*

)
National

Collegeof
Ireland

From Traditional to Advanced Machine
Learning: A Comparative Study of Political
Tweet Sentiment Analysis — Configuration
Manual

MSc Research Project
MSc Data Analytics

Vishnunath Nharekkat
Student ID: x22234217

School of Computing
National College of Ireland

Supervisor: Musfira Jilani




\*
\ National

National College of Ireland College of
Project Submission Sheet Ireland
School of Computing
Student Name: Vishnunath Nharekkat
Student ID: X22234217
Programme: MSc Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Musfira Jilani
Submission Due Date: 12/12/2024
Project Title: From Traditional to Advanced Machine Learning: A Comparative
Study of Political Tweet Sentiment Analysis
Word Count: 930
Page Count: 7

I hereby certify that the information contained in this (my submission) is information about
research I conducted for this project. All information other than my contribution will be fully
referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use
the referencing standard specified in the report template. To use another author’s written or
electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Vishnunath Nharekkat
Date: 12" December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).

Attach a Moodle submission receipt of the online project submission, to each project
(including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on
computer.

K K

&

Assignments that are submitted to the Programme Coordinator's office must be placed into the
assignment box located outside the office.

Office Use Only

Signature:

Date:
Penalty Applied (if applicable):




Configuration Manual

Vishnunath Nharekkat

1. Introduction

This configuration manual provides guidelines for configurations and implementation of
the sentiment analysis project on Indian Election Tweets. This paper describes the
requirements, folder structure, data preparation procedures, and steps to train and test SVM
and LSTM models. This document is intended to help the users manage the running process
of the sentiment analysis pipeline as well as to point at the potential problems that may

occur during the process.

2. Environment setup

2.1 System specification

x22234217

Operating System

Windows 11 Home Edition

Installed RAM 16.00 GB

Processor AMD Ryzeb 7 4800H with Radeon
Graphics 2.90 GHz

System Type 64-Bit Operating System

Programming Language

Python Programming

Package Management

PIP

Development Environment

Jupyter Notebook

2.2 Technical specifications

The research was conducted employing a sophisticated computational tool, the
Python language. The following packages were utilized:

Numpy
Pandas
Matplotlib
Sklearn
NLTK
String

Re

emoji

e s e




9. Keras
10. Tensor flow
11. Transformers

3. Project Development

3.1 Data source

The data for this research comprises the tweets collected from the Twitter platform and
focus on the 2019 India General Elections, obtained from Kaggle. This is a tweet dataset
with the name IndianElectionl9TwitterData.csv that consists of tweets containing
hashtags, mentions, and keywords of the major political parties and leaders in India.

Key Details:

1. Source: Kaggle (a platform for datasets and data science projects).
File Format: CSV (Common-Separated Values).
3. Location: https://www.kaggle.com/datasets/yogesh239/twitter-data-about-2019-
indian-general-election
4. Attributes:
e Tweet ID (string): Unique identifier for each tweet.
e Date and time (string): Date and time of the tweet posted.
e Username (string): Twitter handle of the user.
o Tweet Text (string): The full content of the tweet.
5. Total Records: 1,42,566 rows and 4 columns

Date User Tweet

0 2019-05-18 23:50:47+00:00
1 2019-05-18 23:20:00+00:00
2 2019-05-18 23:00:03+00:00
3 2019-05-18 22:53:54+00:00
4 2019-05-18 22:20:48+00:00
5 2019-05-18 22:16:26+00:00
6 2019-05-18 21:51:56+00:00
7 2019-05-18 21:43:15+00:00
8 2019-05-18 21:36:20+00:00
9 2019-05-18 21:22:29+00:00
10 2019-05-18 21:20:05+00:00
11 2019-05-18 21:19:44+00:00
12 2019-05-18 21:09:32+00:00
13 2019-05-18 21:00:52+00:00
14 2019-05-18 20:41:11+00:00
15 2019-05-18 20:35:54+00:00
16 2019-05-18 20:34:01+00:00
17 2019-05-18 20:05:42+00:00
18 2019-05-1819:55:37+00:00

10 9N1G_NR_182 10-RI-NA+NN-NN

@anjanaomkashyap | am seeing you as future #hjp spokesperson..

Trinamool Congress Sitting MP Abhishek Banerjee sends a defamation notice to Senior BJP leader &amp; Prim
#LokSabhaElections2019

#LokSabhaElections2019

PM Modi creates a new record of being the only PM of a democratic country.
| My somewhat biased exit poll for India elections based on ground reports that | have been following - BJP willcr
@rupasubramanya Even assuming statistical errors in the estimation, #BJP is expected to do betterinthe 80 ¢
@abbhijitmajumder Small correction. Nobody gets appointed in #BJP as PM. Theywork for it from the ground le
We still fucking dancing 8Y+°aY% 4™ | #INC

@abhijitmajumder Appointment of Successor!

So Kolkata Votes in less than 5 hours.

Which of the following should be top priority of Modi Government after #Loksabhaelections2019

(3/3)The major difference btw 2014 and 2019 Elections is the role of media, they have become a mouth piece ¢
After Syrs of Modi 8™

@Renukalaing

(1/3)In 2014 BJP got 31.34% of votes and remaining 68.64% votes were polled to other parties, there wasanar
#bjp @BJP4India @INCIndia @INCKarnataka how much you think Modi spends my tax money on fake photogra
@ArvindKejriwal you actually have the audacity to think you even matter in the current political scenario... That
#BreakingNews

Atimacfartrharl nloaca mue ranart thic nana thic nada ie wnrbing indar @tni bt in realituthic nas wiarbe o

Figure 1: Dataset

The username in the above image is blurred as per privacy concerns.


https://www.kaggle.com/datasets/yogesh239/twitter-data-about-2019-indian-general-election
https://www.kaggle.com/datasets/yogesh239/twitter-data-about-2019-indian-general-election

3.2 Data Pre-processing

e Checking the size of the dataset, data types, and is there any null values in the
dataset.

# Size of dataset

data.shape

(142566, 1)

data.dtypes

Tweet object
dtype: object

data.isna().sum()

Tweet 2]
dtype: inte4

Figure 2: Basic preprocessing checks

e The function for cleaning the tweets in the data includes removing URLs, mentioned
usernames, hashtags, punctuations, numbers, emojis, and stop words, and converting
the text into lowercase and lemmatizing it into base form.

# Define a function for cleaning the tweets
lemmatizer = WordNetLemmatizer()

def clean_tweet(text):
# 1. To remove URLs
text = re.sub(r'http\S+|wa\S+|https\s+', '", text, flags=re.MULTILINE)
# 2. To remove mentioned usernames
text = re.sub(r'@\w+', "', text)
# 3. To remove hashtags
text = re.sub(r'#(\w+)", r'\1", text)
# 4. To remove punctuation
text = text.translate(str.maketrans(’", '', string.punctuation))
# 5. To remove numbers
text = re.sub(r'\d+", ', text)
# 6. To remove emojis
text = emoji.demojize(text)
# 7. Convert the text into Lowercase
text = text.lower()
# 8. To remove stopwords
stop_words = set(stopwords.words('english'))

text = ' '.join(word for word in text.split() if word not in stop_words)
# 9. Lemmatization
text = ' '.join(lemmatizer.lemmatize(word) for word in text.split())

return text

# Apply the cleaning function to the tweets
data['cleaned_tweet'] = data['Tweet'].apply(clean_tweet)
data

Figure 3: Cleaning the tweets

e Dropping the duplicates from the dataset for better training.

. # drop duplicate values
data = data.drop_duplicates()
data

Figure 4: Dropping duplicates

3



3.3 Sentiment Analysis

The code below shows how to perform sentiment analysis of the tweets as well as
preprocessing using a tokenizer and the already-trained pipeline. First, the
sentiment-analyzer pipeline from the Hugging Face library is prepared to classify
the sentiment, and for tokenization the AutoTokenizer from the model “bert-base-
uncased” is used. The Token Count column is then created by adjusting the number
of tokens per tweet using the tokenizer’s tokenize method. Considering BERT’s
input size is restricted to 512 tokens for each instance, Tweets Truncation column
is included where tweets can be either truncated or padded depending on its length
and then converted back into text form using the encode and decode functions of
the tokenizer. Last of the features, the Sentiment column is generated as the result
of the corresponding sentiment analyzer applied to the motionless first 280
characters of each tweet and containing ‘POSITIVE’ or ‘NEGATIVE’ values. This
pipeline guarantees preprocessing and accurate sentiment classification besides
constraining models to their capacity.

sentiment_analyzer = pipeline('sentiment-analysis')
No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english and
o/distilbert-base-uncased-finetuned-sst-2-english).
Using a pipeline without specifying a model name and revision in production is not reco

ok

Tok r initialization for checking t th

tokenizer = AutoTokenizer. fromipretrai'ned

-uncased”)

# Apply the count_tokens function to the 'Tweets' column
ply(lambda x: len(tokenizer.tokenize(x)))

2 ot
data[ ' Token_Count™] = data[ 'Tweets"].ap

Token indices sequence length is longer than the specified maximum sequence length for t
uence through the model will result in indexing errors

data[ ' Tweets_Truncated'] = data[ 'Tweets'].apply(
lambda x: tokenizer.decode(tokenizer.encode(x, max_length=512, truncation=True))

data['sentiment'] = data['Tweets Truncated'].apply(
lambda x: sentiment_analyzer(x, truncation=True, padding=True)[@]['label’])

Figure 5: Sentiment Labeling using BERT

3.4 Exploratory Data Analysis

Bar chart and pie chart diagram for understanding about the data.

# 3. Visualization: Bar chart for sentiment analysis
import matplotlib.pyplot as plt

# Visualization: Bar chart for sentiment analysis
ax = support_summary[['POSITIVE', 'NEGATT\

# Adding values on top of the bars with
for p in ax.patches:
height = p.get_height()
# Position the value slightly above the bar (o
ax.annotate(f’ {int(height)}",
(p.get_x() + p.get_width() /
height + 1), # Add 1 to po
ha="center’, va='"bottom',
fontsize=10)

plt.title( sentin
plt.xlabel("Pol
plt.ylabel(  Numbe;
plt.xticks(rotatio
plt.legend(title='Sentiment
plt.tight_layout()

plt.show()

Figure 6: Bar chart diagram code

4



# Filter the data for positive ser
positive_data = data[data[ 'sentime

s
“POSITIVE' ]

# Count the number of positive tweets for each political party, considering only BIP and INC
partuise _support = positive data[positive data[ 'Political party’].isin(['BIP*, "INC'])]['Pelitical party'].value counts()

# colors: Orange for BIP, Sky Bl
colors = ['orange’, '#BTCEEB'] # Sky Blue

# Exploding the INC si
explode = (9, 0.1) #

2nd slice (INC)

# Create the pie chart
plt.figure(figsiz
plt.pie(partwise_support,

1abels=partwise_support. index,

autopct="%1.1F%%",

startangle=140,

colors=colors,

explode=explode,

shadow=True,

textprops=dict(color="black", fontsize=12))

# Adjust the title position
plt.title( Partwise support (Positive sentiment) for BIP and INC', fontsize=16, pad=28) # Added padding

plt.axis('equal’) # Fqual aspect ratio ensures that pie chart is circular.
plt.tight layout() # Adjusts the Layout
plt.show()

Figure 7: Pie chart diagram code

3.5 Model Development

e Code for implementation of SVM and LSTM.

tfidf_vectorizer = Tfidfvectorizer(max_features=5600, ngram_range=(1,2))

]: X_tfidf = tfidf vectorizer.fit_transform(x)

# Apply SMOTE to balance the data
smote = SMOTE(random_state=42)|
X_balanced, y_balanced = smote.fit_resample(X_tfidf, y)

]: # split the data into 86% training and 30% testing sets
X_train, X_test, y_train, y_test = train_test_split(X_balanced, y_balanced, test_size=8.3, random_state=42)

|: # Train the SvM model
svm_model = Linearsvc()
svm_model.fit(X_train, y_train)

# Make predictions
y_pred = svm_model.predict(X_test)

Figure 8: SVM Model development

: y_labels = label encoder.fit_transform(y)
¢ X_train_lstm, X test lstm, y train_lstm, y test lstm = train_test split(X, y_labels, test size=0.3, random_state=42)

: tokenizer = Tokenizer(num_words=10000)
tokenizer.fit_on_texts(X_train_lstm)

: X_train_seq = tokenizer.texts_to_sequences(X_train_lstm)
X_test_seq = tokenizer.texts_to_sequences(X_test lstm)

: max_length = 100
X_train_pad = pad_sequences(X_train_seq, maxlen=max_length)
X_test_pad = pad_sequences(X_test_seq, maxlen=max_length)

i # Apply SMOTE for LSTM
X_train_pad_balanced, y train_lstm balanced = smote.fit resample(X train pad, y_train_lstm)

1stm model = Sequential([
Embedding(input_dim=10eee, output_dim=128, input_length=max_length),
LSTM(64, return_sequences=True),
Dropout(e.4),
LSTM(32, return_sequences=False),
Dropout(8.4),
Dense(1, activation="sigmoid")

N

1stm_model.compile(loss="binary_crossentropy', optimizer=AdamW(learning_rate=0.001), metrics=['accuracy'])



# Train LST!
early stoppi EarlyStopping(monitor="val loss’, patience=a, restore best weights=True)

checkpoint_path = "best_model.keras”

model_checkpoint = ModelCheckpoint(filepath=checkpoint_path, monitor="val_loss’, save_best_only=True, mode="min’

el

history = lstm model.fit(
X_train_pad balanced, y train lstm balanced,
validation_split=e.2,
epochs=5,
batch_size=128,
callbacks=[early_stopping, model_checkpoint]
)

Epoch 1/5
609/609 ———————— 835 13ims/step - accuracy: 9.8080 - loss: 0.4424 - val_accuracy: ©.8643 - val_loss: ©.3151
Epoch 2/5
609/609 —————————————— 85s 139ms/step - accuracy: 0.8877 - loss: 8.2716 - val accuracy: ©.8734 - val loss: ©.3026
Epoch 3/5
609/609 ——————————————— 88s l44ams/step - accuracy: 8.9135 - loss: 8.2101 - val_accuracy: 0.87@9 - val_loss: ©.3214
Epoch 4/5
609/609 ——————————————— 855 140ms/step - accuracy: 8.9336 - loss: @.1653 - val_accuracy: ©.8670 - val_loss: ©.3533
Epoch 5/5
609/609 ————————————— B7s 142ms/step - accuracy: ©.9478 - loss: ©.1331 - val_accuracy: 9.8670 - val_loss: 0.4897

# Evaluate LSTM model
test_loss, test accuracy = lstm model.evaluate(X test pad, y test lstm)
print(f'Test Accuracy: {test_accuracy * 18@}")

Figure 9: LSTM Model development

3.6 Results

e Code for finding results of SVM and LSTM for comparison and we plotted the ROC
curve and accuracy plot for a better understanding of the model's performance.

# Evaluate the model
print("Accuracy:”, accuracy_score(y_test, y_pred)*160)

Accuracy: 85.,91503737780334

print("\n",classification_report(y_test, y_pred))

precision recall fi-score  support
NEGATIVE 0.88 0.95 9.91 21350
POSITIVE Q.77 0.57 9.65 6474
accuracy 9.86 27824
macro avg 0.82 0.76 0.78 27824
weighted avg 9.85 @.86 9.85 27824

# Confusion Matrix for SvM

svm_cm = confusion_matrix(y_test, y_pred)

disp = ConfusionMatrixDisplay(svm_cm, display labels=['Negative', 'Positive’])
disp.plot(cmap="Blues', values_format='d")

plt.title('svM Confusion Matrix')

plt.show()

Figure 10: SVM Model Results

# SVM ROC Curve
fpr_svm, tpr_swvm, thresholds svm = roc_curve(y_test binary, svm_model.decision_function(X_ test))
roc_auc_svm = auc(fpr_svm, tpr_svm)

# Plotting SvM ROC curve

plt.figure(figsize=(8, 6))

plt.plot(fpr_svm, tpr_svm, color="blue', lw=2, label=f'SvM (AUC = {roc_auc_svm:.2f})")
plt.plot([e, 1], [@, 1], color="gray', linestyle="--')
plt.xlim([e.e, 1.0])

plt.ylim([e.e, 1.e5])

plt.xlabel('False Positive Rate")

plt.ylabel('True Positive Rate')

plt.title('ROC Curve for SVM Model')
plt.legend(loc="lower right')

plt.show()

Figure 11: SVM ROC Curve



# Evaluate LSTM model
test_loss, test_accuracy = lstm_model.evaluate(X_test pad, y test_lstm)
print(f'Test Accuracy: {test_accuracy * 10e}')

1365/1395 ———————————————— 26s 20ms/step - accuracy: ©.8705 - loss: 0.3028
Test Accuracy: 86.80963516235352

y_pred_lstm = (1stm model.predict(X_test_pad) > ©.5).astype("int32")

1305/1305 ————————————— 25s 19ms/step

print(classification_report(y_test_lstm, y_pred_lstm))

precision recall fil-score  support

[c} 0.90 0.94 0.92 31999

1 @.76 0.64 0.69 9736

accuracy 0.87 41735
macro avg 9.83 @.79 ©.80 41735
weighted avg 9.86 0.87 .86 41735

# Confusion Matrix
conf_matrix = confusion_matrix(y_test_lstm, y_pred lstm)

disp = ConfusionMatrixDisplay(conf_matrix, display labels=['Negative', 'Positive’'])
disp.plot(cmap="Blues', values_format="d")

plt.title('LSTM Confusion Matrix')

plt.show()

Figure 12: LSTM Model Results

train_loss = history.history[ loss’]

val loss = history.history['val_loss"]
train_accuracy = history.history[ "accuracy’]
val_accuracy = history.history['val_accuracy']

# Plot Accuracy Curves

plt.figure(figsize=(12, 6))

plt.plot(train_accuracy, label="Training Accuracy’, color="blue")
plt.plot(val accuracy, label="validation Accuracy’, color="orange")
plt.title( 'Training and validation Accuracy')

plt.xlabel('Epochs”)

plt.ylabel('Accuracy')

plt.legend()

plt.grid()

plt.show()

Figure 13: LSTM Accuracy plot

# ROC curve for LSTM
fpr_lstm, tpr_lstm, thresholds_lstm = roc_curve(y_test lstm, y_pred_lstm_prob)
roc_auc_lstm = auc(fpr_lstm, tpr_lstm)

# Plot ROC curve for LSTM

plt.figure(figsize=(8, 6))

plt.plot(fpr_lstm, tpr_lstm, color='green', lw=2, label=f'LSTM (AUC = {roc_auc_lstm:.2f})")
plt.plot([®, 1], [0, 1], color="gray', linestyle="--")
plt.xlim([e.@, 1.e])

plt.ylim([©.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC Curve for LSTM Model')
plt.legend(loc="lower right")

plt.show()

Figure 14: LSTM ROC Curve



