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Severity Classification of Knee Osteoarthritis from X-

Ray Images using Deep Learning 
 

Pranav Prakash 
 

x23134682 
 

 

Abstract 
 

Osteoarthritis of the knee (KOA) is the most common cause of disability caused by 

cartilage degeneration and consequent joint failure. Getting diagnosed early is key to 

avoiding long-term pain and degeneration, mental health, and mobility issues. While 

traditional manual analysis of X-ray images can be subjective, time consuming and 
inconsistent, automated solutions are desired. Advances in deep learning have recently 

demonstrated effective use of CNN architectures including DenseNet121, EfficientNetB0 

and MobileNet to perform superior to traditional machine learning methods on medical 

imaging tasks. This study explores the effectiveness of these models for classifying KOA 

severity at three levels of granularity: A three-class, five-class, and binary classification, 

on a dataset graded using the Kellgren–Lawrence system. Accuracy, F1-score and 

confusion matrices were used in evaluation of the models. Results were found to indicate 

that binary classification with DL models consistently outperformed conventional ML 

methods, with DenseNet121 being the most accurate (78.27%). As classification 

granularity decreased, performance improved, confirming the contribution of simplified 

tasks to ameliorating class imbalance and improve generalization. ML models such as 

Random Forest had a moderate outcome, but they exhibited a failure to deal with high 

dimensional data. Finally, this research has shown the basis for DL as an automation 

method of KOA diagnostics, and potential areas are suggested for future research 

exploiting hybrid models and clinical metadata integration. 

 

Keywords: CNN (Convolutional Neural Network), KOA (Knee Osteoarthritis), 

Classification, Accuracy, F1-Score, Machine Learning. 
 
 

1 Introduction 
 

Knee osteoarthritis, where degeneration leads to loss of articular cartilage and ultimately joint 

failure is a major source of mobility and quality of life impairment and is a major contributor 

to global disability and socioeconomic burden. Manual analysis of X-ray images through 

traditional diagnostic methods are subjective, time consuming and prone to inconsistencies 

leading to early and accurate diagnosis as a challenge. Early diagnosis is important as delays 

can lead to long term pain, restricted mobility and mental health problems known as anxiety 

and depression. 

 

CNNs have recently revolutionised medical image analysis with automated, efficient, and 

accurate diagnostic solutions. Deep CNN architectures like VGG16, ResNet, DenseNet, 

Inception are getting popular in medical image tasks including detecting tumours in the brain 

and grading severity of KOA (Mukesh Kumar and Sree Sankar, 2024; Divyanshi and Bansal, 

2024). These deep learning models rely on hierarchical feature extraction that provide a 

superior performance on the use case of complex image classification compared to traditional 

models. 
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This study investigates the research question:  

How does the performance of deep learning models and machine learning models change 

when varying the classification granularity of detecting severity of knee osteoarthritis? 

 

 

Figure 1: KL Grading System.  

As a solution to this, the research compares the classification’s ability of these advanced CNN 

architecture along with traditional machine learning models for the KOA severity 

classification. The analysis starts with a five-class classification based on Kellgren Lawrence 

grading and then several reductions to three class and two class models to study the impact of 

classification granularities on model performance. The above models are assessed in terms of 

evaluation metrics including accuracy and F1 score and so on. 

 

The purpose of this study was to use its results to shed light on the comparative advantages and 

shortcomings of state-of-the-art CNN and ML architectures for KOA severity assessment. This 

work makes contributions to developing such efficient and accurate diagnostic tools that can 

improve clinical decision making and patient outcomes or to providing a demonstration of 

when and how deep learning and machine learning can advance medical imaging technology.  
 

The thesis is structured as follows: In Section 2, a review of related work on deep learning and 

machine learning application in medical imaging is given, particularly in the KOA severity 

classification. The methodology of the research is detailed in Section 3, where the research 

starts with the dataset overview, then goes for pre-processing, followed by model selection and 

lastly, evaluation metrics. Section 5 explains the implementation process of the models and the 

tools used, and Section 4 contains the design specifications for those models. The results of the 

evaluation and their discussion are presented in Section 6. Finally, a summary of key findings, 

limitations and potential directions for future research are presented in Section 7. 
 

2 Related Work 
 

Medical imaging has stepped forward markedly using deep learning as well as machine 

learning approaches, allowing for highly accurate automated diagnostic systems. In this 

section, important studies of employing these techniques in datasets, models, results, and 

limitations are reviewed with a focus to KOA severity classification and allied fields.  

 

2.1 Review on Medical Image Classification using Deep Learning 

Architectures 

The use of Convolutional Neural Networks for classifying the severity of knee osteoarthritis 

using X-ray images was studied by  `Divyanshi and Bansal (2024), Kant (2024). Both studies 
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utilized datasets graded based on the Kellgren and Lawrence scheme, categorizing arthritis into 

five severity levels: — Normal; Doubtful, Mild, Moderate, Severe. They used a CNN model 

with three layers of convolution and SoftMax activation, their overall accuracy being 89% and 

precision scores of 77% for 'doubtful' and 100% for 'moderate' severity. Instead, Kant pre-

processed their data with steps including resizing, normalization and implementing data 

augmentation to assist in training and get a test accuracy of 58%. Both studies showed that 

CNN could automate KOA diagnostics, but also noted issues in separating individual severity 

levels. Based upon the results, the authors also suggest future directions including the addition 

of clinical data, applying more advanced architectures such as transfer learning, and 

overcoming overfitting to reach higher diagnostic accuracy and applicability. 

 

Deep learning methodologies for KOA severity classification are offered in Kitukale et al. 

(2024), Chandu et al. (2024), and Pandey and Kumar (2023), based on DenseNet-201, AlexNet 

enhanced CNN, and enhanced EfficientNet-B0 architecture, respectively. DenseNet-201 with 

83.9% accuracy, shown by Kitukale et al., surpassed the traditional models like CNN and 

Xception, while Chandu et al. with 96.08% of accuracy using AlexNet surpassed the other 

models such as DenseNet-121, VGG-19 and MobileNetV2. An improved EfficientNet B0 was 

suggested by Pandey and Kumar, with an accuracy of 69.74%, when using a dual-branch 

strategy to enhance feature extraction and classification performance. Taken as a whole, this 

work highlighted those advanced architectures can automate further towards diagnosing KOA, 

with external validation, clinical data integration, and real-world deployment, as further 

recommendations for precise diagnostics and practical utility. 

 

A comparative analysis of CNN architectures such as the VGG16, ResNet, Inception ResNet, 

and DenseNet for brain tumour detection from MRI images was performed by Kumar and 

Sankar (2024), whereas Gill et al. (2023) used the pre trained ResNet50V2 model to classify 

pneumonia using chest X-ray images. Pre-processing techniques (intensity normalization, 

spatial normalization, skull stripping) were used to prepare MRI sets for binary classification 

with VGG16 outperforming other architectures with accuracy of 92%, then DenseNet (85%), 

Inception (84%), and ResNet (80%). The same is done by Gill et al. for fine tuning ResNet50V2 

with Adam optimizer and binary cross entropy loss and ends up with 86% post fine tuning. The 

two studies also highlighted the promise of CNNs in automating medical diagnostic tasks, 

suggesting that VGG16 may be useful when computational efficiency and model 

interpretability are needed, and ResNet50V2 useful in resource limited settings. Future work 

focused on working with various datasets, tuning hyperparameters, and developing useful 

applications to further improve real world diagnostic ability. 

2.2 Review on Medical Image Classification using Machine Learning 

Models 

Various machine learning approaches for the prediction and classification of Rheumatoid 

Arthritis (RA) have been studied by Sakaria et al. (2023), Singh et al. (2019), and 

Sundaramurthy et al. (2020), which claim to improve diagnostic accuracy as well as decision 

making in healthcare. On a dataset of 500 images, five ML models were compared: 

Convolutional Neural Networks, K-Nearest Neighbours, XGBoost, Gaussian Naive Bayes and 

Support Vector Machine. They found that CNN performed the best with an accuracy of 98% 

and the worst at 60% by KNN, which proved to be a weak function for image-based data. On 

the other hand, they also suggested for Explainable AI (XAI) to boost the prediction 

transparency, and for an integration of Generative Adversarial Network, and a larger dataset in 

the long term. 
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Singh et al. applied the K-means, hierarchical clustering, and DBSCAN algorithms to a dataset 

of 60 patient profiles through attributes of Rheumatoid Factor and Swollen Joint Count. It was 

found that the DBSCAN algorithm was the most effective algorithm and adapted well to 

irregular data patterns and robust to noise. K-Means and hierarchical clustering failed against 

outliers and high computational cost. The cluster identification performed was important to 

early RA detection, and the improvement to clustering algorithms is needed to increase 

diagnostic precision. 

 

Ensemble ML methods were investigated by Sundaramurthy et al. which combines classifiers 

SVM, AdaBoost, and Random Subspace with baseline models k-Nearest Neighbours and 

Random Forest. As such, they tested several classifiers on a dataset consisting of a scroll of 

1,000 patient profiles and found that SVM based ensemble classifiers achieved the highest 

accuracy (94%), followed by AdaBoost and RSS. They found the ensemble methods effective 

in utilizing the powers of individual models skipping the flaws of others. Additional sources 

of data were proposed to integrate into future RA diagnostic systems, and algorithms were 

suggested to be refined and increased model robustness remained areas for further work to 

advance these diagnostic systems. Finally, this work demonstrates that ML techniques have 

potential for aiding RA diagnosis and further corroborates the usefulness of continued ML 

research to support this goal. 

2.3 Review on Combining Deep Learning Architectures with Machine 

Learning Models 

Chandra Bose et al. (2023), Gill et al. (2023), Romalt et al. (2022) have looked at how Medical 

Diagnostics can benefit from integration of Machine Learning and Deep Learning methods and 

the possibility of its improved accuracy and efficiency in conjunction. In Chandra Bose et al., 

CNNs were used to derive features from X-ray images of Knee Osteoarthritis for both binary 

and multiclass classification. Further these features were processed with ML classifiers like 

Support Vector Machine produced best result for binary classification task and Random Forest 

performed better on multi-class task. Using a CNN model DenseNet201, Gill, et al. applied a 

similar approach for classifying kidney diseases from X-ray images. By using ML algorithm 

on extracted high level features extracted by DenseNet201, the impressive 97% accuracy was 

achieved, which shows the power of joining DL’s feature extraction with ML’s predictive 

capability. 

 

Additionally, Romalt et al. (2022) presented a hybrid model by combining CNN and Naïve 

Bayes model for the prediction of cardiovascular disease, using unstructured data to structure 

it for feature extraction by using CNN and later classification by using Naïve Bayes. This 

approach combined the DL ability to process complex data with ML efficiency in classification 

to obtain an average accuracy of 96%. Collectively, these studies show that hybrid ML—DL 

models can combine the best of both worlds to achieve precise, automated, and scalable 

medical diagnostics, and call for the future research on their robustness and applicability. 

2.4 Review on Image Pre-processing for X-ray Images 

YOLACT++ and CLAHE were used to segment and contrast enhancing for arm fracture 

detection, tackling detection on noisy and low contrast Xray images by Nguyen et al. (2021). 

With data augmentation techniques such as flipping and brightness adjustments, this approach 

enhanced their YOLOv4 based fracture detector. To enrich datasets and boost DCNN accuracy, 

Bhagat and Bhaumik (2019) demonstrated utilizing Progressive GANs (ProGAN) to generate 

synthetic high-resolution images for detection of pneumonia in chest X-rays along with 
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conventional augmentations. Gaussian filtering and Split Bregman based total variation 

regularization is introduced by Ma et al. (2020) for retention of high frequency details in 

denoised industrial x-ray images using partition-based restoration. These studies collectively 

show the improvement of X-ray image analysis by means of pre-processing techniques, such 

as segmentation, contrast enhancement, augmentation, and denoising. 

 

Table 2: Summary Table 

 

3 Research Methodology 

In this part of the study, a step by step methodology utilized within this study for classifying 

the severity of knee osteoarthritis using both deep learning and traditional machine learning 

approach has been described. 
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Figure 2: Methodology. 

3.1 Dataset Overview 

This study used the dataset which was obtained from Kaggle repository which is a popular 

repository for machine learning and deep learning projects with publicly available datasets. 

The dataset consists of X-ray images of the knee joint labelled using the Kellgren and Lawrence 

grading system, which is a well-established standard for rating the severity of knee 

osteoarthritis This system allows to classify severity at five levels: Class 0 (Normal) to Class 4 

(Severe). It provides a rich resource for medical image analysis and machine learning 

applications research. 
 

The dataset contains an almost 10,000 images, distributed across the following five classes: 

 

Table 2: Classes 

 

Figure 3: Dataset in RGB. 

The planning of the study was much dependent on the size and distribution of the dataset. 

However, an analysis of the class distribution revealed imbalances in the data where the total 

number of images is sufficient to train complex deep learning models. For example, a smaller 

number of images exist in some of the classes like Class 4 which will necessarily affect training 

model performance. To understand the external dataset composition, visualizations like bar 

charts showing the number of images per class have been created. To rectify this, main attention 

during the data preparation phase was directed to address these imbalances through techniques 

such as data augmentation, oversampling and under sampling. 
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Figure 4: Dataset Distribution. 

 

Data quality and relevance of the dataset was validated by inspecting sample images for the 

different classes, showcasing unique features, like cartilage loss and bone deformities, that 

characterize the evolution of knee osteoarthritis severity between Class 0 and Class 4. 

Representative images, including, for example, a grid of X-rays covering classes, would 

neutrally illustrate these differences. The structured labelling scheme and broad coverage 

across severity levels of the dataset make it a sound reference for training, validation, and 

testing of automated KOA severity classification with machine learning and deep learning 

approaches. 

3.2 Data Preparation 

Several steps were done during the data preparation, which aims at improving or enhancing the 

data quality and utility for use while training deep learning and machine learning models. These 

made the models able to feed and learn with the data. 

3.2.1 RGB to Grayscale Conversion 

The data was images in RGB format, that is, three colour channels (red, green, blue), for 

representing visual information. RGB images provide rich information on colour but due to 

medical image classification task such as diagnostic based on texture or intensity, the colour is 

not necessary. The basis for the first step was the transfer of images to grayscale to decrease 

the computational complexity and concentrate on the relevant features. Converting this data 

simplifies it down to intensity values, reducing memory needs and speeding up processing 

without compromising of critical diagnostic features. 
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Figure 5: RGB to Grayscale. 

3.2.2 Channel Expansion 

Grayscale images tend to reduce computations but many pre trained convolutional neural 

network (CNN) like VGG16, ResNet50, and DenseNet are modelled in the assumption of three 

channel (RGB) images. Because of these models, the single grayscale channel was expanded 

to three identical channels to ensure compatibility. This does not introduce additional 

information but makes it easy to plug in pre trained models, that take inputs of a certain shape, 

such as height × width × 3. This step is part to allow the feature maps generated from the pre 

trained network to match the given architecture design of the networks. 

 

 

Figure 6: 3-Channel Grayscale. 

 

3.2.3 Normalization 

Images have raw pixel values in range of 0 to 255. To increase model training efficiency, and 

to make the dataset stable, we performed min-max normalization on pixel values to put them 

in the range [0,1]. Normalizing data becomes a necessity to ensure that the numerical scale of 

the input data is fixed since many optimization algorithms converge faster with fixed numerical 

scale and exploding or vanishing gradients during backpropagation are reduced. Moreover, 

inputs normalized with this method are further aligned with the input distributions for which 

the pre trained models were trained on, yielding better performance. 

3.2.4 Granularity Conversion 

To evaluate model performance across varying levels of classification complexity, the dataset 

was reorganized into three levels of granularity: 
 

1. Five-class dataset: This is the original dataset with 5 classes of knee osteoarthritis X-

ray images. 

2. Three-class dataset: To make the classification easier, and reduce class imbalance, we 

grouped severity levels into broader categories. 
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• Class 0: Normal and Doubtful 

• Class 1: Mild and Moderate 

• Class 2: Severe 

The reorganization here maximized the clinical significance of groupings but retained 

interpretability. 

3. Two-class dataset: For binary classification, we merged lower severity levels of a 

prescription (Normal and Doubtful) into one class (healthy), and higher severity levels 

of a prescription (Mild, Moderate, Severe) into another class (severe). An ideal 

approach for healthy vs. pathological case discrimination in a simplified framework. 
 

 

 
 

 

Figure 7: Granularity Conversion. 

3.3 Modelling & Evaluation 

The study evaluates two types of models for classifying knee osteoarthritis (KOA) severity: 

Traditional machine learning models and deep learning models. Following is a detailed 

architecture, strengths, and weaknesses of each model and the evaluation metrics. 

3.3.1 Deep Learning Models 

a. VGG16 

VGG16 is the 16 layered sequential convolutional neural network. It has a very simple 

architecture with convolutional, pooling and fully connected layers and it's working with 

small 3x3 kernels. It is strong in fine grained feature extraction so is good for image 

classification. But it has an enormous number of parameters, which increase computational 

cost and memory usage. (Kumar & Sankar, 2024) 

b. ResNet50 

A 50-layer deep residual network, ResNet50, which uses skip connections to solve the 

vanishing gradient problem is also implemented. Training deeper networks without a 

Class 0 

Class 1 

Class 2 

Class 0 

Class 1 
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performance degradation is made possible through this architecture. One of its strengths is 

having the ability to model complex features whilst remaining computationally efficient. 

The downside, however, is that it has many layers to tune. (Kumar & Sankar, 2024) 

c. DenseNet121 

DenseNet121 connects all layers with all other layers and therefore promotes the use of 

features and efficient gradient flow. This simplifies the computation to reduce complexity 

and a better point in data generalization on smaller dataset. Feature efficiency is its main 

strength, for which it may need more memory because of the dense connections. (Kumar 

& Sankar, 2024) 

d. InceptionV3 

The InceptionV3 uses a modular architecture to capture multi scale features by using filters 

of various shapes on the same layer. Computationally it is efficient and also effective to 

learn complex patterns. However, its architecture is complex and as a result harder to 

implement and tune than simpler models. (Kumar & Sankar, 2024) 

e. EfficientNetB0 

Compound scaling is used in EfficientNetB0 to trade distribution of parameters between 

network depth, width, and resolution, to achieve optimal performance. It achieves very high 

accuracy while requiring little computational resources thus it is perfect for constrained 

environments. However, it doesn’t perform as well when on large, highly complex datasets 

without proper tuning. (Pandey & Kumar, 2023) 

f. Xception 

To increase computational efficiency, and reduce parameters, Xception replaces standard 

convolutions with depth wise separable convolutions. It is best at dealing with large 

datasets. This is however less interpretable than simpler models. 

g. MobileNet 

MobileNet is a mobile and embedded system architecture that uses depth wise separable 

convolutions to minimize the computational overhead. Its strength is its low resource 

setting efficiency, but it may not work as good as heavier models on complex datasets. 

3.3.2 Machine Learning Models 

a. Random Forest 

Random Forest is an ensemble model consisting of several decision trees and combined 

predictions of the built decision trees. It is very robust to overfitting and has good 

performances on the data corrupted by noise and unbalanced. Its merit, however, comes at 

a price: single decision trees are much more interpretable than a decision forest and may 

sometimes be computationally expensive. 

b. Naïve Bayes 

The probabilistic model Naive Bayes assumes features that are independent. It’s simple, 

fast, and very good with small datasets. However, it can restrict its performance since it 

assumes the features independent. 
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c. K-Nearest Neighbours 

It is a non-parametric algorithm that classifies data points using the majority vote of their 

closest neighbours (k neighbours). For small datasets its simple and effective but when the 

dataset gets large or the data dimension is high, it becomes computationally expensive and 

less accurate. (Sakaria, Jain & Rana, 2023) 

d. K-Means 

The widely used clustering algorithm k-Means, partitions data into 'k' clusters, where they 

are clustered such that the total variance within each cluster is minimized. k-Means is 

iteratively and assigns each data point to the cluster of nearest cluster centroid, updated the 

centroids via the mean of assigned points. It is efficient and is found to do well on large 

datasets with well separated clusters. However, it has limitations: It assumes clusters to be 

spherical of same size, sensitive to initial centroid placement and requires the number of 

clusters ('k') to be specified beforehand which is not always straightforward. (Singh, Gupta 

& Choudhury, 2019). 

3.3.3 Evaluation Metrics 

The performance of classification model is evaluated by using Accuracy, F1-Score, and 

confusion matrix. Accuracy portrays a general performance of a model in percentage of right 

classified instances out of total predictions. It tends to be misleading in imbalanced datasets in 

the sense that some classes overwhelm others. This is tackled using the F1 Score, a harmonic 

mean of precision and recall, used when the trade-off between false positives and false 

negatives needs to be balanced, and can be especially useful in imbalanced classification cases. 

The confusion matrix allows you to understand the model’s performance better, by dividing 

predictions into how many predicted positives are true positives, true negatives, false positives, 

and false negatives, so that you can understand where such performance is poor. These metrics 

together give a complete evaluation about the accuracy of the model, how precise is it and its 

reliability. 

 

4 Design Specification 
 

The architectures used for knee osteoarthritis severity classification such as DenseNet121, 

EfficientNetB0 and Random Forest, are considered in this section. Preliminary evaluations 

were conducted to choose these models for their superior performance in hierarchical feature 

extraction, computational efficiency and in dealing with class imbalance with overfitting, of 

which the DenseNet121 and EfficientNetB0 both did quite well, while Random Forest also 

performed well. The performance over five class, three class and binary classification tasks is 

analysed to understand the strengths of these and to recommend when each is suitable for use. 

 

4.1 DenseNet121 
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Figure 8: DenseNet121 Architecture (Solovyev et al., 2021). 

 

DenseNet121 is a convolutional neural network of the dense connectivity family which 

connects all layers together. On contrary to summation of the outputs like residual networks 

DenseNet concatenates the output of preceding layers in form of feature maps to reuse the 

feature and provide efficient gradient flow. 

The structure consists of several dense blocks, separated by transition layers. These are 

transition layers, and use down sampling operations, such as pooling layers, to reduce spatial 

dimensions. Each dense block incorporates: 

• Batch Normalization (BN) for both improving training stability and accelerating training. 

• Using ReLu activation for creating non linearity. 

• 1x1 convolutions (bottleneck layers) that brought down feature dimensionality. 

• 3x3 convolutions for spatial feature extraction. 

The number of parameters is minimal, and the features are extracted with efficiency, thus 

rendering this design effective with small or imbalanced datasets. 

4.2 EfficeientNetB0 
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Figure 9: EfficentNetB0 Architecture (Gang et al., 2021). 

EfficientNetB0 is a convolutional neural network optimized for good performance at the cost 

of minimal resources. Unlike traditional networks, EfficientNetB0 uses compound scaling to 

increase depth, width, and resolution collectively to maintain a good trade-off between 

effectiveness and computational cost. 

Each architecture is structured as a sequence of MBConv blocks, as the backbone. Pooling and 

fully connected layers are interleaved among these blocks to obtain lower dimensional features 

on the spatial dimension. Each MBConv block incorporates: 

• Depth wise convolutions to avoid computational complexity where they convolute 

independently on each channel. 

• Feature dimensionality reduction (via pointwise convolutions (1x1 convolutions) that 

combine channel outputs in an effective way). 

• Batch Normalization (BN) is for improving the training stability and training speed. 

• Used the swish activation function to introduce nonlinearity and improve gradients 

flow. 

• Utilizes Squeeze-and-Excitation (SE) blocks to recalibrate channel-wise feature 

importance and has the model specializing on the most essential regions. 

 

Depth wise separable convolutions in EfficientNetB0 lower the number of parameters and SE 

blocks increase feature representation. Compared to the typical case, this design is 

computationally efficient and especially suited to complex data, as in medical X-rays. The 

algorithm’s ability to generalize from one granularity level of classification to another 

demonstrates its robustness and it is suitable for both low level resource environment and high 

precision tasks. 

4.3 Random Forest 

 

Figure 10: Random Forest Architecture 

Random Forest is an ensemble learning algorithm that trains by creating multiple decision trees 

and produces a classification prediction by combining those trees outputs. A Random Forest is 

a collection of trees compared to a single decision tree that can be overfit on the training data. 
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The structure of Random Forest consists of the following key elements: 

 

• Bootstrap Aggregation (Bagging): However, in each tree the training data is a random 

sample without replacement of the complete data. This prevents overfitting and ensure 

diversity between those trees. 

• Random Feature Selection: Furthermore, in addition, only a random subset of features 

is considered for splitting at each node to further decorrelate the trees and improve 

generalization. 

• Decision Trees: Each tree splits the data independently recursively in data based on the 

feature thresholds until it hits a leaf node and then independently predicting the class 

of given input. 

• Majority Voting (Classification): For prediction, we predict by aggregating the 

predictions of all individual trees through majority voting for classification tasks. 

 

Random Forest is very interpretable and resists noise and class imbalance. But thanks to this 

ability to model non-linear relationships and interactions between features, it is still able to be 

effective on high dimensional datasets. However, its bagging approach also leads to a lower 

variance with a low bias and hence a lower tendency to generalize poorly on unseen data. 

 

It proved to work well in binary classification tasks, with accuracy of 71.67%. The reason it is 

strong is because it can address imbalanced data and noisy features and can solve easily with 

simpler classification problems where there are limited computational requirements. Easily 

implementable and robust, Random Forest is a good choice for problems that require 

interpretability in efficiency. 
 

5 Implementation  
 

This section includes description of processes followed, tools and technologies applied, and 

outputs produced while executing this project. The implementation was divided into data 

preparation, model training, and evaluation stages, covering three classification setups: 

Severity classification into 5, 3 and 2 classes. 

5.1 Tools and Technologies 
 

 

Table 3: Tools and Technologies 
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5.2 Process 

5.2.1 Data Preparation 

Knee X-ray images on Kaggle were classified among five severity levels namely: Healthy, 

Doubtful, Minimal, Moderate, Severe. To explore varying classification granularities, the 

dataset was reorganized into: 

• Five-Class Setup: The original five severity levels for instruction are stated. 

• Three-Class Setup: Gathered into Normal (Healthy), Mild (Doubtful, Minimal), and 

Severe (Moderate, Severe). 

• Two-Class Setup: It will be the binary classification of Normal (Healthy, Doubtful) 

and Arthritis (Minimal, Moderate, Severe). 

Images were converted to grayscale for emphasis on structural details in pre-processing and 

normalized in the pixel range [0,1]. To match the input dimensions that the pre-trained CNN 

architectures needed, each image has been resized to 224×224 pixels. Since these architectures 

take the input in the form of three channel images, grayscale images were expanded to three 

channels. We augmented the data with random flips, rotations, and zooms to improve 

generalization. Class imbalance was treated by calculating and using class weights during 

model training. 

5.2.2 Model Training 

• Deep Learning Models: All classification scenarios were fine-tuned with seven pre-

trained CNN architectures such as EfficientNetB0, DenseNet121, InceptionV3, 

Xception, MobileNet, ResNet50, and VGG16. Additional layers including Global 

Average Pooling and the last several fully connected layers were incorporated to each 

of the models. The final layer used: 

o Softmax layer for multi-class problems (Five-class and Three-class layouts). 

o Sigmoid activation for binary action: Two classification models.  

o For optimization, we used the Adam optimizer with learning rate scheduling 

performed using the ReduceLROnPlateau method. 

 

Table 4: CNN Parameters 

 

• Machine Learning Models: Features describing the images were flattened and fed into 

classical artificial intelligence algorithms including Random Forest, KNN, Naïve Bayes 

and K-Means clustering. The hyperparameters of the algorithm were tuned using grid 

search with cross-validation. 
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Table 5: ML Parameters 

 

5.2.3 Model Evaluation 

The performances of the models were assessed on the test data using the basic test measures 

including accuracy, F1-score, and confusion matrix. For the CNN models, the training and 

validation loss and accuracy plots were created for the analysis of trend and overfitting issues, 

and for confirmation of stable convergence during the training process. 

 

6 Evaluation 
 

This section evaluates the performance of the models across three classification granularities: 

Each task was 5-class, 3-class, and 2-class severity classification tasks. For each case study, 

we carry out a comparison of the models based on key metrics such as accuracy, loss trends 

and confusion matrices. An overall summary of the findings is presented in the final subsection. 

6.1 Case Study 1: 5–Class Classification 

For the 5-class classification task, EfficientNetB0 was found to be the best performing model 

with accuracy 67.33% and overcoming class imbalance, as well as smooth convergence. 

Although traditional models like K-Means and Random Forest performed poorly because of 

difficulties associated with working with high dimensional and imbalanced data, other deep 

learning models, such as InceptionV3, DenseNet121, and MobileNet presented competitive 

performance. However, VGG16 clearly performs poorly here and indeed fails to generalize due 

to overfitting. Deep learning models outperformed the traditional methods and, in general, 

demonstrated better performance in the task of complex image classification. 
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Table 6: 5-Class Model Summary 

 

 

Figure 11: EfficientNetB0 5-Class Performance. 

The trend of training and validation loss of EfficientNetB0 shows that it has a good learning 

ability, the training accuracy is continuously improving, but the validation accuracy has 

reached a maximum of 67% and stagnates, and there are problems with generalization. In the 

confusion matrix, we have presented a good accuracy of the majority class but problems 

estimating the minority class, as evidenced by the effect of class imbalance. 

6.2 Case Study 2: 3–Class Classification 

In the 3-class classification task, DenseNet121 showed the best performance with accuracy 

equal to 77.68 %, followed by InceptionV3 and EfficientNetB0 which both also demonstrated 

quite good performance. Traditional models were outperformed by deep learning models, 

wherein the best accuracy was achieved by Random Forest (65.95%). Classification 

performance improves across all the models when the classification task is simplified, but 

traditional methods still struggle with complex relationship and large dimension data. 
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Table 7: 3-Class Model Summary 

 

 

Figure 12: DenseNet121 3-Class Performance 

The training performance of this model is good since its loss steadily decreases and accuracy 

increases. Validation loss fluctuates and accuracy seems to plateau, but it is clear there are 

possible overfitting or generalization issues. From the confusion matrix we can see that the 

performance is very uneven, a few classes (class 0 in this case) are easier to predict, but there 

are also big mistakes, especially between adjacent severity levels. This needs further 

optimization or balanced data handling. 

6.3 Case Study 3: 2–Class Classification 

DenseNet121 recorded the highest accuracy of 78.27% in the 2-class classification task, closely 

trailed by EfficientNetB0 at about 78.17% and tops the MobileNet at 77.97% which proves 

their efficiency and adaptability in binary tasks. Previous tasks showed deeper learning models 

outperforming traditional models, such as Random Forest (71.67%), which our own models 

also did. This task was significantly simplified, resulting in better performance across all 

models, while traditional methods such as K-Means and K-Nearest Neighbours hit the limits 

of their inability to deal with high dimensional data. The importance of modern architectural 

optimizations was confirmed by the fact VGG16 continued to underperform. 
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Table 8: 2-Class Model Summary 

 

 

Figure 13: DenseNet121 2-Class Performance 

 

Figure 14: MobileNet 2-Class Performance 

 

The training of the DenseNet121 and MobileNet models is effective as observed by steadily 

decreasing loss and increasing training accuracy while both shows overfitting, with validation 

loss oscillating or validation accuracy stays lower. The confusion matrices show stronger 

performance for class 0 and misclassifications especially in some other classes. With these 

trends, there is a demand to get better generalization using methods such as data augmentation 

or hyperparameter tuning. 
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6.4 Discussion 

Results indicate that deep learning models perform better than traditional methods in all 

classification tasks, but with greater advantage as complexity of classes reduces. The top 

performers were DenseNet121 with Accuracy of 2-class classification 78.27%, EfficientNetB0 

had Accuracy 78.17%, and MobileNet 77.97%. Advanced feature extraction and optimization 

techniques excelled these models in high dimensional image data by flattening each image 

down to a vector. 

 

With fewer classes, the traditional machine learning models, like Random Forest and K-Means, 

also showed slight improvements, but they perform much worse than deep learning models. Of 

all traditional techniques, Random Forest attained the best accuracy of 71.67% in binary 

classification. However, models like Naive Bayes and KNN consistently struggled and Naive 

Bayes especially was unsuitable for image data as its independence assumptions. 

 

Although a deep learning model, VGG16 achieved only 29.11% accuracy across all the tasks. 

The lack in modern optimizations such as residual connections make it outdated architecture 

that is less effective. Overall, we find that modern architectures like DenseNet121 and 

EfficientNetB0 are considerably superior to image classification, particularly for complex high 

dimensional data. 
 

7 Conclusion and Future Work 
 

Finally, based on all the classification granularities DenseNet121, EfficientNetB0, and 

MobileNet outperformed traditional machine learning models. With their advanced 

architectures extracting hierarchical and complex features from high dimensional image data, 

a clear advantage was exhibited. In the two-class classification task, DenseNet121 performed 

best (78.27%), utilizing efficient feature reuse, optimized gradient flow and redundancy 

reduction. In this study they show why the DenseNet family of CNNs has been a key landmark 

in medical image classification. The model performance increased considerably from 

classification tasks of five classes to two classes, as the classification problem was simplified 

by decreasing class overlap and misclassification, resulting in more distinct and generalizable 

features being identifiable by the models and reducing noise and class imbalance impact. 

 

Binary classification tasks like Random Forest, K-Means performed well in traditional machine 

learning setup but could not better the performance of deep learning models, especially when 

working with high dimensional data. Their dependence on handcrafted features and shallow 

representations makes it incapable to characterize intricate patterns present in medical images. 

In contrast, by automatically learning task specific features via multiple levels of abstraction, 

deep learning models excel and are therefore the method of choice for complex images in 

medical diagnostics. The potential for deep learning architectures to revolutionize medical 

imaging technology is highlighted in this study. 
 

To build on the findings of this study, the following areas of improvement and further 

exploration are proposed: 

 

• Incorporation of Clinical Metadata: Integrate patient charts for demographics and 

medical history, into our system along with diagnostic data, from laboratory results for 

example, and use predictive analytics to improve diagnostic accuracy. 

• External Validation: Their robustness is tested on external datasets for real world 

applications. 
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• Hybrid Models: Blend deep learning feature extraction with traditional classifiers such 

as Random Forests or SVM to take best of both worlds approaches. 

• Dataset Augmentation: Generating images with Generative models such as GAN's 

and solving class imbalance problem. 

• Real-Time Deployment: We also optimize a lightweight architecture (e.g. MobileNet) 

to run on edge devices to perform real time KOA classification. 

• Multi-Modal Analysis: Xray images are combined with other imaging modalities 

(MRI or CT scan) for a complete view into KOA progression and severity. 

 

These areas deserve addressing because they will advance automated KOA severity 

classification for earlier detection and decision making. 
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