""- |
\ National

Collegeof
Ireland

Configuration Manual

MSc Research Project
Programme Name

Kishore Nallasivam
Student ID: X23205962

School of Computing
National College of Ireland

Supervisor: William Clifford

‘-—
National College of Ireland \ National

MSc Project Submission Sheet fr()eligfglf
School of Computing
Student Name: Kishore Nallasivam
Student ID: X23205962
Programme: MSc. Data Analytics Year: 2024
Module: Research project configuration manual
Lecturer: William Clifford
Submission Due 12™ December 2024
Date:
Project Title: Advanced Visa Outcome Predictions for Superior Accuracy and
Interpretability
Word Count: 869 Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Kishore Nallasivam

Date: 12th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project a
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Kishore Nallasivam
X23205962

1. Hardware & Software

1.1 Device Specifications:

Device specifications

Device name EROHSIK

Processor AMD Ry JU with Radeon Graphics 2.60 GHz

Installed RAM { 5B (5.94 GB usable)
Device ID

Product ID

System type

Pen and touch

Figure:1- Device Specification

1.2 Windows Specification

Windows specifications

Edition Windows 11 Home Single Language
Version
Installed on

OS build G 60

Experience Windows Feature Experience

Microsoft Services Agreement
Microsoft Software License Terms

Figure:2- Windows Specification
1

1.3 Software Requirements

The software tools which we have used in this study are Anaconda Navigator,
Jupyter Notebook and Python.

_—
jupyter
e’

) Anaconda Navigator -

) ANACONDA NAVIGATOR o

watsonx ORACLE % Y %
Cloud Infrastructure ‘s s KN
x ’ anaconds-toolbox anacon ¢ console_shortcut_miniconds
a0 o
& A 1osta
f

Figure -3: Anaconda Navigator

2. Data preprocessing

This part involves the various processes which involved in data preparation for
the machine learning and deep learning model.

The data comprised “H-1B, H-1B1, E-3 Visa Petitions 2017 — 2022~
applications collected from Kaggle for the years 2017 to 2022. The raw data

was provided in CSV format, including variables such as Visa Type, Employer
Name and Visa Case Status.

Visa_Class Employer_Name SOC_Title Job_Title Full_Time_Position Worksite Prevailing_Wage Unit_Of_Pay Employer_Location Employer_Countn

Computer ASSOCIATE

0 H1B nomrone Systems DATA) 591970 Year Riverwoods, lingis e Siaes 0
- Analysts INTEGRATION 1
Operations
DFS SERVICES SENIOR Riverwoods, .) United States O
1 H-1B LLC Research ASSOCIATE Y lincis 49800.0 Year Riverwoods, llinois Americs
Analysts
EASTBANC NET Washington, :)
2 HB TECHNOLOGEES . U™ soptwre Y Distictof 76502.0 Yegr "Washington, Distict - Unied Staes O
LLC 9 PROGRAMMER Columbia 1
Computer . .
3 H-1B INFO SERVICES QOccupations PROJECT Y Jersey City, 90376.0 Year Livonia, Michigan United Steles O
LLC ’ WMANAGER New Jersey ’ Americz
All Other
ASSOCIATE -
ESOTERIC " :
BB&T Credit New York, Wilson, North United States O
d R CORPORATION Analysts st v New York HEZEA0 W&z Carolina Americz
BACKED
SECURITIES

Figure- 5: H1B visa dataset

2.1 Importing Libraries

#Importing libraries

import pandas as pd

import numpy as np

import os

import tensorflow as tf

import xgboost as xgb

import keras tuner as kt

import matplotlib.pyplot as plt
import seaborn as sns

import plotly.express as px

from sklearn.preprocessing import Labelkncoder, Standardscaler

from imblearn.under sampling import RandomUnderSampler

from sklearn.model selection import train_test split

from tensorflow.keras import layers

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, LearningRateScheduler

from tensorflow.keras.layers import Input, Dense, LSTM, Dropout, BatchNormalization, Bidirectional, Flatten
from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

from sklearn.metrics import accuracy score, f1 score, recall score, confusion matrix, classification report
from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense, Dropout, Bidirectional, LSTM, Input

Figure - 6: libraries

2.2 Loading data

Loading the datasets

H1B_visa_20822
H1B visa 2021
H1B_visa_20820
H1B_visa 2019
H1B visa 2018
H1B_visa 2017

pd.read_csv(r"c:\Users\Kisho\Downloads\archive
pd.read csv(r"C:\Users\Kisho\Downloads\archive
pd.read_csv(r"c:\Users\Kisho\Downloads\archive
.read_csv(r"C:\Users\Kisho\Downloads\archive
pd.read csv(r"c:\Users\Kisho\Downloads\archive
pd.read csv(r"C:\Users\Kisho\Downloads\archive

20)\LCA_FY_2022.csv")
20)\LCA_FY 2021.csv")
20)\LCA_FY_2020.csv")
20)\LCA_FY 2019.csv")
20)\LCA_FY 2018.csv")
20)\LCA_FY 2017.csv")

nmumnmnman
=
j= 1
o~~~ —,

Adding 'Year' column to each dataset

H1B visa 2822['Year'] = 2022
H1B visa 2021 'Year'] = 2021
H1B visa 2020@['Year'] = 2020
H1B visa 2819['Year'] = 2019
H1B visa 2018['Year'] = 2018
H1B visa 2817 'Year'] = 2017

Figure — 7: Python code for Loading Data
3. Data Visualization

As for the distribution of the visa case status we can see that 95% of
all identified applications are Certified with more than 3.7 million
approved applications. In the Denied status, there were almost
1,25,485 cases. suggesting that H1B visa applications are not
frequently rejected by the American government.

Getting the counts of each Visa Case Status
visa case counts = combined df['visa Case Status'].value counts().reset index()
visa case counts.columns = ['Visa Case Status®, 'Count']

Create the bar plot
Visa Case Status = px.bar(
visa case counts,
x='Visa Case Status', y='Count’,
color="visa Case Status', color_ continuous_scale="RdBu’,
title="Distribution of visa Case Status'

)

Layout and format of the plot
Visa Case Status.update layout(
xaxis_title='visa Case Status', yaxis_title='Count',
title_font_size=16, xaxis_tickangle=-45,
template="plotly white").update yaxes(tickformat=","').update traces(texttemplate="%{y:,}', textposition="outside")

Visa_case_Status.show()

Distribution of Visa Case Status

3,720,541

Visa Case Status
B Certified
B Denied

3,500,000

3,000,000

2,500,000

2,000,000

Count

1,500,000
1,000,000

500,000

125,485
e —

S
0&&

0

Visa Case Status

Figure — 8: Python Code to Show visualization

3.1 Train - Test Split

Train-test split with stratification
X _train, X temp, y train, y temp = train test split(
X _scaled, y, test size=0.3, random state=42, stratify=y)
X val, X test, y val, y test = train_test split(
X temp, y temp, test size=8.5, random state=42, stratify=y temp)

Figure — 9: Python Code for Train and Test Split
3.2 Scaling

StandardScaler was used to normalize the feature values as there was a need to
make sure that it had zero mean and unit variance.

Scale features
scaler = StandardScaler()
X scaled = scaler.fit transtorm(X)

Figure -10: Python code for scaling

5

3.3 UnderSampling

Function to balance the data using undersampling

def balance data with undersampling(X, y):
undersampler = RandomUnderSampler(random state=42)
X balanced, y balanced = undersampler.fit resample(X, y)
return X _balanced, y balanced

Apply undersampling
X_train_balanced, y train _balanced = balance data with_undersampling(X_ train, y train)

Figure -11: Python code for UnderSampling

3.4 Bi-LSTM model

Bi-LSTM Layers: Two bidirectional LSTM layers were added to capture long-
range needs in both forward and backward directions, The first Bi-LSTM layer
has a tunable number of units (Istm_units1) with a dropout rate (dropout_ratel).
The second Bi-LSTM layer also has tunable units (Istm_units2) and dropout
(dropout_rate2).

Build BiLSTM model with hyperparameters to tune
def build_bilstm model(hp, input_dim):
model = Sequential()

Define Input Layer
model .add(Input(shape=(input_dim, 1))) # Specify input shape here

BILSTM Layer 1
model.add(Bidirectional (LSTM(hp.Int("Istm units1', min_value=32, max value=128, step=32), return_sequences=True)))
model .add(Dropout (hp.Float('dropout ratel’, min_value=8.2, max value=0.5, step=0.1)))

BLLSTM Layer 2
model.add(Bidirectional (LSTM(hp.Int(lstm units2', min_value=16, max_value=64, step=16))))
model.add(Dropout(hp.Float(dropout rate2’, min value=d.2, max value=0.5, step=0.1)))

Dense Layer
model .add(Dense(hp. Int(dense units’, min value=32, max value=128, step=32), activation='relu"))
model .add(Dropout (hp.Float('dropout rate3’, min value=0.2, max value=0.5, step=0.1)))

Qutput Layer
model ,add(Dense(1, activation="sigmoid"))

Compile the model
model . compile(
optimizer=tf.keras.optimizers.Adam(
hp.Choice("learning rate', values=[1le-3, le-4, 1e-5])),
loss="binary crossentropy’,
metrics=["accuracy']

)

return model

Figure — 12: Bi-LSTM Model code

3.5 Hyperparameter Tuning

We used Keras Tuner with a RandomSearch strategy to optimize the following
hyperparameters, Number of units in the first and second Bi-LSTM layers
(Istm_unitsl, Istm_units2). Number of units in the dense layer coined as
dense_units. Learning_rate for of Adam optimizer. In total 8 trials were run with
15 epochs each though early stopping with validation loss.

Keras Tuner for hyperparameter tuning

tuner = kt.RandomSearch(
lambda hp: build bilstm model(hp, input dim),
objective="wval_ accuracy"’,
max_trials=s8,
executions per_ trial=1,
directory="bilstm tuning’,
project_name='bilstm_ hyperparameter_tuning’,
overwrite=True

)

Farly stopping to avoid overfitting during tuning
early stop tuning = Ear‘lyStopping(monitor‘:'Vlaliloss‘_, patience=3)

Perjform hyperparameter search
tuner.search(
X _train_lstm, y train_balanced,
validation_data=(xX_wval_ lstm, y_wal),
epochs=15,
batch_ size=64,
callbacks=[early_ stop_tuning]
>

Get the best hyperparameters
best_hps = tuner.get_best_ hyperparameters{(num_trials=1)[©]
print({”"Best Hyperparameters:”, best_ hps.values)

Figure — 13: Code for Hyperparameter Tuning

3.6 Evaluation

The Bi-LSTM model was evaluated using the test set, with key
metrics including accuracy, recall, F1-score, and a confusion matrix.
Validation accuracy during tuning: 66.65%. The learning curves
indicate overfitting after the second epoch, as validation loss
increased while training accuracy improved.

Trial 8 Complete [@6h 12m 35s]
val accuracy: ©.6261648535728455

Best val_accuracy So Far: 0.6665840148925781

Total elapsed time: @2h 58m @@s

Best Hyperparameters: {'lstm units1': 128, 'dropout_ratel': @.2, 'lstm_units2': 32, 'dropout_rate2': @.2, 'dense_units': 64, 'd
ropout rate3': @.2, 'learning rate': @.0e1}

Epoch 1/2@

2745/2745 —————————————— 248s 84ms/step - accuracy: 8.5720 - loss: ©.679@ - val_accuracy: ©.6101 - val_loss: 0.6764
Epoch 2/2@

2745/2745 ———————— 233s 85ms/step - accuracy: @8.5773 - loss: @.6761 - val accuracy: ©.5947 - val_loss: 0.6530@
Epoch 3/20

2745/2745 ————————————— 2625 85ms/step - accuracy: 0.5850 - loss: ©.6728 - val accuracy: ©.6588 - val loss: 0.6364
Epoch 4/20

2745/2745 —————————— 242s 88ms/step - accuracy: 0.5873 - loss: @8.6690 - val accuracy: ©.5773 - val_loss: 8.6465
Epoch 5/20

2745/2745 ——————————— 2565 86ms/step - accuracy: 0.5903 - loss: @.6674 - val accuracy: ©.5445 - val_loss: 0.6686
Epoch 6/20

2745/2745 —————————————— 2325 84ms/step - accuracy: @.5938 - loss: @.6644 - val accuracy: ©.5233 - val loss: 0.6975
18029/18029 ————————— 172s 1@ms/step - accuracy: 0.6579 - loss: ©.6367

18029/18029 ———————— 1695 9ms/step

Confusion Matrix:
[[369986 188095]
[9272 9551]]
Accuracy: 0.6578858874266775
Weighted F1 Score: ©.7665607061887559
Recall: 0.5074111459384795

Figure — 14: Evaluation result for Bi-LSTM

8

3.7 Python Code to build the XGBOOST Model:

The model was trained on the balanced training set and on the
validation set during the training time. Early stopping was used using
validation loss to avoid overfitting Training and validation log loss
values were saved at every epoch.

XGBoost model with eval metric included in initialization
xgh model = xgb.XGBClassifier(
objective="binary:logistic’,
use label encoder=False,
random_state=42,
n_estimators=100,
max_depth=5,
learning rate=0.1,
subsample=0.8,
colsample bytree=6.8,
eval metric='logloss"')

Train the XGBoost model

xgb model.fit(
X train balanced, y train balanced,
eval set=[(X train_balanced, y train balanced), (X val, y val)],
verbose=True)

Evaluate the model on the test set

y test pred = xgb model.predict(X test)

test accuracy = accuracy score(y test, y test pred)
conf_matrix = confusion matrix(y test, y test pred)

print("Test Metrics:")
print("Confusion Matrix:\n", conf matrix)

print(f"Accuracy: {test accuracy}")

Extract evaluation metrics from the training process
results = xgb model.evals result()

Figure — 15: XGBoost Model
3.8 Evaluation
Both log loss for training and validation reduced from epoch to epoch,

demonstrating effective learning over epochs. Training log loss:
0.63667 at the final epoch. Validation log loss: 0.64276 at the final

epoch. Training vs validation accuracy curves show good
convergence, with no evidence of overfitting. The XGBoost model
was evaluated on the test set, yielding the following results of
Accuracy: 60.39%

Test Metrics:
Confusion Matrix:
[[336381 221700]
[6819 12004]]
Accuracy: 0.6038873018734486

Figure — 16: Result

3.9 Comparison on both models

The results obtained from the XGBoost model are slightly lower than
that of the Bi-LSTM model, accuracy which is 60.39% and 65.79%
respectively. However, the training of the XGBoost model was faster
and computationally less complex because of the basic design
structure. Both models Bi-LSTM and XGBoost faced challenges in
correctly identifying the minority class, indicating the need for
advanced balancing techniques.

10

