\ National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc in Data Analytics

Sriram Rajgopalan
Student ID: x23213876

School of Computing
National College of Ireland

Supervisor: Jaswinder Singh

https://moodle2024.ncirl.ie/user/profile.php?id=1547

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee

Ireland

School of Computing
Student = ... Sriram Rajgopalan ...
Name:
Student ID: ... DG I NG 1S TSR
Programme: ... Msc in Data Analytics Year: ..2024......... .
Module: ... Msc Research Project ...,
Lecturer: ... Jaswinder SiNgh........oo
Submission
Due Date: ... 1271272024 ...t e e
Project Title: ...Evaluating the Prevalence and Effects of Disguised Unemployment in
Ireland............

Word Count: ... 726 Page Count: O

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: = ... Sriram Rajgopalan.......ccoiiiiiiii e

Date: = ... 1271272024 ... s

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple v
copies)

Attach a Moodle submission receipt of the online project v
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both 4
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Sriram Rajgopalan
x23213876

1 Introduction
A research project has been undertaken to predict “Prevalence of disguised Unemployment in
Ireland” and this document serves as the configuration manual for the usage of various
resources, steps and experiments that are discussed throughout. The research is done using a
machine learning technique of “Stacking classifier” which has experimental coding,
implementation and evaluation.

A complete information on the specification used to carry out the research can be
found in this report. The hardware and tool specifications can be found in section 2, The data

gathering and different stages of preparation and the design implementation are explained in
section 3. The execution of the model is explained in section 4.

2 Hardware and Tool Specifications

* System type: 64-bit Windows operating system, x64-based processor

* RAM: 16 GB

* Processor: 11th Gen Intel(R) Core(TM) 17-1165G7 @ 2.80GHz 2.70 GHz

* Programming Language: Python

* Integrated Development Environment (IDE): Jupyter Notebook

* Python Libraries/Modules: pandas, numpy, sklearn, matplotlib, seaborn, shap
* Browser: Chrome

* Other Software: MS Office

* Method of execution of the code: Code is opened in Jupyter notebook — restart kernal and
run all cells would run the code.

3 Data Collection

The data used for the experiment is obtained from two different data portals ILOSTAT!

'https://ilostat.ilo.org/data/#

https://ilostat.ilo.org/data/

which are the open datasets maintained by the international labour organisation. The datasets
are downloaded in the csv format and are stored locally. The datasets are renamed as
“Native Dataset Education”, “Employment Dataset”, “Education Dataset”,
“Native_age Dataset” and “Skills Dataset”. The csv is now run with python on the Jupyter
notebook for further processing.

3.1 Preparation of data

Using the pandas library, the csv is imported and opened with the help of python. The
structure of the data is analysed as mentioned in Figure 1 to proceed further.

import pandas as pd
df = pd.read_csv('Education_Dataset.csv')

print ("The rows X Columns of the dataset is:", df.shape)
print(df.head())

print(df.info())

The rows X Columns of the dataset is: (3168, 12)

STATISTIC Statistic Label TLIST(Ql) Quarter C®2199Ve2655 Sex \
@ QLF51Cel Unemployment rate 20191 2019Q1 - Both sexes
1 QLF51Cel Unemployment rate 20191 2019Q1 - Both sexes
2 QLF51Cel Unemployment rate 20191 2019Q1 - Both sexes
3 QLF51C@1l Unemployment rate 20191 2019Q1 - Both sexes
4 QLF51Cel1 Unemployment rate 20191 2019Q1 - Both sexes

Figure 1: Data import

The empty strings are calculated on each of the column as coded in the Figure 2

Count the empty strings column-wise
empty_strings_count = (ireland_df == '').sum(axis=0)

print("Count of empty strings in each column:™)
print(empty_strings_count)

Count of empty strings in each column:
STATISTIC e
Statistic Label e

I TeT imAah ~

Figure 2: Check for empty strings

The unimportant columns which are column descriptors/ repetetive labels are removed as per
the Figure 3.

columns_to_remove = ['STATISTIC', ‘'Statistic Label', 'TLIST(QL)', 'C@2199ve2655', 'Ce2876Ve3371', 'Ce4283vesese’, 'UNIT'

Remove the columns from the dataframe
ireland_df = ireland_df.drop(columns=columns_to_remove)

Confirm the changes
print(ireland_df.head())

Quarter

A AmsAAa ALl

Sex Age Group \

L B

Figure 3: Removal of descriptor columns

The Labels are classified as per ILOSTAT standards for better understanding as mentioned in
the Figure. Refer Figure 1 for the classification matrix of all the datasets.

Education Level Classifiers

M_ Classified Keyword

Levels 1-2 Primary and lower secondary
education
2 Levels 3and 4 Upper secondary and post-
secondary non-tertiary education
g Levels 5-8 Tertiary education
(Levels 0-8)

Employment Skill Classifiers

Managers

%]

Technicians and associate
professionals

Professionals
Clerical support workers

Service and sales workers

O O W

Craft and related trades workers

7 Plant and machine operators, and
assemblers

Elementary occupations

Armed Forces Occupations

Skill levels 3 and 4 ~ high
Skill levels 3 and 4 ~ high

Skill levels 3 and 4 ~ high
Skill level 2 ~ medium
Skill level 2 ~ medium

Skill level 2 ~ medium

Skill level 2 ~ medium

Skill level 1 ~ low
Skill level 1 ~ low

Employment Type Classifiers

In employment part-time - underemployed Disguised Unemployment
In employment part-time - not underemployed Disguised Unemployment
Unemployed seeking full-time work/future job- Disguised Unemployment
starter

4 Unemployed seeking part-time work Disguised Unemployment

5 Potential additional labour force Disguised Unemployment

6 In labour force Relatively Employed

7 AUl ILO economic status Relatively Employed

8 In employment Relatively Employed

9 In employment full-time Relatively Employed

10 In employment part-time Relatively Employed

11 Unemployed Unemployed

12 ILO Economic Status Unemployed

13 Not in labour force Unemployed

14 Others not in labour force Unemployed

15 Unemployed seeking work as self-employed Unemployed

Classify Labels as per ILOSTAT

def replace_with_skill_level(label):

label = label.strip()

if any(keyword in label for keyword in ["Levels ©-8", "Levels 5-8"]):
return "Tertiary education"

elif any(keyword in label for keyword in ["Levels 1-2"]):
return "Primary and lower secondary education"

else:
return "Upper secondary and post-secondary education”

ireland_df['Education Attainment Level'] = ireland_df['Education Attainment Level'].apply(replace_with_skill_level)

unique_values = ireland_df['Education Attainment Level'].unique()
print(ireland_df)
print("Unique Values:", unique_values)

Quarter Sex Age Group \

A AnaAAa Pkl mmeimn 21T mmmm

Figure 3: Labeling as per ILOSTAT

Post classification the datatypes are checked for strings and are changed into numerical as
mentioned in the Figure 4

print(ireland_df.dtypes)

Identify all categorical (non-numeric) columns
categorical_columns = ireland_df.select_dtypes(include=["'object"']).columns

Exclude 'classif2.label' from the List of categorical columns
categorical_columns = categorical_columns.drop('Education Attainment Level')

Display the final List of categorical columns
print("Categorical Columns (excluding 'Education Attainment Level'):", categorical_columns)

Quarter object
Sex object
Age Group object
Education Attainment Level object
VALUE float64

dtype: object
Categorical Columns (excluding 'Education Attainment Level'): Index(['Quarter', 'Sex', 'Age Group'], dtype='object")

Figure 4: Check for Data types

The categorical features are encoded before runing the model using label encoder as
mentioned as Figure 5.

from sklearn.preprocessing import LabelEncoder

Apply LabelEncoder to each categorical column
for col in categorical_columns:
le = LabelEncoder()
ireland_df[col] = le.fit_transform(ireland_df[col])

print("Encoded Data:")
print(ireland_df)

Encoded Data:

Quarter Sex Age Group Education Attainment Lev
a =) =} 2 Taertiarv aducatis

Figure 5: Label Encoder

3.2 Design Implementation of data

The model consists of 4 sections, Data collection, Feature engieering , Training of the model
and results and interpretation. The model architecture is depicted in the Figure 6.

Data Collection

Origin vs
Unemployment Data

Skills vs
Unemployment Data

Working Age vs
Unemployment Data

Education Level vs
Unemployment Data

Model Architecture Flow

Data Pre-Processing and Feature Engineering

| Classify Target variables and group them relatively |

Visualise Dataset Trends and Qutliers |

| Impute missing values using Linear Regression |

Individual Pre-processed Data

Splitting of Data (Testing & Training Dataset)

F 3

Base[Models Support Vector

Nature Of Employment
vs Unemployment Data

Random Forest STACKING Classification

Meta Model (Logistic Regression)

Summarize SHAP | Interpret confusion matrix of each output

Collaborate Individual Results and Infer Final Outcome

Figure 6: Model Architecture

The individual pre processed data is led into the training of the base models of the “Stacking
Classifier” that consists of Random Forest and Support Vector Classification. A sample
pipeline is mentioned in the Figure 7.

Once the model enters the pipeline, the output of base classifier is set into the Meta model
and final prediction is done. This process is repeated for all 5 datasets as seen on Figure 8

[

StackingClassifier

EStackingClassiFier(cv:S,
| estimators=[('rf', RandomForestClassifier(random_state=42)),

('svc', SVC(probability=True, random_state=42))],

final_estimator=LogisticRegression(random_state=42))

rf svec

RandomForestClassifier é é » SVC

I E i]
final_estimator

g » LogisticRegression |
Figure 7: Stacking Classifier Pipeline

Model Study

Origin vs Skills vs Working Age vs Education level vs Nature of
Unemployment Unemployment Unemployment Unemployment Employment vs
Data Data Data Data Unemployment
RF | svc RE | SVC RF | svc RF | svc Dato
v ' RF §svc
Meta Model Meta Model Meta Model Meta Model Meta Model
VS VS VS VS
¥ v VL l
Evaluate SHAP & Evaluate SHAP & Evaluate SHAP & Evaluate SHAP & Evaluate SHAP &
Confusion Matrix Confusion Matrix Confusion Matrix Confusion Matrix Confusion Matrix
1 Y \ 4 1
Outcome Qutcome Qutcome Outcome Outcome

1

Final Conclusion

Figure 8: Model Study

4 Model Execution

The pre-processed data is split into 80:20 and the same is modelled into the base learners
using RF and SVC and then the meta model Logistic Regression is learning from the output
of the base learners as explained in the Figure 9.

Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
Initialize base models
estimators = |
('lr', LogisticRegression()),
('rf', RandomForestClassifier()),
('svc', SvC(probability=True))
]

Meta-model
meta_model = LogisticRegression()

Figure 9: Testing and Training Model

The stacking classifier is run as shown in the Figure 10 on the meta model and classification
report is taken as the first part of the metric.

Create Stacking Classifier
stacking_clf = StackingClassifier(estimators=estimators, final_estimator=meta_model)

Train and evaluate
stacking_clf.fit(X_train, y_train)
y_pred = stacking_clf.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print(f"Stacking Classifier Accuracy: {accuracy}")
print(classification_report(y_test, y_pred))

Figure 10: Initiation of Stacking classifier

Since this a multiclass classification, the test labels are binarized and a ROC-AUC curve is
plotted as mentioned in the Figure 11. This is the second metric to test.

from sklearn.preprocessing import label_binarize
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt

Assume class_names is a List of integer-encoded classes, e.g., [@, 1, 2]
If the class labels are encoded as integers, we ensure that Label_binarize knows all class Labels

Binarize the true labels and predicted Labels
y_test_bin = label binarize(y_test, classes=range(len(class_names)))
y_pred_bin = label binarize(y_pred, classes=range(len(class_names)))

Initialize dictionaries to store the FPR, TPR, and AUC for each class
fpr = {1

tpr = {}

roc_auc = {}

legend_labels = []

Figure 21: Binarization for roc-auc curve

The encoded Labels are decoded, and a confusion matrix is created in order to analyse the
classification of classes as in Figure 12

Decode the Labels back to the original values
y_test_decoded = label_encoder.inverse_transform(y_test)
y_pred_decoded = label_encoder.inverse_transform(y_pred)

True Llabels (actual class names) and predicted Labels
class_names = label_encoder.classes_ # Get the class names from the encoder

Create confusion matrix
cm = confusion_matrix(y_test_decoded, y_pred_decoded)

Plot the confusion matrix

plt.figure(figsize=(8, 6))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=class_names, yticklabels=class_names)
plt.xlabel('Predicted Label')

plt.ylabel('True Label')

plt.title('Confusion Matrix')

plt.show()

e il AR I..

Figure 12: Label Decoder and confusion matrix

Finally a feature importance score is calculated and SHAP values are plotted as in Figure 13
in order to conclude the objective of the project with the feature interaction.

from sklearn.inspection import permutation_importance

Train any model (e.g., Stacking Classifier)
stacking_clf.fit(X_train, y_train)

Calculate Permutation Importance
perm_importance = permutation_importance(stacking_clf, X_test, y_test, n_repeats=18, random_state=42)
importance_df = pd.DataFrame({
'Feature': X_train.columns,
'Importance': perm_importance.importances_mean
}).sort_values(by="'Importance’, ascending=False)

print(importance_df)

Compute SHAP values for test data
shap_values = explainer.shap_values(X_test)

--- SHAP Plots ---

Summary Plot
shap.summary_plot(shap_values, X_test)

Figure 33: Feature Importance and SHAP

