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Abstract 

The study presents the efficient deep learning models such as CNN-LSTM and CNN-GRU 

architectures to detect Parkinson's disease (PD) at an early stage through voice data. By employing 

both intelligent audio as well as nonlinear indicators like jitter, shimmer, and harmonic-to-noise ratio 

(HNR) using Recurrence Period Density Entropy (RPDE) and Detrended Fluctuation Analysis (DFA). 

The experiments for evaluating the model took place among default and optimized configurations of 

both CNN-LSTM and CNN-GRUs, with and without early stopping. Results denote that early 

stopping off considerably ameliorates all metrics and optimized CNN-GRU models (conv=64, 

gr=75,100) are the leading ones in the tests across all metrics. The CNN-GRU model was able to 

accurately predict 76.47% of the test data, reaching a F1 score of 77.78% and a balance of recall of 

100% and a precision of 63.64%. These results pin down the CNN-GRU model's capacity to 

generalize and at the same time correctly identify. This study points out the fact that deep learning in 

voice diagnostics has the potential to become a scalable, non-invasive, and economical solution for 

early Parkinson's detection. The models that are built in this study offer a firm base for further 

integration into telehealth systems and thus making early diagnoses and personalized interventions 

more effective. 

 

1. Introduction 

Parkinson's disease is defined to be a chronic and progressive neurodegenerative disease, which 

mainly affects the brain's motor control centers. It is caused by the degeneration of dopamine- 

producing neurons in basal ganglia which is the region that is very important for regulating soft and 
coordinated movement. Dopamine is a neurotransmitter that facilitates the transmission of nerve 

impulses so the muscle is able to contract. It means that its shortcoming will affect the body's ability 

to perform the controlled and automatic movement processes properly. Classical symptoms such as 

tremors, muscle rigidity, and postural instability are very visible. Beyond motor symptoms, PD can 
also affect non-motor functions, such as cognition, mood, and sleep. While the definite cause of 

Parkinson's disease is not known yet, the most recent research implies that genetic predisposition and 

environmental factors combinations contribute to its beginning and subsequent course of 
development. PD is the second neurodegenerative disease that is the most widespread one in the 

world; as of now, it affects over 10 million people all over the world according to WHO (World 

Health Organization). The disease is more common in elderly people, so it is a problem of public 
health which the world is facing due to aging of the population. The above-named impacts are 

enormous from the point of view of the society as a whole. Besides the direct treatment costs and lost 

productivity, PD causes deep emotional suffering for both the patients and their care givers. 

 

The techniques of voice analysis have appeared as a new method in which determining diseases in an 

easier way and with fewer invasions can be achieved. Several studies conducted lately examined the 
employment of acoustic analysis on speech signals and tones in the identification of conditions such 

as Parkinson's disease (PD). These voice-centric methods make it possible to distinguish between the 

healthy and the PD-affected persons effectively. 



Along with the rise of super-intelligent systems and new diagnostic solutions that are based on voice 

data, clinicians now have a very powerful counter against the risks posed by the age-old diagnostic 

techniques. Thus, these methods can ease the process of making decisions for healthcare 

professionals, and, consequently, minimize the probability of failures and false-positive outputs. 

Besides, they are the ones that make possible more organized and timely patient medical follow-ups. 
The inclusion of a plethora of databases and voice data has been a very important factor for the 

classification-based approaches. 

 

This work is a proposal of using a hybrid model that covers many kinds of technologies to be able to 

infer the rules and still have very good results. The interpretability of the model served for delivering 

valuable insights and knowledge from the voice data. These are the only two pieces you can find in 
speech. Health care providers are thus able to correct the diagnosis of PD with higher precision by 

means of these new methods, and consequently, patients are treated better and their outcomes are 

improved. 

 

1.1 Research Question 

The research question is how much the voice analysis would be capable of early detection of 
Parkinson's disease. Specifically, firstly, the study aims to investigate: With respect to voice tremor, 

pitch, variations, and prosody elements (NHR), how well does the Parkinson symptom vocal analysis 

technology identify and measure the disease in its early stages? 

 

Secondly, how can hybrid CNN machine learning models effectively process these vocal features to 
enhance diagnostic accuracy and reliability in real-world applications? 

 

1.3 Research Objective 

The main aim of this research is to explore and prove the practicality of voice analysis for the early 

detection of Parkinson's disease, using machine learning models, especially hybrid CNN’s. The study 

is to explore the vocal weaknesses like pitch shifting, low quality speech, and the loss of speech 

fluency which subsequently leads to diagnosing PD at the early stage. The study of advanced acoustic 

features and machine learning techniques provides a new platform for the field of non-invasive, 

accessible, and economical diagnostic tools. These tools potentially can help to timely intervention, 

improve the patient outcomes, and to rely on the traditional, expensive, and clinical diagnostics less. It 

also, addresses the problems related to variability in recording conditions and the necessity of, 

balanced and huge datasets for generalizing over the populace. Overall, the goal is to make way for 

early detection which will guarantee a better life for patients and a reduction in the disease burden on 

the society. 

 

2. Related Work:- 

2.1 Advances in Acoustic Feature Analysis for Parkinson’s Disease Detection 

Voice-based Parkinson’s disease (PD) detection has rocked the world at present, acoustics being the 

primary research tool for scientists to uncover the features of voice that may be related to the problem 

of vocalizations due to PD. Recent research has revealed that pitch-related parameters (mdvp_fo_hz), 

F0_med (mdvp_fhi_hz), and F0_max (mdvp_flo_hz) are key markers for Parkinson’s patients in the 

quantization of pitch-based impairments. It is these metrics that measure the mobility and range of the 

voice that suffer from motor impairments (Pah, N.D. et al.,). For example, the research of (Yuan, L., 

Liu, Y et al.,) revealed that the pitch-related characteristics are the main distinguishing features that 

help in the differentiation of PD and non-PD. 



Therefore, let us dwell on the electrifying discovery of two very useful metrics - Jitter and Shimmer - 

which are the indicators of pitch variability and amplitude variability correspondingly. Jitter is a 

measure of frequency perturbations, whereas shimmer is the assessment of amplitude excursions. 

Both effects are characteristic indicators of PD disease (Sajal, M.S.R et al.). (Pah, N.D. et al.,), argued 

that although these metrics are used in combination with other acoustic features, they alone are 

sufficient lending a robust vocal-disability representation. For instance, the experiments conducted in 

(Lv, C., Fan, L., et al.,) demonstrated the importance of the jitter measures (mdvp_Jitter%, 

Jitter:DDP), the ones that are responsible for capturing the fine- grained irregularities of the 

Parkinsonian discourse. 

The harmonic-to-noise ratio (HNR) and noise-to-harmonics ratio (NHR) are the indicators that give a 

measure of the 'breathiness' and 'hoarseness' of the speech. These features, which were represented by 

MDPI in the year 2021, are very necessary as they indicate the distinction between the patients who 

have Parkinson's disease and those who are healthy. HNR provides the measure how much harmonic 

is the main one in the speech while NHR reads vice versa - how loud prominence is the noise. They 

effectively use the development, for example, of a system of (El-Sayed, R.S et al.,), in almost every 

industrial application thus the importance of these two measures cannot be overemphasized, to say the 

least, 'they efficiently diagnose early vocal impairments. 

Integration of multiple acoustic features like shimmer, jitter, and MFCCs along with HNR and RPDE, 

became a major development. Through the use of broad-feature sets, scientists have better the 

argument and explanation of ML models. The (Ouhmida, A., et al.,) and (Rizvi, D.R., Nissar et al.,) 

these are two of these features that were brought to bear. The ensemble models were the result of the 

accuracy data being over 95%. These studies provide the main evidence of the need for diverse 

feature sets to capture the multidimensionality of shortness of voice in PD. 

Even though the progress is obvious, yet, the constancy of the appropriate feature could still be a 

problem across the variety of recording conditions. The microphone quality differences and the 

patients' environment add to the noise of the extracted features, thus making them less reliable (Rizvi, 

D.R., Nissar et al.). The future developments in this field have to take a leap forward in increasing 

noise robustness and generalization by applying methods like data augmentation and domain 

adaptation. Besides, the combination of the acoustic features with the other biomarkers, such as the 

gait or handwriting analysis, could even more enhance the systems accuracy of PD detection, as 

suggested (El-Sayed, R.S et al.). 

 

2.2 Machine Learning Techniques in Voice Analysis for Parkinson’s Disease 

The utilization of machine learning (ML) in voice analysis for Parkinson's disease (PD) has been 

largely reshaped to various methods that make use of acoustic features for early diagnosis. 
Conventional ML classifiers, such as Support Vector Machines (SVMs) and k-nearest neighbors 

(kNN), have proven to be effective in recognizing the most distinct and distinctive characteristics in 

the cases of jitter, shimmer, and HNR (harmonics-to-noise ratio). SVMs, in particular, are famous for 
their capability to manage complicated features spaces, which result in high-level accuracy as seen 

from a very recent study by (Khaskhoussy, R et al) and (Pah, N.D. et al.,). kNN is efficient in 

straightforward, normalized data sets, but its reliance on distances greatly restricts its generalizability 

(AIP Publishing, 2023). 

 

Deep learning tech has really switched up the scene by launching automatic feature extraction abilities 
using convolutional and recurrent neural networks. For particle analysis and classification of 

structured matrices like MFCCs, Convolutional Neural Networks (CNNs) find spatial patterns in 

acoustic feature matrices easily, while recurrent architectures based on Long Short-Term Memory 
(LSTM) and Gated Recurrent Units (GRU) can reliably model temporal dependencies. Hybrid models 

like CNN-GRU that combine CNNs and RNNs, among other architectures, have proven particularly 



effective in detecting PD-related vocal impairments according to the research report releases by 

(Vidya, B et al.,) and (Pahuja, G et al.,). These models integrate local and sequential features, which 

in turn lead to enhanced diagnostic precision. 

 

Ensemble methods are a popular category of techniques in machine learning that typically involve a 

concept of boosting-based algorithms such as Adaboost, XGBoost, and more. They have been 

developed to the point where the sum of the benefits of the individual models is even greater than the 
models themselves. Other notable ensemble methods include random breaths (RF) and stacking 

methods that, given their robustness in the management of high dimensional data, have wide 

application. As a case in point, (Sorathiya, A, et al.,) and (Aşuroğlu, T. et al.,) showed through (Parisi, 
L., et al.,) and (Senturk, Z.K., et al.,) that ensembling can stabilize individual models and improve 

generalization across the board of datasets. 

 

Feature selection and dimensionality reduction are still key solutions in achieving the best model 

performance. Methods like Recursive Feature Elimination (RFE) and Principal Component Analysis 

(PCA) have been used for determining the most appropriate set of criteria by removing the irrelevant 
features and keeping only the ones that are crucial. They can reduce overfitting and calculation 

bottlenecks which have been shown in (Rizvi, D.R., Nissar et al.,) and (El-Sayed, R.S et al.,) 

publications. 

 

These advances notwithstanding, some issues remain with respect to the capability of voice 
recognition models to stay coherent within various recording circumstances and among different 

patient groups. Dataset variation and imbalances are still the main issues for model robustness which 

creates a need for huge and diverse datasets along with sophisticated data augmentation methods. 

Generative models like GANs for synthetic data generation should be studied for this purpose and 
new architectures to further improve diagnostic accuracy and accessibility should be investigated. 

This suggestion was made in the comment of (Rizvi, D.R., Nissar et al.,) to the journal (Pahuja, G et 

al.,). 

 

2.3 Multimodal Approaches and Telemonitoring for Parkinson’s Disease 

Detection 

The latest advancements in Parkinson's disease (PD) research have stressed the utilization of 

multimodal approaches and telemonitoring systems for better diagnostic and patient monitoring 

processes. These methods integrate different data modalities, such as speech analysis, motor activity, 
and other bio-signals, to give a comprehensive view of PD's signs. Machine learning (ML) based 

multimodal approaches, on one hand, improve the sensitivity and appropriateness of PD 

identification, and on the other hand, they offer the possibility of continuous, non-invasive monitoring 

through telehealth platforms. 

 

The inclusion of speech-related information with motor function data (such as gait patterns or tremor 
frequency), can thereby, improve diagnostic accuracy. Further, in 2023 and 2024, the yet-to-be- 

published issues of (Sajal, M.S.R et al., and Skaramagkas et al.,) note that the vocal features combined 

with the data from wearable sensor data, respectively, may be obtained by the ML models to address 

PD-related impairments.. Up to 99.5% in terms of diagnostic accuracy has been obtained, thus beating 
single-modality systems by a giant margin. The use of multiple data sources in the models is very 

advantageous since the models can validate symptoms in this way which reduces the possible 

influence of incomplete or noisy datasets. In such a situation, tremor analysis is the speech 
irregularities, thereby providing a more reliable diagnostic framework. Moreover, this is particularly 

useful when the disease is in the early stages and the symptoms are subtle and consequently may be 

overlooked 



Telemonitoring systems, as solutions for remote patient monitoring, have become highly popular, 

owing to their decrease in the need for the patient to often visit the hospital. These systems allow 

using voice recordings and wearable sensors for observing disease progress in real-time. MDPI from 

2022 found the use of telemonitoring platforms in controlling PD symptoms very effective, with 
patients obeying the treatment and healthcare costs significantly reduced. 

 

Telemonitoring frameworks generally integrate machine learning models with cloud-based setups to 
analyze the patients’ data and provide the physicians with actionable information. For example, AIP 

Publishing showed in 2023 a system that continuously observes the vocal changes and tremor 

patterns, thus, making possible the diagnosis of symptom exacerbation early. These systems are of 
primary benefit in rural regions or underserved territories, where access to specialized care is 

insufficient. Advanced ML techniques, such as ensemble learning and deep learning architectures, are 

central to multimodal systems. CNNs and RNNs are frequently used to process voice and sequential 
data, while decision trees and random forests handle structured motor activity data. Studies like those 

by (Pah, N.D. et al.,) demonstrated that stacking these models yields higher performance, leveraging 

the strengths of different algorithms. 

 

Transfer learning that uses multimodal data makes the skills of models trained in one modality (e.g., 
voice) to other modalities possible. Artificial devices trained only on motor data can be applied to 

other modalities such as voice. This technique gets rid of the need for large datasets which is a 

common problem in PD research (Sajal, M.S.R et al.). 

 
Even though they show great promise, multimodal methods have some issues such as data 

standardization, synchronization, and robustness. The environmental noise which may be caused by 

the variability of recording environments, the quality of the device, and the patients following 
instructions strictly may in turn affect model reliability (Yuan, L., Liu, Y et al.,). They should also 

look into privacy issues especially those that occur when sensitive health data is dealt with on the 

cloud. 

 

2.3 Conclusion 

Multimodal methods and telemonitoring represent a major breakthrough in Parkinson's disease 

detection and management. When you merge a variety of data modalities and employ machine 
learning techniques, such systems give full knowledge about the symptom symptoms, thus making it 

possible to have earlier and more unerring diagnoses. The problems exist, however, the development 

of technology and the research methodology that have occurred will bring the systems within reach, 
dependable and more successful in curing Parkinson's disease. 

 

Voice-based ML systems for PD detection are a step in the right direction toward non-invasive 

diagnostics, but the main drawbacks such as data variability, over-fitting, and deployment logistics 

need to be resolved to make a widespread adoption. Further research should be directed to increase 

the scope of the data, to develop the architecture of the model, as well as to make sure of the 
compliance with the ethical and privacy issues. This is the result of efforts that guarantee the usage of 

machines will be safe and no personal information of the patients will be exposed. These initiatives 

will be the driving force for the development of strong, easy-to-use, and scalable diagnostic tools that 
will enable early detection and managing of Parkinson's disease. 

 
Here’s a summary table of parameters generated from the features in the reviewed papers, 

highlighting the methods, accuracy, data sources, and authors. 

 
Method Accuracy Data Author 

SVM with jitter, shimmer, and HNR 93.84% Parkinson's Voice Dataset (UCI) Khaskhoussy, R et al., 

kNN with MFCC and jitter features 87.50% Voice recordings from clinical 
studies 

Tsanas, A et al., 



CNN-GRU with MFCCs and spectral 

features 

95.60% Open Voice Databases for PD Pahuja, G. et al., 

CNN-LSTM hybrid model 92.70% Speech signals collected from 
patients 

El-Sayed, R.S., et al., 

Random Forest with RPDE and DFA 90.20% PD Telemonitoring Voice Data 

(UCI) 
Rana, A., Dumka, A et 
al., 

Ensemble method (XGBoost) 96.70% Combined voice and tremor analysis Sorathiya, A.,et al., 

Naïve Bayes with jitter and shimmer 85.00% Sustained vowel recordings from PD 
patients 

 

Deep CNN model with MFCC and 

HNR 

94.00% Clinical voice datasets Vidya, B et al., 

Multimodal (voice + gait) with 

ensemble models 

99.50% Voice and wearable sensor data Lv, C., Fan, L. et al., 

RNN with harmonics-to-noise ratio 89.50% Parkinson's telemonitoring data Senturk, Z.K., et al., 

 

3 Methodology: 

This paper uses a CRISP-DM (Cross-Industry Standard Process for Data Mining) approach, which 

combines state-of-the-art data-driven techniques and ML algorithms in order to detect Parkinson's 

disease (PD) through a voice. It begins with the data gathering stage with UCI PD Telemonitoring 
Dataset along with Clinical Recording Dataset that enables the researcher to collect a variety of vocal 

samples which are either PD or healthy. 
 

 

 

 

 

Fig.1. Methodology Flow Chart 

 

 

 
The pre-processing steps Fig.1 guarantee data integrity by removing noise, normalizing values, and 

standardizing the recording conditions. The Transformation phase concentrates on attribute extraction 
that relates to both the clinically important acoustic properties of voice such as jitter, shimmer, and 

harmonic-to-noise ratio (HNR), in the meantime it also includes nonlinear features such as 

Recurrence Period Density Entropy (RPDE). These features are the ones that are unloaded from the 

data by dimensionality reduction thus speeding up the algorithm as well as the training process. 

 

The modelling phase includes newly developed hybrid architectures such as CNN-GRU. 

Hyperparameter tuning and cross-validation are indispensable for providing the capability of a given 
training framework to perform well in the context of different datasets. Ensemble methods and 

multimodal data integration are the best representatives of system accuracy, under the circumstances 



that it is possible to develope devices without a direct connection to blood (non-invasive) that are 

credible enough for application in detecting of PD carriages. 

 

3.1 Data Selection 

Sampling the data for the experiment is the key to ensuring that the AI model is capable of detecting 

Parkinson's Disease via voice without restrictions and is valid. The study employs a combination of 

the publicly available UCI Parkinson's Telemonitoring dataset which, on the other hand, is one of the 

dataset used in this research. Thus, the dataset have high-quality vocal recordings that are labelled as 
either PD or healthy. These sets of data are generally accepted to be a rich collection of acoustic 

features such as jitter, shimmer, harmonic-to-noise ratio (HNR), and nonlinear measures like RPDE 

(Recurrence Period Density Entropy). 

To guarantee that the models are truly representative and robust, the datasets that are included cover a 
variety of vocal conditions, recording environments, and demographics. This heterogeneity is 

reflected in the differences in voice quality that arise due to factors such as age, gender, and disease 

progression, which are necessary for the creation of generalized models. Along with the pre-existing 
datasets, clinical collaborations are also utilized for the collection of real-world data from diagnosed 

patients, thus, making sure that the groups that are underrepresented and early-stage PD cases are 

included. 

 

3.2 Understanding of Data 

In the first initial lookout, one can see the differences in the data quality that is caused by various 
recording conditions, types of devices used, and age and gender of the individuals, to cite some of the 

factors. The data sets are also manifesting the minor class imbalances where the higher proportion of 

healthy samples is present as compared to the PD cases. 

 

 

Fig 2. Distribution of Participants 

 
These subtleties require that the next stages are done, which are normalization, noise elimination, and 
outlier skewness detection to obtain a consistent result and also to minimize bias. The dataset contains 

81 audio file samples, which are equally divided between healthy controls (Label 0) and persons with 

Parkinson's disease (Label 1) each to be compared with 41 and 40 samples respectively. The 
difference in the two groups becomes more substantial when using such data for training the models 

and testing their accuracy. 



 

 

Fig.3 Different frequency of PD 

 
Fig .3 detailed the research on the mdvp_fo_hz feature suggests that there is a very high correlation 

with the health status. The subjects between 50–100 Hz in basic frequency were only healthy controls. 

As the frequency increases, the percentage of persons who have the disease also goes higher. The 
healthy individuals still dominate the 100–150 Hz range, but at the same time, the 150–200 Hz range 

exhibits a fifty-fifty division between healthy and diseased subjects. The 200–250 Hz range “skews” 

towards Parkinson’s and the 250–300 Hz range is mostly populated by individuals with Parkinson’s 
disease. 

 

3.3 Design Specification 

This research implements a structured design intended to detect Parkinson’s disease (PD) through the 

analysis of voice data by means of machine learning techniques.Data preparation, feature engineering, 
and a model development and evaluation make up the research study. 

 

Data recording for both UCI Parkinson’s Telemonitoring Dataset and clinical recordings is collected 
and then pre-processed at the first stage, which is a representative dataset vehicle and addresses 

different recording conditions to ensure that representatives from these and other relevant groups are 

included. Then, in the progression process of feature engineering, the main issue of feature 
engineering, treatment of demographic or acoustic dissimilarities are emphasized on the measuring of 

characteristics like jitter, shimmer, HNR (harmonic to noise ratio), non-linear methods among others 

such as RPDE (Recurrence Period Density Entropy). These specially selected and optimized features 

provide lower models and improve both the interpretability and the efficiency of the model, which is 
accomplished by the dimensionality reduction techniques. 

 

The development of a model within the research frame, hence a test of the hybrid machine learning 
style. The stuff includes the utilization of quite futuristic deep learning architectures of such types as 

CNN-GRU and CNN-LSTM. The better model parameters are selected via the fine-tuning of things 

like learning schedules and dropout layers so as to be able to achieve the best possible performance. 

The models are checked through cross-validation in terms of robustness and performance with the 
unseen datasets. Finally, one of the tools that give directions in terms of accuracy, F1 score is the best 

selection model. The three-phase design involving a rigorous and reproducible procedure for the 

detection of PD based on the voice is actually the one which is the reason for the greatest accuracies, 
interpretability, and viability for the real-world applications. 

 

3.4 Design Process Flow 



 

Fig.4 Flow of Research Process 

 
Initially, the data from publicly available sources like the UCI Parkinson's Telemonitoring Dataset 

and clinical recordings are sought. Then, the lifting of the perception of the entering sample group, a 

more or less equal distribution between PD and healthy patients is required. A preliminary 

Exploratory Data Analysis (EDA) is carried out to study the distribution of features, the variability, 
and the correlations so the researchers will be in a position to understand the data better. 

 

Data pre-processing procedures consist of the cleaning of the dataset by eliminating the noise with the 
application of filters and the normalization of the features to assure the homogeneity of the measures. 

Outlier detection is executed, and both by deficiently and inconsistently recorded or missing values 

are tagged with NaN. By scaling features, they are standardized to comparable scales, the most 

important are the jitter, shimmer, and nonlinear indices. 

 

Features, for example, the fundamental frequency, jitter, shimmer, harmonic-to-noise ratio (HNR), 

and nonlinear characteristics such as RPDE and DFA are acquired. These methods include Principal 

Component Analysis (PCA) as well as feature selection algorithms, such as recursive feature 
elimination (RFE), which reduce the redundancy of data to ensure optimal feature set usage. 

 

A combined machine-learning method utilizes deep learning architectures such as CNN, CNN-Gated 
Recurrent Units (GRU), and CNN-Long Short-Term Memory (LSTM) networks to detect both spatial 

and temporal characteristics. Model hyper-parameters, such as learning rate, dropout rate, and the 

number of LSTM / GRU units, are taken very carefully to achieve the best results possible. 

 

The dataset is divided into three sets: training, validation, and testing. Additionally, the cross- 
validation technique is also used to check the model’s robustness and generality. The model's efforts 

to cover a variety of cases can be said to be the primary factor for the measurement of the model's 

success in which, the use of numerous measurements (accuracy, precision, recall, F1 scoring) is 
important. 

 

4 Implementation:- 

4.1 Environmental Setup 

The environmental startup means that the infrastructure like computational the sets of library and 

hardware that are required for the ML model implementation have been configured. Further including 
keeping the much-needed software tools, libraries, and hardware resources available. In this project, 

machine learning and deep learning models were developed (as well as the data were pre-processed 

and the models were evaluated) through Python together with popular ML libraries like, TensorFlow, 
Keras, and scikit-learn. In addition, programs like Librosa were also used to extract features from 

the recordings. The setting was a computer that had the needed processing power, which allowed 

loading up the big data sets and the handling of the intensive training operations. In cloud computing 

platform, Google Colab was one of those that were thought of in terms of scalability and resource 



management. The verification process of the environment was carried out by identifying if there are 

different platforms that the software can be checked on and the use of versioning for the dependencies 

to ensure reproducibility. 

 

4.2 Data Preparation 

The data preparation phase is the heart of any dataset used to train a machine learning model because 

the quality of data is the key criterion for model fitness. This stage is subdivided into several main 

actions, namely collecting data, cleaning, feature extraction, and splitting the data into the training and 
testing sets. 

The following is a comprehensive description of the data preparation steps used in this report. 

Researchers used two openly available packages: the UCI Parkinson’s Telemonitoring Dataset and the 

Parkinson’s Voice Initiative Dataset, along with clinical recordings obtained from collaborations with 
healthcare institutions. These datasets consist of the voice recordings of both healthy people and PD 

patients, which are necessary for creating a balanced classification model. The data was gathered via 

phonation tasks, in which patients were instructed to sustain vowel sounds. This method is a highly 
reliable indicator of the motor disorders observed in PD. 

 

Noise Removal: Normally, background noise is a major inconvenient issue in audio recordings that 

shakes the feature extraction process. A hpss (Harmonic-Percussive Source Separation) album was 

used to break down an audio signal into its harmonic and percussive components and make only the 
vocally important frequencies to be selected (Tsanas, A et al.,). This approach is fundamental as it 

increases the signal-to-noise ratio, hence the models are directed to the important sound 

characteristics. 

 

 

Fig .5 Column One Normalized Feature Graph 

 
Normalization: In order to deal with the diversity of microphones and issues with volume, 

normalization was applied to all the features as shown Fig.5 This is possible as each feature has a 
center of zero and a standard deviation of one, which makes the model efficiently learn the data that is 

free from the scale or magnitude differences. This is the safest way to minimize problems during the 

training (for example, machine learning models that are sensitive to feature scale like neural 
networks) (Pah, N.D. et al.). 

 

Handling Missing Data: Some features like mdvp_Shimmer, mdvp_Shimmer(dB) in the recordings 
were unknown due to recording incompleteness or technical issues during the data collection. 

Imputation was used to do away with the missing values. Therefore, if any data gaps exist, there will 

be a potential issue of poor performance degradation of a model due to the missing information. 

 

Outlier Detection: Jitter, shimmer, and other voice features sometimes have outliers, particularly if 
the recordings were contaminated by noise or errors at the time of recording. Identified outliers that 



were revealed by boxplots were discarded to make the dataset intact. Importantly, over-fitting is 

avoided, and the model can generalize well to unseen data (Pahuja, G et al.) 

 

5. Implementation of Deep Learning Models: GRU and LSTM 

The concentration of this study is on the usage of deep learning models, particularly Gated Recurrent 

Units (GRU) and Long Short-Term Memory (LSTM) for detecting Parkinson's disease via voice 

analysis. One of the best features of these models is they can get to the heart of sequent data, so they 

can manage time-series voice data where the temporal relations between the voice features (e.g. jitter, 

and shimmer) are the sections for accurate classification. 

 

5.1. Model: GRU and LSTM 

Both GRU and LSTM are types of Recurrent Neural Networks (RNNs) that are designed to read the 
dependencies that are in the data. Furthermore, these algorithms are very well suited for applications 

like speech recognition, where the temporal evolution of the features is often a crucial clue for 

discriminating between speech patterns of people with Parkinson's disease and healthy ones, 
respectively. 

 

 GRU Model: 

GRU is a simpler alternative to LSTM, and it achieves this by lowering the level of 
computational complexity while preserving the capability to recognize temporal dependencies 

in the data. In contrast with the conventional RNNs, the GRUs are not that sensitive to the 

issue of the vanishing gradient, by virtue of which their performance in sequence learning 

tasks is excellent. In this study, GRU is employed as a tool to process voice features derived 
from audio data, where it learns the time patterns that are the recognizable symptoms of PD. 

(El-Sayed et al.,). 

 LSTM Model: 
LSTM, which is a modern version of the RNN architecture, is an architecture that introduces 

a more complicated structure to the simple cells used in the previous models and includes 

input, forget, and output gates. According to the results of LSTM that have been proven to be 
highly efficient in tasks needing time-series data, it saves parameters and acquires variable 

(gradient) that decay slowly, thus it keeps on learning over long periods of time which is most 

of the time required in analyzing speech data (Senturk, Z.K., et al.,). 

 

5.2. Data Input and Preprocessing 

 
To develop a machine learning model that is an efficient one in Parkinson's disease (PD) detection 

from voice data, it is important to implement the preprocessing steps that will provide the data in a 
suitable format for GRU and LSTM models in detail and properly. These models have been made for 

sequential data processing, therefore, the features must be extracted, cleaned up, and reshaped 

properly to make sure that the voice recordings remain the same temporal information. 

 

The first crucial step is to extract the characteristics from the raw audio recordings prior to charging 
the data into the GRU and LSTM models. The features selected for this study are the ones most often 

used in speech analysis and have been shown to catch the fine differences in voice that are associated 

with PD symptoms. 
 Jitter: Jitter determines the difference in the fundamental frequency (F0) between successive 

speech cycles. Pitch instability is the parameter measured here, and as per the higher jitter 

values seen in PD patients, it is due motor impairments that affect voice modulation. Apart 
from that, the percentage jitter (mdvp_Jitter%) that is used to measure the relative changes in 

F0 throughout speech samples (Ouhmida, A., et al.,) can also be represented. Jitter identifies 



the healthy and PD language types among other types because it is the measure for the 

variations of pitch caused by the tremor-like movement that are common in PD patients. 

 Shimmer: Shimmer is a measure of the changes in the loudness between consecutive speech 

cycles. Just like Jitter, Shimmer is a gauge of vocal instability and is negatively affected by 

PD-related rigidity and tremors in muscles. The shimmer data is demonstrated on decibels 
and drawn by mdvp_Shimmer(dB) and various values show the difference in the consistency 

of the tremor over speech volume and pitch (Parisi, L., et al.,). 

 Harmonic-to-Noise Ratio (HNR): 
HNR (Harmonics-to-Noise Ratio) deals with the balance between harmonic and non- 

harmonic components of the voice signal. Parkinson's Disease patients generally have greater 

breathiness and less harmonic stability, leading to lower HNR forever. Hence, HNR is an 
essential feature for diagnosing PD, as it reveals the "roughness" or hoarseness in the voice 

that PD patients very often present. (Sorathiya, A, et al.). 

 Nonlinear Features (RPDE and DFA): 
o Recurrence Period Density Entropy (RPDE): RPDE is a nonlinear measure that 

captures the voice's complexity by evaluating the voice's repetition patterns in the 
course of time. This feature is specifically sensitive to the changes of the voice due to 
the motor symptoms of PD diseases (Sorathiya, A, et al.). 

o Detrended Fluctuation Analysis (DFA): DFA is also a nonlinear method that gives 
the self-similarity and long-range correlations that are present in time-series data. It is 
useful for data among the dynamic irregularities of PD patients' voices, which are 
caused by the deterioration of the neuron (Parisi, L., et al.,). 

These features (jitter, shimmer, HNR, RPDE, and DFA) are selected as they have been concluded of 

reflecting physiological change in speech production due to Parkinson's disease. Dynamic and 
temporal aspects of speech are the most significant parameters through which the model can identify 

if the participant has Parkinson's disease or is a healthy person. 

 

5.2.1 Data Cleaning 
Once the features are extracted, the data undergoes cleaning: 

 Noise Removal: Voice recordings may be made in different place and be affected by 

excessive noise. Noise filtering is mainly used for the purpose of removing low-frequency 
noises so that the central sounds that matter (speech sounds) come through. 

 Missing Data Handling: When any voice recordings are not complete or they have missing 

values the imputation methods of choice will be used such as filling missing values with the 
median or using interpolation methods. This secures the dataset being a consistent and 

appropriate source for the ML models. 

Data augmentation has become very essential in the development of voice-based PD research because 

of the very limited number of datasets and the high level of variability in speech recordings. Among 

the techniques utilized for artificially expanding the dataset were pitch shifting, time-stretching, and 

the addition of synthetic noise, consequently, the robustness of the model was improved (AIP 

Publishing, 2023. After the dataset pre-processing and feature extraction, the data was split into three 

separate sets, namely the training, validation, and test set. Often, an 80-20 split is used, and 80% of 

the data is allocated to training, and the rest 20% is for testing. To be certain that the model's 

evaluation was conducted in the right way, k-fold cross-validation was introduced where the data was 

segmented into k subsets and the model was taught and verified k times on different subsets. This 

procedure will make sure that the model is not overly dependent on the random partition of the dataset 

but rather it will provide a more accurate evaluation of its generalization performance (Springer, 

2023). 

 

5.3. Model Architecture Design 

5.3.1 CNN Model Architecture 



 

 

Fig.6 Overview of Base CNN architecture 

 
Fig.6 shows the commonly used CNN (Convolutional Neural Network) architecture, the deep 

learning model. 

 
Input Layer: Here, the raw input data which is an image or video frame is sent to the network. The 

input typically contains an array of pixel values which is an image. 

 

Convolutional Layers: These layers perform the operation of convolution on the input data using 

filters (also called kernels) that select features such as edges, textures, and patterns. 

 

An input is passed through a particular filter on different shifts or locations and a response or number, 

which is indicative of the presence of the feature it was designed to recognize, is obtained by making 
an element-wise multiplication and then summing up the values of the elements. Several filters are 

used to capture different traits from the input. Convolutional layers are the most common layers for 

CNNs and they use non-linear activation functions like ReLU to introduce non-linearity into the 

network. 

 

Pooling Layers: With pooling layers, the feature maps' dimensions along the spatial dimension are 
shrunk, thus aiding in reducing the computation cost and overfitting. Max pooling and average 

pooling are some of the most used pooling techniques. Max pooling scans through the local area of 

the feature map to identify the greatest number, while average pooling, in contrast, sums up the 
numbers and divides the total by the total number of elements found. 

 

Fully Connected Layers: The convolutional and pooling layers output is flattened into a one- 
dimensional vector, then it is fully connected to layers. This vector is then input into fully connected 

layers that are akin to the feed-forward neural networks of a specific type. These layers employ the 

use of weighted links between the neurons that allow them to learn the correlations and produce 
predictions. 

 

Output layer: The one that gives the prediction, number of neurons in the output layer equals the 

number of classes that you are trying to classify. By way of illustration, in a binary classification (e.g., 

cat vs. dog), there would be two neurons, whereas in a multi-classification problem (e.g., classifying 
different kinds of flowers), there would be more neurons. 

 

5.3.2 CNN + GRU Model Architecture 



 

 

Fig.7 Overview of CNN+GRU model architecture 

 
The Fig. 7 depicting a hybrid deep learning structure that brings together Convolutional Neural 

Networks (CNNs) and Gated Recurrent Unit (GRU) layers has just the right format for implementing 
systems that handle tasks processing time series data, like speech recognition, NLP, Morgan 

Parkinson's disease detection from voice data, etc. Such a system which hosts one branch of a GRU 

mode 

 

First, the input layer obtains the raw data directly from the microphone, ordinarily visualized as a set 

of vectors of features. The voice signals with this feature vector gives an account of the spectral and 
temporal features. 

 

The convolutional layers model the spatial features of the input data. The input data is subjected to the 

recruitment of various filters, which facilitate the perception of the patterns of the input data together 

with a decrease of dimensionality through max pooling. In this way, it facilitates the capture of local 

dependencies within input data. 

 

The flattened layer of the convolutional layers is then the input to a GRU layer. These recurrent neural 
networks are created in order to deal with sequences of data, thus, the modelling of the time 

dependencies between the input features is possible. The GRU nodes have memory cells that might 

support them to run through and analyse the data for a longer period of time, thereby, they are the 
devices that have the capability of capturing the long-term dependencies in the voice signal. 

 

The output of the GRU which is the input to a series of dense layers is the GRU layer. These layers, 
through their non-linearity and dimensionality reduction, can help them to provide the features in a 

representation that is suitable for the final classification layer. 

 

The ultimate layer is a dense layer with a sigmoid activation function. The probability score (between 

0 to 1) is the main output of this layer and it indicates whether the input belongs to the Parkinson's 
disease class or not. A threshold can be applied to this probability score to make a binary 

classification decision. 

 

5.3.3 CNN + LSTM Model Architecture 



 

Fig.8 Overview of CNN+LSTM model architecture 

 
The Fig. 8 depicts a hybrid deep learning paradigm that incorporates Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTM) networks for the extraction of features and sequential 
modelling.. 

 

Processed data is sent to the input layer, which is just audio files. After the extraction of these features 
the output is then passed to the sequential network (LSTM). A convolutional layer is connected to an 

operational layer of neurons where the audio-to feature mapping has happened through learned 

weights; therefore it has to be optimal to do feature extraction (spatial feature). Relatively, layer 1 
does a nonlinear transformation of the input into the output while layer 2 applies a convolution 

operation with filters to it. The output of this layer was then subjected to a max pooling layer which 

decreased the dimensionality but still kept the vital features. A second convolutional layer processes 
more represented features, the step that goes after another max pooling layer, the net still preserves 

significant features, hence it is less dimensional as a result of max pool layers. 

 

The convolutional layers multiply the input by different kernels producing various numbers of 

features and then the results from all these layers are concatenated and two LSTMs are stacked on top 
of each other. LSTMs are invented to find time weaves in sequential data. The first LSTM layer starts 

with the input sequence, and it contains the finished material, which is then, in turn, processed by a 

second LSTM layer. ReLU activation is used in both the LSTM layers for introducing non-linearity. 

 

The depleted LSTM output is consequently injected into a dense layer, which has two functions – 

reduce the features' dimensionality and introduce non-linearity. In the end, the output layer using a 
activation function instigates a probability distribution over a set of possible classes. The distribution 

is a prime reflection of the model's confidence and class prediction proficiency. 

 

This particular architecture allows for the interplay of better features of CNNs and LSTMs such that 

the model extracts both spatial and temporal features from the input data. CNNs excel in seizing 
motifs of a spatial nature while LSTMs are superb in modeling sequential data. Implicitly, both these 

techniques are then used together and the model is not only able to work well on different time series 

classification tasks but is also reliable. 

 

5.4. Model Compilation and Training 

 Compilation: GRU and LSTM models are both trained with Adam optimizer, which alters 

the learning rate along with the whole training to effectively achieve convergence. The loss 

function for binary classification is binary cross-entropy and the evaluation metric is 

accuracy. Adam is the optimizer of choice for its adaptive learning rate as well as its 

robustness in deep neural network. (MDPI, 2022【155】). 

 Training: The models undergo the learning in a specified number of epochs (e.g., 20-50 

epochs) with a batch size of 32. Early stopping is the revenge of the process once the models 

become overfit during training, and a 0.2 (20% of the training data) validation split is used to 



monitor the performance of the models during the process. In addition, cross-validation is 

used to ensure that the model is not tuned based on any particular data split, thus, more 

reliable performance metrics are obtained (Sajal, M.S.R et al., 2020). 

 

5.5. Evaluation and Performance Metrics 

 
After the training is done, the models are tested on a different test dataset (20% of the original data). 

The models' performance is assessed through: 

 

 Accuracy: Accuracy of predictions is the percentage of correct predictions. 
 F1 Score: A metric that gives equal weight to the precision and recall, thereby ensuring a 

balance between them, which is especially significant when dealing with the imbalanced data 

samples. 

 Precision: Precision is the proportion of the true positives among the positive results that the 
classifier declares. In other words, it is the proportion of datasets labelled as positive by the 

model that are indeed positive. 

 Recall: Recall is described as a measure of sensitivity to the cases that are positive and the 
ability to include all of them. It gives the part of correctly identified positive cases among all 

actual positive cases. 

 Loss: This shows the error or discrepancy between the predicted output and the correct 
outcome. It is computed as the last step of each batch of training and is then used in a 

backward pass to adjust the model's parameters. 

 Val_Loss (Validation Loss): This gives rise to the model's performance on another validation 

set not included in the training data set. The model will be considered as the one that performs 
better if it learns the ability of generalization from the model rather than overfitting the 

unseen data. 

 

6. Evaluation 

6.1. Detailed Evaluation of the Default CNN Model 

The baseline CNN model was subjected to a test that showed that it suffered from overfitting. Its final 

training accuracy, which was perfect (100%) was contrasted by a validation accuracy of 76.47% 
which shows the limited generalization. This time the training loss was so low as 0.0086, while the 

validation loss got elevated to 0.6979, and thus showing more the difference between the training and 

testing performances. 
Metrics based on a closer look at the classes gave us a clearer picture of the model's weakness against 

class imbalances: 

 

 For the negative class (0), the Precision was 60% but the recall was just 30%, which gave an 
F1 score of 40%. 

 For the positive class (1), the Recall was seventy-one percent which was much more than in 

the negative class while, the Precision was just 42%, which caused an F1 score of 53%. 

 

The overall model accuracy was only 47.06%, pointing to its shortcomings in balanced prediction 

capacity for both classes. The weighted average and macro-averaged F1 scores were respectively 

45% and 46%, which highlights the problem of class imbalances. These values are indicative of a 
situation where the model was able to unlock patterns for one group in a good manner. However, it 

was still not able to give the overview of the whole dataset and thus remained only in one group when 

it comes to the skills. 



  

 

Fig.9 Base CNN Loss and Val_Loss Graph 

 

6.2. Baseline Performance of Default CNN+LSTM and CNN+GRU Models 

The default settings of CNN+LSTM and CNN+GRU models, on which only limited validation 

accuracy was obtained, are the basis they tend to rely on. This is especially so if the early stopping 

condition is met. 

 

 

Fig.10 Default CNN+LSTM Loss and Val_Loss Graph 

 

In CNN+LSTM, the training accuracy was 51.56%, and the specialist accuracy remained within the 
framework of receiving reasons only (validation accuracy) and thus being unable to develop general 

aspects. In the same manner, CNN+GRU had a training accuracy of 65.62%, while the validation 

accuracy was higher, to 47.04% of the validation data. 

 

 

Fig.11 Default CNN+GRU Loss and Val_Loss Graph 

 

High performance value for precision and recall also generated an imbalanced performance. However, 
Recall, in both architectures, for the positive class, was 100%, which means all the correct positives 

were obtained. Nevertheless, Precision, which amounts to 41.18%, means there is a high false 

positive rate. The misalignment, that is the case, culminated in low F1 scores of 58.33 for CNN- 

LSTM and 60.87 for CNN-GRU. The weaknesses highlighted by the results are models are the 

purpose of the positive class classification, but they have trouble with hard, negative, and positive 

cases. 



When early stopping mechanism was off, the performance was increased significantly. As an 

example, CNN+LSTM was able to encode a validation accuracy of 82.35% under a set-up with 75 

and 100 LSTM units and a dropout rate of 0.3. In the same way, CNN+GRU obtained a validation 

accuracy of 76.47% while its Recall stayed at 100% and Precision improved up to 63.64% providing 
a F1 score of 77.78. Such logs signaling these improvements the models are given the ability to train 

longer for complicated tasks. 

 

6.3. Implications of Architectural and Hyperparameter Choices 

CNN+LSTM and CNN+GRU both outperformed the baseline CNN because they showed the ability 

to utilize sequential dependency and temporal pattern processing. For example, when performance 
with early stopping is not considered: 

 

 The 75-unit and 100-unit CNN+LSTM model correspondingly recorded a validation loss of 
0.3652 and a validation accuracy of 82.35%. The F1 score was thus topped by balanced 

Precision (83.33%) and Recall (71.43%), which both improved the performance of a full 

algorithm towards the final F1 score of 76.92. 

 

 
Fig. 12 CNN+LSTM Hyperparameter Tuning Loss and Val_Loss Graph 

 

 The 75 and 100-unit CNN+GRU yielded a validation loss of 0.6169 and a validation 

accuracy of 76.47%, respectively even with Label Recall reaching 100% per class and 

Precision at 63.64%. This ends up in an F1 score of 77.78. 
 

 

 

 
Fig 13. CNN+GRU Hyperparameter Tuning Loss and Val_Loss Graph 

 

Contrarily, the baseline CNN, whose capability to exploit time dependencies was not optimal because 

it relied solely on convolutional operations. 

The final validation loss of 0.6979 along with lower F1 scores for the two categories are reflecting the 



shortage of predictive power of convolutional networks having no insights about the computational 

level of time series data. 

 

These results are, inter alia, driven by other hyper-parameters that are also possible for instance, 

CNN+GRU with a large configuration such as (125, details units=0.5), which is mostly dropout, 
secured the F1 score at 77.78 as it balanced the classes. Also dropout rates were crucial for 

classification as moderate dropout values (e.g., 0.3) promoted the generalization of the network, while 

a very high dropout (0.5, for example) slightly hurt precision. 
 

 
Model Early 

Stopping 

Training 

Loss 

Validation 

Loss 

Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

CNN+LSTM 

Default 

Yes 0.6899 0.6947 51.56 41.18 41.18 41.18 100.0 58.33 

CNN+LSTM 

(conv=64, 

lstm=75,100) 

Yes 0.6719 0.6980 51.56 41.18 41.18 41.18 100.0 58.33 

CNN+LSTM 

(conv=64, 

lstm=100,125) 

Yes 0.6806 0.6952 51.56 41.18 41.18 41.18 100.0 58.33 

CNN+LSTM 

Default 

No 0.2818 0.6724 98.44 64.71 64.71 54.55 85.71 66.67 

CNN+LSTM 

(conv=64, 

lstm=75,100) 

No 0.0298 0.3652 100.00 82.35 82.35 83.33 71.43 76.92 

CNN+LSTM 

(conv=64, 

lstm=100,125) 

No 0.0266 0.3345 98.44 76.47 76.47 66.67 85.71 75.00 

CNN+GRU 

Default 

Yes 0.6669 0.7032 65.62 47.06 47.06 43.75 100.0 60.87 

CNN+GRU 

(conv=64, 

gru=75,100) 

Yes 0.6295 0.6983 65.62 47.06 47.06 43.75 100.0 60.87 

CNN+GRU 

(conv=64, 

gru=100,125) 

Yes 0.6464 0.6998 56.25 41.18 41.18 41.18 100.0 58.33 

CNN+GRU 

Default 

No 0.1176 0.6844 100.00 64.71 64.71 54.55 85.71 66.67 

CNN+GRU 

(conv=64, 

gru=75,100) 

No 0.0087 0.6169 100.00 76.47 76.47 63.64 100.0 77.78 

CNN+GRU 

(conv=64, 

gru=100,125) 

No 0.0086 0.6979 100.00 76.47 76.47 63.64 100.0 77.78 

 

 

Table1 summarizing the evaluation values 

 

7. Conclusion and Future Work 



The finding of this study shows that integrated deep learning architectures such as CNN+LSTM and 

CNN+GRU outperform standard CNN models when dealing with sequential data, even though the 

model didn’t do extremely well the result were moderately. Though the baseline CNN model obtained 

the 100% training accuracy, nevertheless, its validation accuracy of 76.47% and macro F1 score of 
46% illuminated its difficulties in generalization and addressing class imbalances. On the contrary, 

CNN+LSTM and CNN+GRU models completely surpassed them, especially without early stopping. 

The CNN+LSTM model was able to reach 82.35% accuracy the validation and a balanced F1 score of 

76.92 when the configurations were adjusted, whereas CNN+GRU succeeded in a validation accuracy 
of 76.47% with an F1 score of 77.78. These outcomes evidence the efficiency of hybrid architectures 

in capturing temporal dependencies and tackling class imbalance issues through the use of proper 

hyperparameter tuning as well as architectural decisions. Nevertheless, these difficulties of 
overcoming overfitting, imbalanced precision and recall, as well as computational effectiveness are 

still important. The aspiring field for more powerful regularization techniques, smart management of 

class imbalances, and tangible architectures leads to the areas for improvement. Incorporation of 

dropout regularization and additional recurrent units in the hybrid models assisted in better 
generalization, but the further refinement is needed for consistent performance across the varied 

datasets. 

 
The future research should experiment with class imbalance problems using advanced loss functions 

such as focal loss or weighted cross-entropy, and synthetic data creation methods like SMOTE. 

Furthermore, testing new architectures like transformers and attention-based models could be a big 
breakthrough in terms of effectiveness in capturing long-term dependencies within sequential data. 

Automated hyperparameter optimization and neural architecture search (NAS) could be the way that 

scientists find the best models and layouts thanks to reduced manual tuning. 
A step further than just the model design, testing these architectures on large scale real-world data 

could help to show how scalable and generalizable they are. Regularization methods, like batch 

normalization and adaptive learning rate schedulers, would be additional tools for combating 

overfitting. In crucial tasks, incorporating explainability tools such as SHAP or LIME can provide 
transparency which in turn would build trust in the models that predict. At last, building-in 

multimodal data and trying temporal resolution adjustments would make the models useful in more 

areas, thus allowing them to deal with more intricate and diverse problems. 
This work together on the improvement of deep learning models and their readiness to be deployed 

will lead to the development of more robust, accurate, and flexible solutions for sequential data issues 

in various fields. 
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