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Abstract 

Federated Learning (FL) is one of the most used strategies to solve the issue of 
preserving privacy in deep learning applications in healthcare. Centralized models of 
machine learning are a challenge for data sharing because of the patient privacy and 

data protection laws which do not allow data sharing between institutions. FL offers 
a distributed learning solution in which the data is stored in different institutions 
while sharing the update of the model to ensure that privacy is not infringed while at 

the same time learning. In this study, a decentralized FL model performed slightly 
better than standard benchmark models in predicting patient length of stay. Even 
though centralized models exhibited similar performance like decentralised deep 

learning model, the objective of this research was not to achieve the highest accuracy 
possible but to prove that competitive performance can be achieved at the same time 

as privacy preservation. In the context of healthcare applications, Federated 
Learning’s capability to train models without exchanging the data and yet obtain high 
accuracy. The motivation for this research is to establish an approach for achieving 

high accuracy in decentralized systems that also respects privacy and security. The 
results stress that Federated Learning could be an effective solution that provides 
both high predictive accuracy and solid protection of privacy-sensitive health data. 

1 Introduction 

The healthcare industry is undergoing a digital transformation, driven by the integration 

of advanced technologies into patient care, medical research, and operational 

management. Central to this transformation is the rise of predictive analytics, which uses 

data to envision the future to determine a patient’s prognosis, allocate available 
resources, and drive clinical choices. The potential of Predictive analysis lies in its ability 

to handle masses of data collected in healthcare organizations every day, including EHRs, 
diagnostic images, outputs from wearable devices, and genomic data (Chamikara et al.; 

2021; Feng and Buyya; 2016). 
However, the use of such data introduces a critical challenge: preserving the 

confidentiality and the protection of patient’s data. Vulnerabilities and threats 

penetrating the healthcare data are not only infringing on patients’ privacy but also 
causing a myriad of losses in monetary terms and tainted image of the institutions 
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(Sheller et al.; 2020; Sharma and Guleria; 2023). Meeting both of these objectives, that is 

developing robust and efficient predictive analytics while protecting data privacy, has 
become one of the main priorities in the field of healthcare innovation. 

Federated Learning (FL) is one of the most promising solutions to this challenge. FL is 

one of the transformative frameworks in machine learning since it enables the training of 
models across various organizations with none of the data being vulnerable to leaving its 

local ecosystem. Unlike traditional data aggregation, FL stores the raw data far away from 
the common learning center (Ziller et al.; 2021; Yang et al.; 2019). However, in a 

distributed system, only the model updates, like gradient or weights are passed onto the 
central server. Consequently, it reduces privacy risks while allowing organizations to gain 

from the collective learning model. 

1.1 Machine Learning and Deep Learning in Healthcare 

Machine learning (ML) and Deep learning (DL) have become innovative tools in the 
healthcare sector and the ways data is applied and analyzed. Machine learning, in a basic 

understanding refers to a set of algorithms that can learn from data and adapt to enhance 

performance. The methods include logistic regression, decision trees, and support vector 

machines which are applied in healthcare settings including risk assessment of patients, 

diagnosis of diseases, and organizational planning (Li et al.; 2020). 

The subset of ML is called deep learning where neural networks with a hierarchy of 

layers are used to analyze datasets for hidden features. DL has brought innovation to the 
medical imaging area where conventional neural networks have been employed for 

functions such as tumor detection and organ segmentation. RNNs and their derivatives 

have been used in time series analysis to improve the future deterioration of patient 

conditions based on historical health data (McMahan et al.; 2017; Sharma and Guleria; 
2023). 

These methods have progressed healthcare analytics to a great extent, these 
approaches of data collection have important privacy issues due to their centralized data 

gathering process. Although the centralized systems help to collect multiple datasets from 

various sources, they endanger patient’s data and obstruct access to them. This limitation 
emphasizes the need to adopt privacy-preserving methods such as FL that combines the 

best of ML and DL without trading data privacy. 

1.2 Motivation for the Research 

The motivation for this research stems from the confluence of several critical factors: 

• Increasing Dependence on Predictive Analytics: Healthcare companies and 

organizations globally are incorporating predictive analytics to bring better patient 
care, cost efficiencies, and more effective resource management. However, the 

effectiveness of these systems depends on the availability of large, varied, and often 
disparate datasets that are stored across different organizations. 

• Growing Data Privacy Concerns: Since the availability of health data is increasing, 

healthcare organizations need to meet the requirements of the GDPR and HIPAA. 
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High-profile hacks in health care have shown that centralized systems are very 

prone to attacks. 

• Underutilization of Federated Learning in Healthcare: Despite the potential of 

FL in various application areas, the use of FL in healthcare is not explored 

significantly. The nature of healthcare datasets as well as their sensitive nature 
makes it difficult to gather them and train models on them and this is where FL 
comes in. 

This research aims to fill these gaps by showing how FL can revolutionize healthcare 

analytics. Besides, through decentralizing the training process, FL not only increases 
privacy but also makes the cooperation of institutions that can be uncomfortable to share 

data because of competitive or regulatory reasons. 

1.3 Need for the Research 

Despite the potential of FL, several challenges remain unaddressed, making this research 
timely and necessary: 

• Balancing Privacy and Performance: Federated learning based models should be 
capable to achieve balanced performance compared to other models while also 
preserving privacy without sharing data. 

• Scalability and Robustness: Whether FL makes sense in real-world healthcare 

applications when data is from multiple sources and distributed in a rather 

imbalanced manner, remains an open question. 

• Lack of Real-World Implementations: However, theoretical research is rich while 

the actual applications of FL in healthcare especially those that incorporate 
elaborate DL architectures are scarce. 

This study focuses on bridging these gaps by showcasing the practical application of 
FL combined with DL to address a specific healthcare challenge: This paper aims at 

establishing the relationship between patient demographic characteristics and length of 
stay and; The study is not only beneficial for the academic development of FL, but also for 

clinicians working in the medical field. 

This research addresses research question: ”How can Federated Learning based 

decentralized model can be effectively implemented in healthcare systems to 

preserve data privacy while maintaining predictive performance compared to 
centralized machine learning models?”. This research addresses this question by 

implementing custom federated learning based deep learning model while also 
comparing with various centralized machine learning models. 

1.4 Contributions of the Research 

This thesis presents a new solution for privacy-preserving predictive analytics in 
healthcare based on FL with deep learning models. Key contributions include: 



4 

1. Development of a Privacy-Preserving Framework: An FL framework is 

developed to compute an aggregate length of stay for patients across various data 
sources. The framework maintains strict privacy aspects so that only model updates 

rather than patient information are exchanged across institutions. 

2. Integration of Advanced Deep Learning Models: To improve the predictive 

performance, deep learning structures are used under the FL architecture. 

3. Comparative Analysis of Centralized vs. Federated Models: FL-based models are 

compared with traditional centralized model-based approaches based on 
performance indicators. This analysis shows that, at the cost of more accurate 
predictions, personal information privacy is compromised by other algorithms. 

4. Simulation of Real-World FL Scenarios: The study also simulates the actual FL 

environment since dataset datasets is split in to multiple sources typically like of 
healthcare organizations. This approach shows that FL is a framework that can be 
expanded and implemented in various environments. 

The findings of this research address a critical gap relating to the balance between 

privacy and improved predictive accuracy in FL applications for healthcare 

transformation. The findings contribute not only to the enhancement of academic theory 
but also offer a case for how safe and feasible analytics can be deployed in practical 
healthcare organizations. 

2 Literature Review 

2.1 Federated Learning in Healthcare 

FL (Federated learning) has been studied extensively for healthcare data analysis as a 
privacy-preserving approach to train machine learning models across decentralized data 

while keeping data private. Several works have shown that FL can enhance group work 
while maintaining privacy in different learning methods, especially in activities like 

disease diagnosis and patient prognosis (Xu et al.; 2021; Rieke et al.; 2020; Pati et al.; 
2024). However, to date, FL addresses the privacy issue; the problem is that the 

application of this approach in actual healthcare settings is still less than ideal due to 

issues such as data heterogeneity and communication load (McMahan et al.; 2017; 

Passerat-Palmbach et al.; 2021). Nevertheless, the work proves FL increases predictive 

accuracy and sustains patients’ privacy, making FL a promising strategy for privacy-
preserving machine learning in healthcare (Sharma and Guleria; 2023; Cremonesi et al.; 

2023). These studies call for future work in extending the integration of FL with deep 
learning models and practical implementation, especially in large-scale healthcare 

systems (Antunes et al.; 2022; Li et al.; 2020). 
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2.2 Challenges with Centralized Machine Learning Models 

The centralized machine learning models are good at pooling data to enhance the models’ 

performance, they are highly vulnerable to privacy threats and have been observed to leak 
sensible patient details in various health-related data breaches in the past years (Ziller et 

al.; 2021; Yang et al.; 2019). The first limitation of these models is the collection of big 
data into a centralized repository, which increases the vulnerability of the data to leaks 

and can become a problem when the volume of healthcare data grows (Kairouz et al.; 
2021; Rahman et al.; 2023). Centralized approaches also fail to address data 

heterogeneity and quality issues arising from multiple institutions which if not well 

balanced, may lead to biased or ineffective models (Hohman et al.; 2020; Sheller et al.; 
2020). FL solves these problems by decentralizing both the data and the training process, 

avoiding these risks, as well as allowing for collaborative model creation while 

maintaining privacy (Bonawitz et al.; 2019; Chamikara et al.; 2021). However, FL still has 

a transition from theory to practice as a challenge, and the incorporation of privacy-
preserving mechanisms such as differential privacy and secure aggregation is still an 

active area of research (Ziller et al.; 2021; McMahan et al.; 2017). 

2.3 Integration of Deep Learning with Federated Learning 

Deep learning (DL) when combined with federated learning improves the accuracy of the 
models, especially in complicated healthcare applications including image analysis and 

time series prediction (Sharma and Guleria; 2023; Rahman et al.; 2023). The feature of 
DL to analyze high volumes of data and fine patterns could support FL’s privacy 

consciousness to enable learning without data aggregation (Rieke et al.; 2020; Li et al.; 

2020). Nevertheless, this integration brings some issues including the enhanced model 

complexity of DL models and the additional cost for exchanging model updates (Hossain 
et al.; 2023; Kairouz et al.; 2021). Several works have suggested the following 

optimizations for federated DL systems: adaptive learning rates, regularization 

techniques, and federated averaging (Pati et al.; 2024; McMahan et al.; 2017). However, 
current innovations in implementing DL in FL frameworks in the healthcare field are still 

in their infancy and need further investigation for the considerations of model 
convergence, data distribution, and client selection (Cremonesi et al.; 2023; Antunes et 

al.; 2022). 
Nevertheless, the challenges, including data heterogeneity, communication overhead, 

and model convergence, which were addressed in federated learning (FL) for healthcare 

still remain (Xu et al.; 2021; McMahan et al.; 2017). Although FL has privacy benefits over 

centralized models, the combination of DL with FL is still in its infancy, especially in the 
more complex healthcare environment (Sharma and Guleria; 2023). Current solutions are 

based on the theoretical approach and fundamental models and lack integration into 

practice (Ziller et al.; 2021). This underscores the importance of studying the combination 
of FL with DL to enhance privacy and prediction at the same time in healthcare because 
of the scalability and data heterogeneity. 
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3 Data Preprocessing 

The dataset applied in this study included 24 variables and 50,000 records with patient 
data, disease, and hospital characteristics. Preprocessing was crucial for making the 

dataset optimized for predictive modeling, and for improving both the dataset and the 
model. 

3.1 Initial Data Inspection and Cleaning 

The dataset was used was checked for data quality like missing values. The review also 

revealed that there were no missing values for all the corresponding columns. This clean 
dataset is helpful for further processing thus minimizing the chances of developing 

models with biases. 

 

Figure 1: Basic Federated Learning architecture 

 

Figure 3: Distribution of Length of Stay 

Figure 2: Boxplot for Outlier Detection in 
Numerical Features 
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Figure 4: Distribution of diabetes disease Figure 5: distribution of 

immunocompromised disease 
Figure 6: Various visualisations on dataset 

 

Figure 7: Correlation Matrix for Disease Combinations 

3.2 Dropping Irrelevant Features 

Some of the features are not relevant to the predictive task at hand. The PatientName 

column which was included only for the identification of patients was dropped as they do 

not have any correlation with the target variable. The Ethnicity column also was 

eliminated from the dataset as it does not have much information. The removal of these 

columns made the dataset simpler to process since the model only had to consider the 
most important predictors in terms of computational time. 

3.3 Categorical Data Encoding 

Several categorical features needed to be converted to numerical for use in the machine 

learning models. For example, Age Group was discretized into numerical labels; for the 

Adult, Elder, and the Infant the values are 0, 1, and 2 respectively. The same applies to 

other variables such as Gender, CatheterType, and InsertionSite that were also 
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transformed. This process ensures that all categorical data can be read directly by the 

machine without the loss of interpretability to be easily integrated into the model. 

3.4 Correlation Analysis 

Correlation analysis was conducted to compare the information of different diseases. The 
study showed that several diseases were inversely related, meaning that the existence of 

one disease reduced the probability of the other disease. These insights were helpful in 
feature selection as the model looked at potential interactions between medical variables 

and narrowed down to the most important predictors while minimizing feature 
duplication. 

3.5 Transforming prediction variable for Generalization 

First, LengthOfStay was used as a continuous variable, which measures the exact number 

of days a patient spent in the hospital. To enhance the generalization of this variable for 
the model, it was sometimes converted into three-day categories by dividing the number 

of days by three and adding one. For instance, a patient who was admitted and stayed for 
one to three days was rated as 1, a patient who stayed for four to six days was rated as 2, 

and so on. Also, the binning strategy enhances the formation of more general models are 
required in real-time operations. In reality, healthcare settings face many unpredictable 

and diverse patient populations. Because the model can break down the hospital stays 

into reasonable time frames, it can offer good estimates in different cases. This makes it 
suitable for real-time predictions since the results are fast and accurate to help the 

healthcare system allocate resources, admit patients, and run the healthcare system 
efficiently. 

3.6 Outlier Detection 

An outlier detection test was performed using the Z-score test to test for any point that is 

significantly different from the mean. The descriptive statistics showed that there were 
no extreme observations within the dataset which supported the idea that the 

distribution of the data was reasonable. This step made the data consistent and 
minimized cases of having to predict based on outlying values which improves the 

reliability of the predictive model. 

3.7 Final Prepared Dataset 

After such data preprocessing the dataset was transformed into a clean format suitable 
for use in machine learning algorithms. The data completeness was addressed, while the 

features with redundant information were eliminated, categorical data was encoded, 
correlations were calculated, the target variable was transformed and outliers were 

detected to provide the dataset amiable for the PP-PA in the healthcare system. Such an 
approach provided a basis for establishing accurate and reliable machine-learning 
models. 
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4 Research Methodology 

The methodology for this study is to analyze a Federated Learning (FL) approach to train 
a predictive model on patient length of stay in hospitals while preserving patient privacy. 

This framework allows for the distributed training of models across multiple institutions 
that hold patient data while keeping that data within separate institutions. This method 

is designed and implemented based on federated learning, which distributes 
computations across clients and collects model updates from a central server. 

4.1 Model Development and Federated Learning Framework 

Federated learning (FL) enables several healthcare facilities (referred to as clients) to 

jointly train a common deep learning model while maintaining data privacy. However, 
there is no transmission of raw data between clients; each client trains the model only on 

its dataset and sends updates, such as weights, to a central server. This is decentralized 
and hence efficient and the data is protected especially in health-related information. 

4.1.1 Local Training at Each Client 

In the FL setup, each client k possesses its own dataset Dk, which consists of feature-label 

pairs {(xi,yi)}. The model at client k, denoted as θk, is locally trained by minimizing the 
local loss function: 

 ) (1) 

Where: 

• L(f(xi;θk),yi) is the loss function for a single training example, measuring the 
difference between the predicted output f(xi;θk) and the true label yi. 

• |Dk| represents the size of the dataset Dk at client k, i.e., the number of data samples 
used by client k for training. 

• θk represents the model parameters (e.g., weights and biases) used at client k. 

In this step, the local model updates, ∆θk, are computed as the difference between the 

model before and after training: 

 ∆θk = θknew − θkold (2) 

4.1.2 Federated Aggregation 

Once local training is done, each client k sends its model update ∆θk back to the central 
server. The server then combines these updates by a weighted mean for the weight is 
proportional to the size of the client dataset. This process is mathematically described by 
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 θglobal  (3) 

Where: 

• θglobal denotes the updated global model after aggregation. 

• K is the total number of clients participated in the federated learning process. 

• |Dk| denotes the size of the dataset at client k, which indicates how many samples 
are available at that client for training. 

•   is the total number of training samples across all participating clients, 

which serves as the normalization factor for the aggregation. 

• ∆θk is the update to the model parameters computed at client k. 

4.1.3 Global Model Update 

Once the aggregation step is over, the current global model parameters θglobal are updated 
on the server side and then broadcasted for local training in the next round. This process 

goes on until the model starts nearing a solution and their objective is to enhance the 
robustness of the model for all the clients while ensuring the data privacy is not 

compromised in any way. 

4.2 Implementation Strategy 

For federated learning, this research develop a novel deep learning model tailored for LoS 
(length of stay) prediction with different medical attributes. To enhance the model’s 

ability to generalize the patterns observed in the training phase we incorporate several 
hidden layers each including dropout and batch normalization to minimize overfitting. 

The output layer of the model is a regression layer, allowing it to be used for 

continuous prediction beneficial for healthcare problems. Actually, the model is trained 
through several iterations, where in each iteration clients perform local training of the 

model on their datasets and after that, the server performs federated averaging of the 
received model updates. The aim is to achieve a global model that performs well in 

estimating patient LoS in participating institutions and should be more accurate than 

non-federated models. 

4.2.1 Federated Training Rounds 

Training for the federated learning was done in numerous rounds. Each round consisted 
of the following steps: 

• Local Training: Every chosen client k underwent training with their local dataset 
Dk applying the Adam optimizer as the learning rate was set to adapt to the data. 
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• Model Update Transmission: After the training process was performed, each 
client transmitted its model update ∆wk to the server. 

• Global Aggregation: The server combined the received updates via the federated 
averaging formula and updated the weights of the global model. 

4.2.2 Framework Utilized 

TensorFlow Federated (TFF) was used to manage the distributed learning process while 
leveraging TensorFlow for compatibility and deployment. 

• Training Rounds and Client Participation: The training process was done in cycles 

where each cycle consisted of the following steps: 

1. Training on clients’ private data with epochs as the number of iterations on the 
data. 

2. Communication of the locally trained model updates with the server. 

3. Server-side update aggregation by using the federated averaging algorithm to 

generate a global model. 

Client-Side Optimization: Clients were initialized with the Adam optimizer which is 

known for its ability to deal with sparse gradients and its ability to adapt during local 
training. The local objective was to minimize Mean Squared Error (MSE), expressed as: 

  (4) 

where f(xi;wk) is the predicted output for input xi using the model weights wk. 

Server-Side Optimization: The server used a Stochastic Gradient Descent (SGD) 
optimizer for summing the client model updates and for updating the global model. This 

choice helps in the efficient computation in large-scale federated learning systems. 

4.3 Federated Data Simulation and Preprocessing Strategy 

To emulate a realistic federated learning setup: 

• Data Partitioning: The data set was split into subsets of independent data, each 

representing data from different clients that mimic the data possessed by different 
healthcare facilities. The distribution characteristics of the data were maintained in 

each of the client datasets to offer realistic variability during training. 

• Data Processing at Clients: Every client was preparing data batches and local 

training in parallel with the other clients. Local epochs were repeated for batches to 
mimic several passes through the entire training set for good local model updates. 
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This methodology focuses on the safe training of predictive models through the 

federated learning approach, which allows the patient’s data to remain stored at the local 
site while updating the model in a shared manner. Deep learning and federated learning 

can be integrated to predict the patient length of stay accurately, without violating the 
privacy laws in healthcare. 

5 Comparison of Centralized Models 

Besides the FL approach, several other traditional machine learning models were also 
tested and trained to set a benchmark of the predictive performance for the LoS 

prediction model. Nevertheless, these models are centralized and, although they were 
used to compare the efficiency of FL, which is privacy-preserving, their application 

represents an aggregation of the data into a single repository for training. Both models 
were chosen because these models are effective for regression tasks and for healthcare 

applications, in particular. 

5.1 Random Forest 

Random Forest is a form of ensemble technique that combines the result of numerous 
decision trees (Ali et al.; 2012). Every tree is trained with the sample selected randomly 

from the total data and the final outcome is the sum of the output of all individual trees. 
This model was selected due to its stability especially when dealing with large features of 

data as used in this research study on healthcare. 

When applied to predicting patient length of stay tasks, Random Forest’s best features 
are its ability to handle non-linearities and interactions between the features, without 

needing much parameter tuning. The benefit of Random Forest is that it minimizes the 
problem of overfitting; this is a significant weakness in many feature models. Due to its 

high scalability and the capacity to include a large number of interactions in the models, 
it becomes highly useful for healthcare data, as patient states and outcomes depend on 

numerous factors. Nevertheless, Random Forest means all the data should be collected 

and processed at the central point which sometimes could lead to critical issues regarding 
data protection and privacy while implementing in actual healthcare situations. 
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Figure 8: Architecture of Decision Tree and Random Forest(Ali et al.; 2012) 

5.2 Decision Tree 

Decision Trees work in a way that they split the data repeatedly based on feature value, 
and the chain thus formed is easy to visualize. Both splits try to reduce the prediction 

error to make the nodes based on the data (De Ville; 2013).tructure that can be easily 
visualized. Each split attempts to minimize the prediction error by creating nodes that 

best separate the data (De Ville; 2013). 
In the context of forecasting the patient’s length of stay, Decision Trees were trained 

to set a benchmark model. Their interpretability makes them a good fit for healthcare 
where it is useful to know why a certain prediction was made. Unfortunately, Decision 

Trees are very sensitive to overfitting, which can become a significant problem in big data 

sets such as the one used in this research work. They have optimal performance on small 
data sets but are less effective on large and complex data sets and therefore not ideal for 

high-dimensional healthcare data sets. Decision Trees also use centralized data which are 
not very appropriate for use in privacy-preserving methods similar to Random Forest. 

5.3 Gradient Boosting 

Gradient Boosting (Natekin and Knoll; 2013) is an ensemble method where instead of 

building a single model many models (often decision trees) are built successively and each 
new model tries to minimize the error made by the previous one. This process refines the 

model by concentrating on more difficult-to-classify cases and makes it useful for 

regression types of problems such as estimating the length of stay of patients. 

 

Figure 9: Architecture of Gradient Boosting (Natekin and Knoll; 2013) 

Gradient Boosting also builds the model sequentially to improve the prediction 

accuracy for the subsequent models, which can be beneficial when predicting healthcare 
outcomes as often there are multi-factorial dependencies between patient demographics, 

clinical data, and their medical history. However, the model is complex, and its running 
time is relatively long, and it may easily overfit if not properly normalized. However, using 
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Gradient Boosting, this study established that accurate predictions were realized when 

data was centrally collected. However, it has a drawback in that it depends on the central 
data store, which raises privacy issues: patient information would have to be transferred 

between institutions to train the model. 

5.4 Support Vector Regression (SVR) 

SVR (Support Vector Regression) is an extension of the basic concept of SVM which works 
to identify the best-fit hyperplane. The objective of SVR is to forecast a real value target 

variable (here- length of stay) up to some error margin. SVR can handle the non-linearity 
in the features by the use of the kernel functions as pointed out in (Awad et al.; 2015). 

The reason for choosing the SVR was because of its ability to handle the high 

dimensionality of the data and when the features and the target variable interact. It is 

especially suitable where there are more features than samples within a given set of data. 
However, SVR can be computationally very expensive, and also the performance of SVR is 

greatly influenced by the kernel function and kernel parameters to be selected. 
Furthermore, like the other centralized models, SVR requires the full dataset, which puts 

the patient’s information at risk. 

 

(a) Working of support vector regression 
(Awad et al.; 2015) 

 

(b) Working of XGBoost (Chen and 

Guestrin; 2016) 

Figure 10: Architecture of various ML models 

5.5 XGBoost 

Extreme Gradient Boosting (XGBoost) is an enhancement of Gradient Boosting to provide 

even higher speed and performance of the model (Chen and Guestrin; 2016). It also 
contains methods of reducing overfitting, and therefore it is very efficient to work with big 

and complicated data sets. XGBoost is one of the most widely used models for 
structured/tabular data and has been applied in research and practical domains. 

XGBoost was chosen because of its performance in predictive tasks as reported by 
various studies. For these reasons, it is a perfect fit for healthcare predictive modeling 
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because of its strong missing data handling and excellent regularizing capabilities. 

However, as in all the centralized models, XGBoost brings data into a single repository, 
which is a major problem when it comes to protecting patients’ information in healthcare 

settings. 

5.6 Privacy-Preserving Federated Learning 

Even though all the centralized models could also show similar performance in terms of 
predicting patient length of stay, the purpose of this study is not to build the 

bestperforming predictive model, but a model that functions in a decentralized setting 

while also maintaining patient’s privacy. 
Federated Learning was presented as a way to overcome such centralized approaches 

to machine learning. The primary distinction with Federated Learning is that the model 
is trained independently at each participating institution on the local data, and only 

sends the model updates (including gradients or weights) to a central server. This makes 
the data to be safe and confidential in each university since the raw data is never shared 
or combined in one location. 

The main emphasis of the works is not on achieving the higher precision of the model 
but on its ability to function in a federated environment while preserving the 

confidentiality of the data. Although in the centralized models, slightly better results is 
achieved due to the usage of the full dataset at a time, the idea of training a model in a 

decentralized manner, without sharing data – makes Federated Learning a solution for 
applications in healthcare that require high privacy. The experiments that are to follow in 

this study are designed to show that Federated Learning can achieve near similar levels 

of predictive accuracy as the centralized approach without compromising the privacy of 

patient data. 

6 Results and Discussion 
Model MAE MSE RMSE 

Decision Tree Regressor 3.3710 17.2468 4.1529 

Random Forest Regressor 2.5207 8.6008 2.9327 

Gradient Boosting Regressor 2.8417 11.8215 3.4382 

Support Vector Regression 2.5288 8.7140 2.9519 

XGBoost Regressor 2.5500 8.9521 2.9920 

Deep Learning-based Federated 

Learning 

2.4804 8.1507 2.8550 

Table 1: Comparison of various models on various metrics 

6.1 Evaluation Metrics 

Three basic measures including Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Root Mean Squared Error (RMSE) were employed for the evaluation of the model. 
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6.2 Discussion on ML models 

The results of the models showed that the Random Forest Regressor provided the lowest 
values of MAE, MSE, and RMSE among all the centralized models. The Random Forest 

model, regarding accuracy, has the following errors: MAE value of 2.5207, MSE value of 
8.6008, RMSE value of 2.9327 which is optimal because it balances between accuracy and 

the time it takes to train. Random Forest because of the way it constructs many decision 
trees and then combines them was effective in capturing the non-linearity in the 

healthcare data. 
For the Decision Tree Regressor, the accuracy of the model was lower than the Random 

Forest with an MAE of 3.3710, MSE of 17.2468, and RMSE of 4.1529. While using Decision 
Trees is quite easy and understanding the results is quite easy, there is a problem with 

this method: interference, especially when the sample size is large and contains variation. 

This is expected from Decision Trees, in general, which is a highly overfitting model that 
leads to high errors for unseen data. 

The Gradient Boosting Regresser also gave reasonable results which are an MAE value 
of 2.8417, an MSE value of 11.8215, and an RMSE value of 3.4382. The Gradient Boosting 

that creates the new tree model sequentially to rectify the mistakes of the earlier tree 
model proved the way to learn from complex data. However, it is computationally more 

expensive and if well tuned has the propensity of overfitting the data and this can explain 
why it records slightly higher errors than Random Forest. 

This proves the SVR model to be reasonable with an MAE value of 2.5288, an MSE 
value of 8.7140, and an RMSE value of 2.9519. It demonstrates comparatively good results 

in a condition when it is working in high-dimensional space and the case of nonlinearity 

of the relation between features and the target variable. Nevertheless, SVR is worse than 
Random Forest and Gradient boosting since its performance significantly depends on the 

kernel and hyperparameters, which are more challenging to set compared to ensemble 
methods. 

In addition, the XGBoost Regressor model was also slightly better with an MAE of 
2.5500 and MSE of 8.9521 with an RMSE of 2.9920. XGBoost is said to be one of the fastest 

and most efficient methods of handling large datasets and as such even though the model 
is comparable to other tree-based models the efficiency that it brings to the largescale 

application of the model makes it ideal. However, the accuracy results are much worse 
than Random Forest, and although k-neighboring trees could be chosen, this might be 

even less accurate due to the use of regularization techniques to avoid overfitting. 

6.3 Discussion on Deep Learning-based Federated Learning Model 

In this study, the proposed Deep Learning-based Federated Learning (FL) model achieved 
an MAE of 2.4804, MSE of 8.1507, and RMSE of 2.8550, which was marginally better than 

the traditional centralized models such as Random Forest and Gradient Boosting in terms 
of predictive accuracy. Even though the results achieved by the model can be compared 

with centralized models, this research was aimed not only at optimizing the accuracy of 

the solution but also at creating a solution that works efficiently in a decentralized 
environment and meets the requirements of data protection. This approach tackles a 

major problem in the healthcare management domain, that is, patient data is normally 
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shared across different healthcare institutions, but due to considerations of data 

sensitivity, data sharing is usually limited. 

6.4 Results of Centralized Models vs. Federated Learning 

Compared with other models, Random Forest, Gradient Boosting, and XGBoost generally 
show better results because they are centralized models and can use the entire dataset. 

These models advantage of the accumulating of data from many institutions into one data 
warehouse so that they can have a better and more detailed pattern. However, this 

advantage is not desirable in the present context of healthcare data because the privacy 

of patients is one of the most important aspects. Centralization models mean that patient 
information needs to be transferred from one institution to another, which creates a 

chance of privacy violation, data misuse, and non compliance with data protection rules 
like HIPAA or GDPR. 

6.5 Federated Learning’s Key Advantage: Privacy Preservation 

The primary advantage of Federated Learning is that training can happen without sharing 

data with others. As for Federated Learning, all institutions learn their model 
independently based on their data and send information updates, e.g., gradients or 

weights, to the central server. This means that the ability to protect patient information is 
maintained and secured all the time as learners. The model can be trained in the 

decentralized data sources and the raw data never leaves the institution making the 
model a privacypreserving solution for healthcare analytics. 

Although, when compared to the best-centralized models, Federated Learning may not 
always produce the highest accuracy, its privacy-preserving nature makes it indispensable 

for practical healthcare applications. The practice of never exchanging patient data between 

institutions of Federated Learning makes it possible to build accurate, predictive models 
without ever violating the patient’s right to privacy and data protection. 

7 Conclusion and Future Work 

7.1 Conclusion 

This study showed that Deep Learning-based FL was slightly superior to other traditional 

centralized models such as Random Forest, Gradient Boosting, and XGBoost in predicting 

patient length of stay with slightly lower MAE, MSE, and RMSE than the other models. 
While centralized models are efficient in learning intricate patterns as they work with the 

whole dataset, the main benefit of Federated Learning is the capability of training with 
minimal error while keeping the data privacy. Federated Learning is thus a middle ground 

between high predictive results and privacy preservation because it allows training to 
occur in a decentralized manner, with data remaining at the source institution. This 

approach proves particularly useful in healthcare, where data privacy is of utmost 

importance, as it shows that Federated Learning is a feasible solution for privacy-
constrained applications while also delivering high predictive performance. 
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7.2 Future Work 

The future directions of Federated Learning can be related to its improvement in terms of 
performance of various netrics by investigating various approaches to privacy-preserving 

methods including secure aggregation and differential privacy. There is also a need to 
enhance the communication between the involved institutions to improve the time taken 

to train the model. Another key issue to be addressed will be the problem of how to 
manage heterogeneity of data collected from different institutions so that Federated 

Learning can learn across the heterogeneity. But adding more data such as the patient’s 
history, temporal data or other data could help in generating better predictions. Finally, 

increasing privacy protection measures by applying more elaborate encryption 
techniques could improve the security of Federated Learning, and safeguard sensitive 

healthcare information from unauthorized access while implementing efficient 

decentralized model learning. 
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