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Configuration Manual

Kavyasree Panuganti
Student ID: x23219360

1 Introduction

Configuration Manual provides the information about the different softwares and the
hardware’s that are used in the project Classification of Various Diseases in the Mango Crop

Using Machine Learning. This manual explains all the steps that are required in producing the
work.

2 Environment Setup

Operating System: Windows 11

Processor: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11 GHz
RAM: 8 GB

Storage: SSD with 512 GB
IDE: jupyter notebook
Programming language: Python 3.7

3 Libraries used in python

Importing the necessary libraries that are required in the code.
# Importing necessary libraries

import os

import numpy as np

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator
import cv2 # For image processing

import matplotlib.pyplot as plt # For visualization

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, confusion_matrix
import matplotlib.pyplot as plt

from collections import defaultdict

from sklearn.cluster import KMeans

from tensorflow.keras.applications import VGG16, VGG19, ResNetS@
from tensorflow.keras.models import Model

from tensorflow.keras.layers import Dense, Flatten, Dropout

from tensorflow.keras.optimizers import Adam

from sklearn.svm import SVC

from sklearn.ensemble import RandomForestClassifier

from xgboost import XGBClassifier

from sklearn.metrics import accuracy_score, classification_report
from sklearn.preprocessing import LabelEncoder

import seaborn as sns

import pandas as pd

from sklearn.metrics import confusion_matrix

4 Implementation

4.1 Dataset loading



In this section the code is written to load the dataset, exploring its structure, and visualizing a
few sample images from each class.
The below tasks are performed in the code

1. Load the dataset from the provided path.

2. Display the number of images in each class.

3. Visualize a few sample images from each class.

import os

import cv2

import matplotlib.pyplot as plt
from collections import defaultdict

Lne datacet nat
# Define dataset OS'."v

dataset_path = r'C:\Users\User\OneDrive\Desktop\Mango'

# Get class names (folders) and count images in each class
class_names = os.listdir(dataset_path)

class_counts = defaultdict(int)

# Somple wv-jq: Vis

sample_images = 1}

uaglization

# Loop through each class "'”61

for class_name in class names:
class_folder = os.path.join(dataset_path, class_name)
image_files = os.listdir(class_folder)
# Count images in this claoss

class_counts[class_name] = len(image_files)

# Store o sample image for visuolization
if len(image_files) > @:
sample_images[class_name] = cv2.imread(os.path.join(class_folder, image_files[@]))
# Displaoy dataset structure
print("Dataset Structure:")
for class_name, count in class_counts.items():
print(f"class ‘{class_name}': {count} images")

# Visuglize sample image
plt. f1gure(f1g51 e=(15, 10))
for 1, (class_name, img) in enumerate(sample_. 1nages 1tens())

# Convert BGR (OpencV format) to RGB for visual ion
img = Cv2. cvtcolor(1ng, Cv2.COLOR_BGR2RGB)
plt.subplot(2, len(sample_images) // 2 + 1, 1 + 1)
plt.imshow(img)
plt.title(class_name)
plt.axis('off')

plt.tight_layout()

plt.show()

4.2 Data Preprocessing

This section preprocesses the dataset to prepare it for model training. We will:
1. Clean the dataset to handle missing or noisy data and apply the data augmentation
techniques to improve model generalization.
2. Normalize the images and resize them to 224x224 for consistency with CNN input
requirements.
3. Split the dataset into training, validation, and test sets for robust model evaluation.
The below tasks are performed in this part of code:
Clean data: Remove missing or corrupted images (if any).
2. Data augmentation: Apply transformations like rotation, flipping, scaling, and color
adjustments.
Normalize images: Rescale pixel values to the range [0, 1].
Resize images to 224x224.
Split dataset into training (80%), validation (10%), and test (10%) sets.
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from tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split

# Image dimensions for resizing
IMG_HEIGHT = 224
IMG_WIDTH = 224

# Function to Load and preprocess images
def load_and_preprocess_images(dataset_path, class_names, img_height, img width):
images = []
labels = []
for label, class_name in enumerate(class_names):
class_folder = os.path.join({dataset_path, class_name)
for img name in os.listdir(class_folder):
img_path = os.path.join(class_folder, img_name)
try:
# Reod image
img = cv2.imread(img_path)
# Resize and normalize
img = cv2.resize(img, (img_height, img width))
img = img / 255.8 # Normglize to ronge [, 1]
images.append(img)
labels.append(label)
except Exception as e:
print(f"error loading image: {img path}, Error: {e}")
return np.array(images), np.array(labels)

# Load and preprocess imoges
print("Loading and preprocessing images...")
images, labels = load_and_preprocess_images(dataset_path, class_names, IMG _HEIGHT, IMG_WIDTH)
print(f"Total images: {len(images)}")
# Split data into troining, validation, and test sets
train_images, temp_images, train_labels, temp_labels = train_test_split(
images, labels, test_size-=2.2, random_state-SEED, stratify-=labels)

val_images, test_images, val_labels, test_labels = train_test_split(
temp_images, temp_labels, test size-e.5, random_state-SEED, stratify-=temp labels)
print(“Data split:")
print(f"Training set: {len(train_images)} images")
print(f"validation set: {len(val_images)} images")
print(f"Test set: {len(test_images)} images")
# Data augmentation for training set
train_datagen = ImageDataGenerator(
rotation_range=28,
width_shift_range-0.2,
height_shift_range-=6.2,
horizontal_flip=True,
zZoom_range=9.2

)

# Fit the data generator
train_datagen.fit(train_images)

4.3 Image Segmentation:
In this step image segmentation is done to highlight the diseased regio in the images. The
main tasks that are performed in the code is

o Apply K-Means clustering to segment images into meaningful regions.

« Highlight diseased regions and visualize segmented images.
In the code the input image is in rgb format and k denotes the number of clusters which is set
to 3 to isolate
Diseased regions, Healthy leaf regions, Background noise.
First the image is reshaped to 2D array where each pixel is represented by its RGB value to
make the data compatible with K-means clustering. After that the pixel values are converted
to float for the numerical stability.then the K-Means algorithm is initialized with 3 clusters.
Lastly Segmented image is visualized using matplotlib.



from sklearn.cluster import KMeans
def apply_kmeans(image, k=3):

Apply K-Means clustering to segment an image.
:param image: Input image (H, W, C).

sparam k: Number of clusters.

:return: Segmented image.

# Reshape the image to a 2D array of pixels
pixel_values = image.reshape((-1, 3))
pixel_values = np.float32(pixel_values)

# Apply K-Means clustering

kmeans = KMeans(n_clusters=k, random_state=SEED)
kmeans.fit(pixel_values)

centers = np.uint8(kmeans.cluster_centers_)
labels = kmeans.labels_

# Reshape the lLabels to the original image shape
segmented_image = centers[labels.flatten()]
segmented_image = segmented_image.reshape(image.shape)

return segmented_image

# Apply K-Means to a few somple imoges

plt.figure(figsize=(15, 18))

for i, (class_name, img) in enumerate(sample_images.items()):
segmented_img = apply_kmeans(img, k=3)
plt.subplot(2, len(sample_images) // 2 + 1, i + 1)
plt.imshow(segmented_img)
plt.title(f"{class_name} - K-Means Segmented")
plt.axis('off')

plt.tight_layout()

plt.show()

4.4 Model development

This section focuses on training Convolutional Neural Network (CNN) architectures to classify
mango crop diseases. We will use pre-trained models (VGG16, VGG19, ResNet) with transfer
learning to leverage existing knowledge and fine-tune them on our dataset. The tasks that are
performed in this code:

1. Implement CNN architectures (VGG16, VGG19, ResNet) using transfer learning.

2. Fine-tune pre-trained models on the mango dataset.

3. Train models using training and validation sets.

4. Visualize training progress with loss and accuracy curves.

from tensorflow.keras.applications import VGG16, VGG12, ResNetse
from tensorflow.keras.models import model

from tensorflow.keras.layers import Dense, Flatten, Dropout
from tensorflow.keras.optimizers import Adam

# Parameters

NUM_CLASSES = len(class_names) # Number of diseagse classes
BATCH_SIZE = 32

EPOCHS = 1@

IMG_SHAPE = (IMG_HEIGHT, IMG_WIDTH, 3)

# Function to build and compile g model
def build_model(base_model):
# Freeze the base model’s Layers
base_mcdel.trainable = False

Add custom Layers on top

= Flatten() (base_model.output)

- Dense(128, activation='relu’)(x)

= Dropout(@.5)(x)

output = Dense(NUM_CLASSES, activation='softmax")(x)

XXX N

# Define the model

model = Model(inputs=base_model.input, outputs=output)

model.compile(optimizer=Adam(learning_rate=e.2e1),
loss="sparse_categorical_crossentropy”,
metrics=[ ‘accuracy])

return model

# Load pre-trained models and build classifiers

medels = {
"WGG16": build_model(VGGl6(weights="'imagenet', include_top=False, input_shape=IMG_SHAPE)),
"wGG19": build_model(VGG19(weights='imagenet', include_top-False, input_shape-=IMG_SHAPE)),

"ResNetSe”: build_model(ResNetSe(weights="imagenet’, include_top=False, input_shape=IMG_SHAPE))

by

# Trgin ond evaluate each model
history = {3}
for model_name, model in models.items():
print(f"Training {model_name}...")
history[model_name] = model.fit(
train_images, train_labels,
validation_data=(val_images, val_labels),
epochs=EPOCHS,
batch_size=BATCH_SIZE,
verbose=1
)
# Sove model
model.save(f"{model_name}_mango_disease_model.hs™)
print(f"{mcdel_name} training completed and model saved!"




4.5 Comparison with Traditional ML Models

This section evaluates the performance of traditional machine learning models (SVM, Random
Forest, and XGBoost) using features extracted from trained CNN models (VGG16 and
VGG19). The tasks that are performed in this part of the code are:
1. Extract features from trained CNN models (VGG16 and VGG19).
2. Train traditional ML models (SVM, Random Forest, and XGBoost) on the extracted
features.
3. Evaluate and compare performance (accuracy) between the traditional models and
CNNs.

label_encoder = LabelEnceder()

train_labels_encoded = label_enceder.fit_transform(train_labels)
val_labels_enccded = label_encoder.transform(val_labels)
test_labels_encoded = label encoder.transform(test_labels)

# Feature extraction using troined VGG16 and VGG12

def extract_features(model, images):
feature_model = Model(inputs=model.input, outputs=model.layers[-2].output) # Exclude the fingl dense Laver
features = feature_model.predict(images, batch_size-=BATCH_SIZE, verbese=1)
return features

print("Extracting features using VGG1s...")

vggle_train_features = extract_features(medels["vGG16"], train_images)
vggle_val_features = extract_features(models["vGG15"], val_images)
vggle_test_features = extract_features(models["vGG15"], test_images)

print("Extracting features using VGG19...")

vgglg_train_features = extract_features(models["vGe19"], train_images)
vgel9_val_features = extract_features(models["vGG13"], val_images)
vggls_test_features = extract_features(models["vGG19"], test_images)

# Train ond evalugte traditional ML models
def train_and_evaluate_ml_model(model, train_features, train_labels, val_features, val_labels):
medel.fit(train_features, train_labels)
val_predictions = medel.predict(val_features)
accuracy = accuracy_score{val_labels, val_predictions)
print(f"validation Accuracy: {accuracy}")
print(classification_report(val_labels, val_predictions))
return accuracy

# Initialize ML models

svm_mcdel = SvC(kernel='linear', random_state=SEED)

rf_model = RandomForestClassifier(n_estimators=10@, random_state=SEED)

xgb_model = XGBClassifier(use_label_encoder=False, eval_metric="mlogloss’, random_state=SEED)

# Evoluate svM

print("\nevaluating SVM with VGG16 features...")

svm_vggle_acc = train_and_evaluate_ml_model(svm_model, vgglé6_train_features, train_labels_encoded,
vggle_val_features, val_labels_encoded)

print("\nEvaluating SVM with VGG19 features...")
svm_vggl9 acc = train_and_evaluate_ml_model(svm_model, vggl9_train_features, train_labels_encoded,
vggls val_features, val_labels_encoded)

# Evaluate Rondom Forest

print("\nEvaluating Random Forest with vGGis features...")

rf_vggle_acc = train_and_evaluate_ml_model({rf_model, vgglé_train_features, train_labels_encoded,
vggle_val_features, val_labels_encoded)

print("\nEvaluating Random Forest with vGG19 features...")
rf_vggl9_acc = train_and_evaluate_ml_model{rf_model, vggl9_train_features, train_labels_encoded,
vggl9_val_features, val_labels_encoded)

# Evaluote XGBoost

print("\nEvaluating XGBoost with VGG16 features...")

xgb_vggls_acc = train_and_evaluate_ml_model(xgb_model, vgglé6_train_features, train_labels_encoded,
vggle_val_features, val_labels_encoded)

print("\nEvaluating XGBoost with VGG19 features...")
xgb_vgg19_acc = train_and_evaluate_ml_model(xgb_model, vggl9_train_features, train_labels_encoded,
vggls val_features, val labels_encoded)



4.6 Model Evaluation

This section evaluates and compares the performance of all models (CNN and traditional ML)
using metrics like precision, recall, F1-score, and confusion matrices. We will also summarize
the results in a comparison table for clear insights.
The tasks that are performed in this part of the code are:

1. Compute evaluation metrics (precision, recall, F1-score) for CNN and traditional ML

models.
2. Generate confusion matrices for each model.
3. Generate the model accuracy curves and computational time for CNN Models

import seaborn as sns
import pandas as pd
from sklearn.metrics import comfusion_matrix

# Function to plot comfusion matrix
def plot_cc:-n+us1-::n_matr1x(y_‘true, y_pred, model name):
om = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(3, &})
sns.heatmap{cm, annot=True, fmt="d", cmap="Blues", xticklabels=class_names, yticklabels=class_nar
plt.title(f"Confusion Matrix: {rncdel_narne}")|
plt.x1label("Predicted")
plt.ylabel( "Actual™}
plt.show)

# generate predictions for validation sets
cnn_vgels_val predictions = models["waa1le"].predict{val_images).argmax{axis=1)
cnn_vgel9 val predictions = models["waG19"].predict{val_images).argmax{axis=1)
# Plot confusion matrices jor CAW models

primt(“Confusicn Matrix for WGG1E (CMM):™)

plot_confusion_matrix(val_labels, cnn_vggls_val_predictions, "WeGle™)

primt(“Confusicn Matrix for WGG19 (CHMM):™)
plot_confusion_matrix(val_labels, cnn_vggld val_predictions, "weE1s™)

import matplotlib.pyplot as plt

# Computational times (in minutes) and accuracies from the provided data
times = {

"VGG16": 181.2,

"VGG19": 230.67

# Training and validation accuracies for VGG16 and VGG19

accuracies = {
"VGG16": [@.4188, ©.7338, 8.7932, ©.8189, @.8445, ©.8517, ©.8704, ©.8765, 0.8857, ©.8995],
"VGG19": [@.2963, ©.5603, ©.6386, ©.6571, @.6881, ©.7098, ©.6987, 0.7614, 8.7128, ©.7354]

val_accuracies = {
"VGG16": [0.8575, ©.9108, ©.9275, ©8.9425, @.9358, ©.9425, ©.9625, ©.9625, 0.9575, ©.9458],
"VGG19": [0.8200, ©.8575, ©.9200, ©.9380, ©.9250, ©.9175, ©.9325, ©.9525, 8.9475, ©.9675]
¥

losses = {
"VGG16": [1.8264, ©.7438, 8.5670, 8.4715, ©.4249, ©.3863, ©.3635, ©.3317, 0.2958, ©.2730],
"VGG19": [2.287e, 1.1172, ©.9422, 8.8554, 0.7764, ©.71e3, ©.7347, 0.7376, 0.6735, ©.6431]

val_losses = {
"VGG16": [8.6433, ©.3176, ©8.2626, ©.2353, 0.1696, ©.1851, ©.1520, ©.1361, 0.1259, ©.1684],
"VGG19": [©.8792, ©.5898, 9.4149, ©.3480, ©.2880, ©.2832, ©.2738, ©.1977, ©.1969, ©.2092]
37

# Generate Accuracy
for medel_name in
# Accuracy Ci
plt.figure(fig: (8, 5))
plt.plot(range(1, 11), accuracies[model_name], label="Traini Accuracy”, culorV blue” )
plt.plot(range(1, 11), val accuracles[mdel name], label=" Ma<1cat’on Accuracy”, color="red")
plt.title( '{model name) Accuracy”)
plt.
plt.
plt.
plt.grid(True)
plt.show()

and Loss Curves
VGG16", "VGG19"]:

# Loss Curves

plt.figure(figsize=(8, 5))

plt.plot(range(1, 11), losses[model_name], label="Training Loss", color="blue")
plt.plot(range(1, 11), val_losses[model_name], label="validation Loss", color="red")
plt.title(f"{model_name} Loss")

plt.xlabel("epochs™)

plt.ylabel(“Loss")

plt.legend()

plt.grid(True)

plt.show()

# Display Computational Times
print(“Computational Time Summary (in minutes):")
for model, time in times.items():

print(f"{model}: {time:.2f} minutes")



1. Inthe below part of the code models' performances of all traditional models with CNN
are summarized and compared in a table.

import pandas as pd

# Accuracy values for SwM, Random Forest, and XGBoost with Vagle amd VGE13
results = {
"Model™: [
"ouM (WGEE1E}", "SWM (VEE19)",
“Random Forest (VWoGle)", "Random Forest (vagls)”,
"¥GBoost (veGle)", "XGBoost (WeG19)"
1,
"Accuracy": [
@.965, B8.965, & SuM
8.9775, ©.9625, # Random Forest
8.9575, ©.955 & XGBoost

1
3

# Convert the results dictionary to g DataFrome

results_df = pd.DataFrame({results)

# Display the table
primt(“"Model Performance Summary:\n™)
primt({results_df.to_string(index=True, col_space=15, justify="center”)})
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