapping by matching trace numbers with corresponding file names. The 
target variables for this task were the P- and S-wave arrival times. A DataFrame was used to 
manage the target variables and image file paths, ensuring accurate mapping between 
metadata and waveform images. 

The dataset was split into 70% training, 20% validation, and 10% testing subsets. Images 
were preprocessed and rescaled using the ImageDataGenerator class with a scale 
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factor of 1.0/255. Each image was resized to 224×224×3, the required input size for both 
EfficientNet-B0 and PhaseNet models. The flow from dataframe function was used to load 
and process the data directly from the DataFrame, mapping the image paths and the target 
variables for regression tasks. 

Both models utilized the Adam optimizer, with mean squared error (MSE) as the loss 
function, and mean absolute error (MAE) and mean absolute percentage error (MAPE) as 
evaluation metrics. Training was conducted for 50 epochs, and early stopping was applied 
to monitor MAPE. If the metric did not improve for 10 consecutive epochs, the training was 
halted to save computational power. Additionally, a checkpoint mechanism was 
implemented to save the best-performing model during training, ensuring optimal results 
for evaluation. 

 
 

 

 
 

 
Figure 9: Phase picking implementation flow. 

Figure 9 illustrates the implementation for phase picking. 

6 Evaluation 

Both PhaseNet and EfficientNet-B0 were applied to the INSTANCE dataset, leveraging 
spectrogram data for seismic phase classification. This section is divided into two parts: 
Phase Detection and Phase Picking. Below, the performance of both models is evaluated 
comprehensively for phase detection, highlighting classification results and model learning 
trends. 

6.1 Phase Detection 

Both models, PhaseNet and EfficientNet-B0, were employed for seismic phase detection, 
utilizing spectrogram data as input. The performance was evaluated using metrics such as 
accuracy, precision, recall, and F1-score to assess their effectiveness in classifying seismic 
phases into Noise and Earthquake categories. 
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6.1.1 PhaseNet 

PhaseNet achieved exceptional performance, with a training accuracy of 95.88% and a 
testing accuracy of 94.70%, as summarized in Table 10 and Figures 11 and 12. Out of 2,000 
”Noise” samples, 1,907 were accurately classified, resulting in a Recall of 0.9535. Similarly, 
1,881 ”Earthquake” samples were correctly classified, achieving a Precision of 0.9529. 
However, 119 ”Earthquake” samples were misclassified as ”Noise,” slightly lowering the 
Recall for this class to 0.9405. 

 

 

Class Precision Recall F1-Score 

Noise 0.9413 0.9535 0.9473 

Earthquake 0.9529 0.9405 0.9467 

Overall Metrics 

Accuracy 94.70% 

Loss 0.1149 

Validation Loss 0.1275 

Figure 10:  Classification Metrics for 
PhaseNet. Figure 11: Training and Validation Loss for 

PhaseNet. 

The F1-scores for ”Noise” (0.9473) and ”Earthquake” (0.9467) highlight the model’s 
balanced classification performance, ensuring reduced false positives while maintaining 
sensitivity. Such balanced metrics are critical in seismic monitoring systems, where ac- 
curate identification of earthquake events is essential for timely alerts. 

 

 

(a) Confusion Matrix for PhaseNet. 
(b) Training and Validation Accuracy for 
PhaseNet. 

Figure 12: PhaseNet Evaluation: (a) Confusion Matrix and (b) Accuracy Curves. 
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Figure 11 shows the model’s training and validation loss trends over 50 epochs, with 
losses stabilizing at 0.1149 for training and 0.1275 for validation. The consistent align- ment 
of training and validation accuracy curves suggests effective learning and minimal overfitting. 

Minor oscillations in the validation accuracy curve, observed in Figure 12(b), could stem 
from variability in the dataset, particularly spectrograms with low signal-to-noise ratios, or 
the inherent complexity of the PhaseNet architecture. Addressing these issues, possibly 
through enhanced data preprocessing, may further refine model performance. 

6.1.2 EfficientNet-B0 

EfficientNet-B0 was applied to the INSTANCE dataset,The model achieved strong results, with a 
training accuracy of 92.58% and a testing accuracy of 91.50%, as shown in Table 13 and Figures 
14 and 15. These metrics indicate a well-trained model with minimal over- fitting and robust 
generalization to unseen data. The confusion matrix in Figure 15(a) highlights the model’s 
classification performance. Out of 2,000 ”Noise” samples, 1,879 were correctly classified, 
achieving a Recall of 0.9395. This high recall is crucial for min- imizing false negatives in 
seismic noise detection. Similarly, 1,781 ”Earthquake” samples were correctly classified, with 
a Precision of 0.9364. However, 219 earthquake samples were misclassified as ”Noise,” 
leading to a slightly lower Recall for this class (0.8905). 

The F1-score for ”Noise” (0.9170) demonstrates the model’s balanced performance, re- 
ducing false alarms while maintaining sensitivity. These results are especially important in 
seismic monitoring systems where accurate differentiation between noise and earth- quake 
events is critical. 

 

 

Class Precision Recall F1-Score 

Noise 0.8956 0.9395 0.9170 

Earthquake 0.9364 0.8905 0.9129 

Overall Metrics 

Accuracy 91.50% 

Loss 0.2243 

Validation Loss 0.2347 

Figure 13:  Performance Metrics for 
EfficientNet-B0 Classification. Figure 14: Accuracy vs Loss Trends for 

EfficientNet-B0. 

As shown in Figure 14, the training loss decreased consistently over the 10 epochs, 
stabilizing at 0.1870, while the validation loss settled at 0.2347. The alignment of the 
training and validation accuracy curves indicates effective learning and minimal overfit- ting. 
The final validation accuracy of 91.50% demonstrates the model’s robustness in generalizing 
to unseen data. 

However, minor oscillations in the validation accuracy were observed, as illustrated in 
Figure 15(b). These oscillations could be attributed to noisy spectrogram data with low 
signal-to-noise ratios or the complexity of the EfficientNet-B0 architecture. Address- 
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ing these challenges through noise filtering or architectural optimization could further enhance 
performance. 

 

 

(a) Confusion Matrix for EfficientNet-B0. 
(b) Training and Validation Accuracy for 
EfficientNet-B0. 

Figure 15: Evaluation of EfficientNet-B0: (a) Confusion Matrix and (b) Accuracy Curves. 

Figures 14 and 15 highlight EfficientNet-B0’s effectiveness in seismic phase classific- 
ation. High Recall for ”Noise” minimizes false negatives, while balanced Precision and F1-
scores reduce false alarms. The stable training and validation trends demonstrate the model’s 
reliability for seismic monitoring. 

 
Phase Detection Summary: Both PhaseNet and EfficientNet-B0 performed well on the 
INSTANCE dataset, with PhaseNet achieving a higher testing accuracy of 94.70% compared 
to EfficientNet-B0’s 91.50%. PhaseNet demonstrated superior Recall for Noise (0.9535 vs. 
0.9395) and a more balanced F1-score for Earthquake (0.9467 vs. 0.9129), reducing missed 
detections effectively. While EfficientNet-B0 showed consistent training and validation trends 
with minimal overfitting, PhaseNet’s higher accuracy and sensitivity make it the more effective 
tool for seismic monitoring, offering a better balance between precision and recall. 

6.2 Phase Picking 

Both models, PhaseNet and EfficientNet-B0, were employed for predicting the arrival times 
of P and S waves using waveform data as input. The performance was evaluated using 
Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) to assess the 
accuracy of the predictions. 

6.2.1 Phase Picking for P-arival Wave 

The baseline for P wave predictions, calculated using the mean as a simple predictor, 
resulted in an MAE of 358 ms and a MAPE of 15.78%, serving as a reference for the 



18  

models. 
 

Parameter EfficientNet-B0 Baseline PhaseNet 

MAE (ms) 279.444 358.659 335.164 

MAPE (%) 11.17 15.78 15.13 

Training MAE (ms) 323.878 - 412.840 

Training MAPE (%) 12.48 - 18.13 

Validation MAE (ms) 297.419 - 371.961 

Validation MAPE (%) 11.48 - 16.77 

Table 2: Performance metrics for P wave arrival prediction. 

 
EfficientNet-B0 achieved a test MAE of 279 ms and a MAPE of 11.17%, significantly 

improving upon the baseline. Its validation MAE and MAPE were 297 ms and 11.48%, 
respectively, showing strong generalization. 

PhaseNet was stopped early due to performance stabilization and achieved a test MAE 
of 335 ms and a MAPE of 15.13%. While its training speed was faster, the higher error values 
indicate less accuracy compared to EfficientNet-B0. 

EfficientNet-B0 outperformed PhaseNet in both MAE and MAPE, making it the more 
effective model for predicting P wave arrivals. 

6.2.2 Phase Picking for S-Arrival Wave 

The performance of EfficientNet-B0 and PhaseNet for predicting the S wave arrival times was 
evaluated using training, validation, and test datasets, and the results are compared to the 
baseline mean predictor. The baseline, which uses the mean as a simple predictor, resulted in 
a Mean Absolute Error (MAE) of 338 ms and a Mean Absolute Percentage Error (MAPE) of 
12.48%. These baseline values provide a reference for model perform- ance. 

EfficientNet-B0 achieved a test MAE of 255 ms and a MAPE of 8.83%, significantly 
improving upon the baseline. Its validation MAE and MAPE were 270 ms and 9.05%, 
respectively, showcasing strong generalization capabilities. The training metrics showed an 
MAE of 298 ms and a MAPE of 9.88%. 

 

Parameter EfficientNet-B0 Baseline PhaseNet 

MAE (ms) 255.286 338.176 313.729 

MAPE (%) 8.83 12.48 11.80 

Training MAE (ms) 298.067 - 410.870 

Training MAPE (%) 9.88 - 15.17 

Validation MAE (ms) 270.270 - 327.062 

Validation MAPE (%) 9.05 - 11.98 

Table 3: Performance metrics for S wave arrival prediction. 
 

PhaseNet, which was stopped early after 31 epochs due to performance stabilization, 
achieved a test MAE of 314 ms and a MAPE of 11.80%. Its validation metrics showed 
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an MAE of 327 ms and a MAPE of 11.98%. The training metrics showed an MAE of 411 ms 
and a MAPE of 15.17%. While PhaseNet trained faster, its higher error values indicate less 
accuracy compared to EfficientNet-B0 for S wave arrival prediction. 

EfficientNet-B0 demonstrated better overall performance across all metrics, making it the 
preferred model for predicting S wave arrivals in this task. The comparison of metrics across 
both models and the baseline is summarized in Table 3. 

Phase Picking Summary: Both PhaseNet and EfficientNet-B0 were applied for pre- dicting 
the arrival times of P and S waves using waveform data. EfficientNet-B0 out- performed 
PhaseNet, achieving lower Mean Absolute Error (MAE) and Mean Absolute Percentage Error 
(MAPE) across both tasks. The P-wave and S-wave results are sum- marized in Table 2 and 
Table 3, respectively. 

EfficientNet-B0’s higher accuracy and lower error rates make it the preferred model for 
phase picking, while PhaseNet’s faster training offers computational advantages. 

 

7 Discussion 

PhaseNet and EfficientNet-B0 were both evaluated for seismic phase detection and pick- ing 
on the INSTANCE dataset. The results demonstrated that PhaseNet achieved an F1 score of 
0.98 and recall of 0.98, significantly outperforming EfficientNet-B0, which scored 0.95 and 
0.92, respectively. However, EfficientNet-B0 achieved a higher precision of 0.97, showing its 
strength in accurately identifying seismic phases while minimizing false positives. These 
findings underscore PhaseNet’s sensitivity and robustness in de- tecting seismic events, 
making it a strong candidate for applications requiring high recall Zhu and Beroza (2019). 

When compared to state-of-the-art models, EQTransformer achieved perfect perform- 
ance metrics (F1, precision, and recall = 1.00), largely due to its use of hierarchical at- 
tention mechanisms and training on a more diverse and extensive dataset Mousavi et al. 
(2020). ARRU Phase Picker, which integrates attention gates and recurrent-residual 
convolution units, also showed excellent performance with an F1 score of 0.98 and recall of 
0.95 Liao et al. (2021). SEA-net, a computationally efficient model, achieved slightly lower 
performance metrics with an F1 score of 0.96, balancing high accuracy with reduced resource 
consumption Hou et al. (2023). 

Table 4: Performance Comparison with Related Works 
 

Model F1 Score Precision Recall Reference 
EQTransformer 1.00 1.00 1.00 Mousavi et al. (2020) 
ARRU Phase Picker 0.98 0.96 0.95 Liao et al. (2021) 
SEA-net 0.96 0.95 0.94 Hou et al. (2023) 
EfficientNet-B0 (Ours) 0.95 0.97 0.92 This study 
PhaseNet (Ours) 0.98 0.99 0.98 This study 

Table 4 Indicates the comparison between the models. For phase picking tasks, 
EfficientNet-B0 performed better than PhaseNet, with mean absolute errors (MAEs) of 279 
ms for P-wave and 255 ms for S-wave arrival times. These results indicate EfficientNet-B0’s 
suitability for precise temporal event localization. However, both mod- els were surpassed by 
EQTransformer and ARRU Phase Picker, which achieved tighter 
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thresholds in detecting arrival times by leveraging raw seismic signals for improved feature 
extraction. This study’s use of spectrogram and waveform plots, while computationally 
efficient, limits the ability to extract fine-grained seismic features, emphasizing the need for 
raw signal integration to enhance performance. 

The results justify PhaseNet’s utility in scenarios requiring high recall and sensitivity, such 
as real-time seismic event detection. Meanwhile, EfficientNet-B0 balances computa- tional 
efficiency and precision, making it suitable for practical deployments where resource 
constraints are a concern. Despite their competitive performance, both models would be- 
nefit from further optimization, including transfer learning on larger datasets, integration of 
raw signal data, and noise mitigation techniques to improve their generalizability and 
robustness in diverse seismic environments. 

 

8 Conclusion and Future Work 

The objective of this paper was to evaluate the performance of PhaseNet and EfficientNet- B0 
for seismic phase detection and picking using the INSTANCE dataset. Both models were 
trained on spectrograms and waveform plots to identify seismic events and estim- ate the 
arrival times of P and S waves. This study successfully addressed the research objective of 
developing and assessing effective models for seismic monitoring. PhaseNet demonstrated 
remarkable sensitivity, achieving a high recall of 0.98 and an F1 score of 0.98, making it well-
suited for detecting seismic movements in noise-prone conditions. Meanwhile, EfficientNet-
B0 excelled in phase picking tasks, with mean absolute errors of 279 ms for P-waves and 255 
ms for S-waves, highlighting its precision in arrival time prediction. These results underscore 
the complementary strengths of both models, with PhaseNet excelling in sensitivity and 
EfficientNet-B0 in precision, meeting the goal of assessing their comparative performance. 
   Initially, this study also considered the Stanford Earthquake Dataset (STEAD) as a 
potential data source for model evaluation. STEAD provides a vast collection of global 
seismic waveforms, which could offer additional diversity and robustness to deep learning 
models trained for seismic event detection. Future work could explore integrating STEAD 
with the INSTANCE dataset to further improve model generalization across different 
geographic regions and seismic conditions. 

Nevertheless, this study identified several limitations that require further exploration. 
The reliance on spectrograms and waveform plots restricts the ability of these models to 
capture fine-grained features. Incorporating raw waveform data could address this limit- 
ation and improve overall accuracy. Additionally, leveraging transfer learning on larger and 
more diverse datasets could enhance the models’ generalizability across various geo- graphic 
regions and seismic conditions. Future research could also explore hybrid models that 
combine the strengths of PhaseNet and EfficientNet-B0 to optimize performance. 
Furthermore, real-time deployment and scalability of these models should be examined to 
enable practical applications such as earthquake early warning systems. 

By addressing these limitations and leveraging advancements in machine learning and data 
processing, these models can significantly enhance seismic monitoring and contribute to 
improved hazard assessment and risk mitigation. 
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