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Abstract 

      The increase in world population has put pressure on food production and this has 

made it more crucial to make sustainable decision-making in agriculture. This study 

proposed a hybrid machine learning model to predict crops, yield, and fertilizer 

requirements. Base models (Random Forest, Gradient Boosting, and LSTM) are 

integrated with meta-models (SVR, XGBoost, and MLP). MLP meta-model was the 

best hybrid framework with accuracy of 99.96% and RMSE of 0.0415 for crop 

classification. RMSE and MAE of 0.1628 and 0.0912 were achieved in yield prediction 

and RMSE of 0.0294 and R² of 0.9990 in fertilizer prediction. These results highlight 

the hybrid model's capacity to address agricultural challenges and its potential to 

enhance precision agriculture technologies. This shows that hybrid model is capable of 

addressing agricultural challenges. 

   

Keywords: machine learning, agriculture, crop classification, yield prediction, 

fertilizer optimization, hybrid model, precision agriculture. 

 

 

1 Introduction 
 

Agriculture is vital to the world’s economy in poverty eradication, and food security as it 

signifies the path towards feeding the exponentially increasing population. As the global 

population grows, there is the need to improve agricultural productivity owing to the rising 

demand for food (Abdel-Salam, Kumar & Mahajan, 2024). These objectives can only be 

achieved by proper assessment of crops, yields and the proper utilization of fertilizers, which 

are key components of sustainable agriculture. The food production sector has been subjected 

to several challenges that limit its possibility for enhanced performance including instability 

in the climate, resource constraints, and ineffective use of fertilizers which leads to 

uncertainty when making informed decisions (Abbas et al., 2020). 

The traditional methods are not able to give reliable solutions to these challenges in 

agriculture like changing weather and different types of crops in regions, hence Machine 

learning models provides solution in learning intricate patterns on complex data in huge 

datasets (Agarwal & Tarar, 2021). Ideal agricultural practices will be realized by machine 

learning models due to its ability to identify patterns. However, Agarwal & Tarar (2021) in 

his study noted that challenges arise when complicated models in agriculture are used 

especially when translating outputs to farming practices. 
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This research, therefore, goes out to investigate how these various approaches of 

blended learning; ensemble learning, conventional learning, and deep learning approaches, 

are implemented. The base models to be incorporated in the hybrid framework of this 

research include Random Forest (RF), Gradient Boosting (GB), and Long Short-Term 

Memory (LSTM) with Support Vector Regressor (SVR), Extreme Gradient Boosting (XG 

Boost), and Multi-Layer Perceptron (MLP). These helps further improves the accuracy and 

reliability of the hybrid model by making use of predictions from the base and meta models. 

Each model brings unique strengths to the model. The RF model provides robustness in 

overall performance, XGBoost outperforming others in regression, and LSTM for capturing 

temporal information of sequential data. By using the base model results, the different types 

of meta-models, like SVR for non-linear relationships, XGBoost for better regression 

predictions and MLP for multi-layer architectures and complex interactions make predictions 

even better. This new approach employs the benefits of the conventional approaches in 

identifying relationships and patterns while incorporating deep learning for crop and yield 

prediction alongside optimizing fertilizer prediction. 

1.1 Research Question 
 

"How effectively can a hybrid machine learning model predict crop yields and optimize 

fertilizer requirements to enhance agricultural productivity and sustainability?” 

1.2 Research Objectives for Crop Yield and Fertilizer Forecasting 
 

To address the research question effectively, the following key objectives are established. 

To design a hybrid machine learning framework that combines base models (Random 

Forest, Gradient Boosting, and LSTM) with meta-models (SVR, XGBoost, and MLP) to 

improve crop classification, yield prediction, and fertilizer forecasting 

To optimize the performance of the hybrid framework through hyperparameter tuning, 

including grid search, and assess its impact on key predictive tasks 

To evaluate the hybrid model using key performance metrics such as Accuracy, RMSE, 

MAPE, MAE, and R² to determine its effectiveness in agricultural predictions 

To compare the hybrid framework’s performance with individual base and meta-

models to validate its superiority in precision agriculture tasks 

1.3 Research Objectives for Crop Yield and Fertilizer Forecasting 
 

The report is organized as follows: the first section is the introduction about the research 

topic, the challenges faced when using of traditional machine learning models, research 

question and objectives. Section 2 entail literature review in crop yield production and 

fertilizer forecasting which highlights key models and techniques. The third section describe 

methodology used in development of the hybrid machine learning model. The fourth section 

is design specification. Results of the model’s performance using agricultural data set is 

presented on the section five. In section six, findings and implication on agriculture alongside 

future research direction is discussed. Finally, section 7 concludes the report by summarizing 

the contribution and recommendation for future work. 
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2 Related Work 
 

This section offers a brief review of previous work done to predict agricultural outcomes with 

the help of machine learning, deep learning, and both. This review is divided into three main 

subsections: It includes Machine Learning Techniques, Deep Learning Models, and Hybrid 

Approaches. It also contains an SOWT analysis that gives an evaluation of strengths and 

weaknesses to assess the areas of research that are lacking in the existing scholarly work.  

2.1 Machine Learning Techniques 
 

Accurate predictions have been made in terms of crop classification, yield and fertilizer 

recommendation with the advent of machine learning techniques, hence improving 

agricultural production. Random Forest has been widely adopted in agricultural setting due to 

its ability to handle complex, high-dimensional dataset while avoiding overfitting it. A study 

conducted by Bondre and Mahagaonkar (2019) showcased the power of random forest which 

outperformed other algorithms in feature-rich environments by achieving accuracy of 86.35% 

in soil classification and 97.48% in crop yield prediction. Another study by Attar et al. (2024) 

which harnessed the power of RF and Multilinear regression (MLR) in fertilizer prediction 

recorded accuracy of 93.68% in Random Forest which outperformed other conventional 

methods including MLR. In regions with heterogenous conditions and when subjected to 

large dataset, Random Forest struggle with scalability which calls for Ensemble methods like 

Boosting with have been proved to be effective. A study by Waoo and Tiwari (2024) 

demonstrated that Boosting improves accuracy through iterative refinement by obtaining a 

prediction accuracy of 97.43% after they applied this technique. 

2.2 Deep Learning Models 
 

Agriculture sector has been revolutionized by deep learning models by offering ability to 

learn temporal patterns and complex spatial from large datasets. In processing multi-sensor 

data, it has been identified that Long-Term Memory networks (LSTMs) and Convolutional 

Neural Networks (CNNs) provides the best solution. Sharma et al. (20204) in their study 

employed hybrid deep learning model that leveraged the power of CNN and Recurrent 

Neural Network (RNNs) in prediction and achieved an accuracy of 90% with a mean 

absolute error (MAE) of 2.17% and root mean squared error (RMSE) of 2.94%. an effective 

strategy used in this study is integration of multi-modal data such as soil composition, crop 

histories and weather patterns. Oikonomidis et al. (2022), similarly applied hybrid CNN-

based models like CNN-LSTM and CNN-DNN, achieving an R² of 0.87 and RMSE of 0.266, 

which highlights the problem of handling complex feature interactions in crop datasets by 

combining CNN with deep neural networks. Deep learning models despite their accuracy, 

often requires extensive computational resources which limits deployment in regions with 

scarce resources. 

2.3 Hybrid Approaches 
 

The most effective methods for crop yield prediction have emerged as hybrid approaches that 

integrate machine learning and deep learning techniques. Ayalew and Lohani (2023) 
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combined both RNNs and Support Vector Machines (SVM) with LSTMs and further 

achieving 96% accuracy for crop yield prediction in Ethiopia’s Lower Kulfo Watershed. This 

study highlighted the ability of accounting temporal and spatial variability in agricultural 

systems by using hybrid models. The strengths of different algorithms are combined by these 

approaches to improve robustness and accuracy in prediction. Batool et al. (2022) studied and 

noted that integrating the AquaCrop simulation model together with XGBoost regression, 

achieves an RMSE of 0.12t/ha for XGBoost and an RMSE of 0.48t/ha for simulation model. 

These hybrid approaches are useful for integrating diverse sources of data into cohesive 

framework, data sources such as weather data, soil parameters and simulation models. 

However, there key challenges that still remain as computational complexity and reliance on 

datasets of high-quality. 

Table 1 : Summary of Reviewed studies on Crop Yield and Fertilizer prediction 

Author(s) Models Used Results (Metrics) Key Findings Weaknesses 

Bondre & 

Mahagaonkar 

(2019) 

SVM, Random 

Forest (RF) 

Soil classification 

accuracy: RF 86.35%, 

SVM 73.75%;  

SVM excels in 

yield prediction 

and RF performs 

better for soil 

classification 

Limited 

generalizability 

to diverse regions 

Attar et al. 

(2024) 

Random Forest, 

Multilinear 

Regression (MLR) 

RF Accuracy: 93.68% RF outperformed 

MLR and other 

methods for 

fertilizer 

optimization 

MLR accuracy 

was significantly 

lower 

Waoo & 

Tiwari (2024) 

KNN, Boosting Accuracy: 97.43% Boosting improved 

prediction 

accuracy 

incrementally 

Lacks integration 

of external 

variables 

Parashar 

(2024) 

Regression 

Algorithms 

crop yield prediction 

accuracy: 92% and 

100% for fertilizer 

recommendation 

Regression 

algorithms 

effectively analyze 

soil attributes 

Overfitting risk 

Sharma & 

Rathore (2024) 

CNN and RNN 

(Hybrid Deep 

Learning) 

Accuracy: 90% 

MAE: 2.17% RMSE: 

2.94% 

Hybrid models 

effectively process 

multi-sensor data 

Computational 

complexity 

Oikonomidis 

et al. (2022) 

CNN-DNN, 

CNN-RNN, CNN-

LSTM, CNN-

XGBoost 

Best: CNN-DNN, 

RMSE: 0.266, MSE: 

0.071, MAE: 0.199, R²: 

0.87 

Effective feature 

extraction via 

CNNs and CNN-

DNN excels in 

handling complex 

agricultural 

datasets 

High 

computational 

cost for complex 

hybrid models 

Miqdad et al. 

(2024) 

Hybrid LSTM and 

SVM 

MAPE: 1.84% Combining LSTM 

and SVM 

improves rice yield 

predictions. 

Dependency on 

historical data 

Lahari et al. 

(2024) 

Decision Tree, 

SVM, Random 

Forest, Neural 

Networks, Hybrid 

Accuracy: 99.5% and 

Precision :99.58 

Combines multiple 

algorithms for crop 

prediction 

accuracy Hence 

Limited 

interpretability 
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high accuracy in 

diverse conditions 

Batool et al. 

(2022) 

AquaCrop 

Simulation, 

XGBoost 

Regression 

AquaCrop: MAE 0.45 

t/ha, RMSE 0.48 t/ha; 

XGBoost: MAE 0.093 

t/ha, RMSE 0.120 t/ha 

Hybrid models 

outperform 

standalone models, 

with XGBoost 

yielding the best 

performance 

Simulation 

models require 

extensive data 

Ayalew & 

Lohani (2023) 

SVM, LSTM, 

RNN 

Accuracy: 96% Hybrid SVM-deep 

learning improves 

predictions in 

resource-limited 

regions 

High 

computational 

complexity 

Varshitha & 

Choudhary 

(2024) 

Random Forest 

with Feature 

Selection 

Accuracy: 98% Feature selection 

improves 

recommendation 

accuracy 

significantly 

Limited 

scalability for 

large datasets 

Archana & 

Saranya (2020) 

Voting-based 

Ensemble 

Classifier (Naïve 

Bayes, Random 

Forest, CHAID) 

Accuracy: 92% Ensemble learning 

combined multiple 

models for 

improved 

prediction 

May not scale 

well with large 

datasets 

Mukul Kumar 

et al. (2024) 

Ensemble 

Techniques, 

CNN-XGBoost 

Accuracy: 98% CNN-XGBoost 

excels in high-

dimensional 

datasets 

Heavy 

computational 

cost 

Shahhosseini 

et al. (2020) 

Machine Learning 

Ensembles 

(Various Base 

Learners) 

RRMSE: 7.8%; Mean 

Bias Error: -6.06 

bushels/acre 

Ensemble models 

outperform 

individual models 

in yield forecasting 

Limited 

application to 

regions beyond 

study area 

Malashin et al. 

(2024) 

Deep Neural 

Network (DNN) 

optimized with 

Genetic Algorithm 

(GA), Explainable 

AI (LIME) 

R2 = 0.92 for crop yield 

prediction 

GA- optimized 

DNN improves 

accuracy in 

predicting 

sustainable crop 

yields 

Requires 

extensive 

computational 

resources and 

high quality 

datasets 

 

2.4 Summary and Gaps in Literature 
 

As evidenced from the discussed literature above and in Table 1, both the machine learning 

and deep learning models offer optimism for the agricultural predictions with certain 

drawbacks. RF and GBM algorithms are strong in variability and explainability, but they are 

not good at capturing temporal patterns. Models such as LSTM can make better predictions 

for time series, but they need large amounts of data and computational resources.  

      There is potential in employing what we may refer to as the ‘blending’ of both machine 

learning and deep learning models to overcome these challenges. The pros of using more 

complicated algorithms and high computations are available but the cons such as the need to 

overcome greater challenges constitutes a bottleneck. Another weakness is a high emphasis 
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on the model’s performance and low regard for its interpretability and scalability required for 

deploying models practically, especially in environments with limited computational 

resources and capacities. 

      To address these gaps, this present research aims at developing an optimized and efficient 

hybrid machine learning model that combines base models (Gradient Boosting, Random 

Forest, and LSTM), meta-models (XGBoost, SVR, and MLP), and a final neural network 

layer. 

 

3 Research Methodology 
 

In this section, the Cross Industry Standard Process for Data Mining (CRISP-DM) (Rahmadi 

et al., 2023) will be employed in developing the predictive architecture of crop, yield, and 

fertilizer prediction in this project as seen in the Figure 1 below. The first stage is business 

understanding while the second phase is the data understanding where we carry out 

exploratory data analysis (EDA) to find patterns, relationships and insights within the data. 

The third stage in CRISP-DM model is data preparation and assists in the preparation of data 

for modeling and includes steps like data cleansing, encoding of categorical features, scaling 

of continuous features-variables for modeling. The fourth phase is modeling where the 

predictive models are built using machine learning techniques. The fifth phase is the 

evaluation phase which is used to assess the performance of the model using metrics like 

RMSE, MAE and MAPE and R2 score to determine extent to which the project goals have 

been achieved. Lastly, deployment which is the last step in this process will not be conducted 

in this particular project. 

 

 

Figure 1: CRISP-DM methodology process applied for this research. 
 

3.1 Data Collection  
 

The primary data used for this project were collected from multiple agricultural datasets that 

included information on crop yields, environmental conditions, and fertilizer requirements. 

The two datasets used were: 
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The crop and yield dataset were obtained from Kaggle and contains 19690 rows and 10 

columns. This data is for Indian states from 1997 to 2020 and the columns are extensively 

described in the Table 2 below with columns.1 

Table 2: Summary of the Yield and Fertilizer prediction data 

Column Data Type  Description 

Crop Character (Chr) The name of the crop cultivated. 

Crop_Year         Integer (Int) The year in which the crop was grown. 

Season            Character (Chr) The specific cropping season  

State             Character (Chr) Indian state where the crop was cultivated. 

Area Numeric (Float) Total land area under cultivation for the specific crop. 

Production        Integer (Int) The quantity of crop production. 

Annual_Rainfall   Numeric (Float) The annual rainfall received in the crop-growing region  

Fertilizer Numeric (Float) The total amount of fertilizer used for the crop  

Pesticide Numeric (Float) The total amount of pesticide used for the crop  

 

Table 3: Detailed Summary of the Fertilizer dataset 

Column Data Type  Description 

Temperature Integer (Int) Value of Temperature rate 

Humidity Integer (Int) Value of Humidity rate 

Soil Type         Character (Chr) Type of soil where the crop is grown 

Crop Type         Character (Chr) The name of the crop grown. 

Nitrogen Integer (Int) Rate of Nitrogen rate 

Potassium Integer (Int) Value of Potassium rate 

Phosphorous   Integer (Int) Value of Phosphorous rate 

Fertilizer Name   Character (Chr) Name of type of fertilizer used 

 

The fertilizer dataset was obtained from Kaggle and contains 99 entries and 9 

columns.2 Each column provides the necessary nutrient information (Nitrogen, Phosphorus, 

Potassium), moisture content, humidity, and other soil characteristics required to determine 

appropriate fertilizer use. All columns are described in Table 3 above. 

3.2 Data Preprocessing  
 

To ensure the quality of dataset and suitability in model development, data preprocessing was 

done. Several critical steps were encompassed in the preprocessing workflow with each 

uniquely designed to enhance compatibility, consistency and integrity. 

3.2.1 Standardizing Column Names 
 

The columns in the fertilizer dataset were standardized to ensure compatibility because this 

was one of the challenges faced during data merging. Changes included renaming attributes 

such as 'Temperature' to 'Temperature', 'Phosphorous' to 'Phosphorus', Crop Type' to 'Crop' 

and ensuring all column names were consistent and devoid of whitespace issues. 

 
 
1 https://www.kaggle.com/datasets/akshatgupta7/crop-yield-in-indian-states-dataset  
2 https://www.kaggle.com/datasets/gdabhishek/fertilizer-prediction 

https://www.kaggle.com/datasets/akshatgupta7/crop-yield-in-indian-states-dataset
https://www.kaggle.com/datasets/gdabhishek/fertilizer-prediction
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3.2.2 Merging Datasets 
 

The crop yield data and fertilizer data were merged on key attributes such as Crop, resulting 

in a unified dataset that combined crop yields with environmental factors and fertilizer 

requirements. During merging only five crops were considered (Maize, Sugarcane, Tobacco, 

Wheat, and Barley) which facilitated a more targeted analysis as key crop of interest were 

focused on in the project. 

3.2.3 Descriptive Statistics 
 

The next step involved the use of descriptive statistics on the merged data set to test the 

nature of the data contained in the variable, mean values, variability, and dispersion or range. 

This involved the use of descriptive statistics where the mean, standard deviation, minimum, 

and maximum values were computed and examined to see if there was anything unusual 

about the data. 

3.2.4 Data Cleaning 
 

Missing values were checked in the combined dataset and none were found hence the 

combined data was used as is without imputation.  Duplicate values in the merged dataset 

were checked and none were found suggesting that the database was unique and of high 

quality. 

During data merging, outliers were identified using Interquartile Range (IQR) 

statistical method. Abdipourchenarestansofla et al. (2022) stated that IQR method define 

outlier values beyond 1.5 times the IQR from first and third quartiles. Outliers were retained 

in this project since their presence did not have any significant impact on the performance of 

the model.  

3.3 Exploratory Data Analysis (EDA)  
 

Exploratory data analysis was done to understand patterns of the data. The analysis included 

visualizing the distribution of crops, which revealed Sugarcane as the most prevalent crop (as 

seen in Figure 2) highlighting its significant representation and potential impact on the 

analysis. Boxplot was plotted which showed the presence of outliers in the data.  

 

Figure 2: Distribution of Crops 

 



9 
 

 

Also, heatmap was used to check for collinearity and correlation between features as seen in 

Figure 3. These correlations provided useful insights for model building by identifying which 

features had a more significant impact on the target variables. 

 

Figure 3: Heat map showing correlation of the features in the merged dataset 

3.4 Feature Engineering.  
 

The feature engineering phase involved several steps to prepare the dataset for effective 

model training and these include: 

3.4.1 Label Encoding  
 

Season, State, Crop, Soil Type, and Fertilizer name were the categorical variables that were 

label encoded in order to transform the categorical variables into numbers. These categorical 

variables posed a significant challenge, and as such, they were converted into numerical 

features using label encoding. 

3.4.2 Feature Scaling  
 

In order to implement normalization to the numerical features such as Area, Production, 

Temperature, Humidity, Nitrogen, and Phosphorus, feature scaling was performed. This 

operation put the variables on the same scale, which is necessary for gradient-based 

algorithms and guarantees the correct convergence of neural networks. Also, consistency in 

the data was assured by standardizing categorical (encoded) and numerical variables which to 

improve consistency in the dataset. The target variables which include: Yield_scaled, 

Fertilizer_scaled, Crop, and Fertilizer Name were pre-processed for its usability for yield 

prediction, fertilizer forecasting, and crop classification. 

3.4.3 Feature Selection 
 

In this case, Recursive Feature Elimination also known as RFE was applied with 

RandomForestRegressor to identify which features are important in predicting the outcome. 

The Recursive Feature Elimination (RFE) process helped in eradicating all the least 

significant features and thereby selecting the best 12 features ('Crop_Year_scaled', 

'Area_scaled','Production_scaled','Annual_Rainfall_scaled','Fertilizer_scaled','Pesticide_scale

d', 'Moisture_scaled', 'Season_scaled', 'State_scaled', 'Crop_scaled', 'Soil_Type_scaled', 

'Fertilizer Name_scaled') that had maximum impact on the tasks hence avoiding duplication 
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of features in the dataset so as to give the best output of the model. This also helped reduce 

noise and improved model performance by focusing on the most relevant variables. 

3.5 Base Models Development 
 

In the crop classification, the Random Forest model performed better than the other models 

such as SVM and XGBoost with an accuracy of 99.57%, precision of 99.57%, recall of 

99.55%, and F1-score of 99.55 %. Another benefit of Random Forest especially for multi-

class classification is that it can handle both categorical and numerical features, alongside 

using bootstrapping to reduce overfitting. Also, due to its capacity to model non-linear 

relationships, it is appropriate to apply it in complex agricultural data sets.  

While assessing yield prediction, XGBoost model was more accurate than models such 

as SVR and KNN where it gave MSE of 0.0993, RMSE of 0.0414, MAE of 0.0180, R² of 

0.9985 and MAPE of 3.88%. XGBoost is popular for its gradient boosting structure that 

actively tunes for ideal performance through error reduction. Compared to other methods, it 

has powerful regularization techniques and can model non-linear relationships and therefore 

it is more suitable for regression problems like yield prediction where data can have high 

variance. 

LSTM performed better than other methods such as SVR and KNN in fertilizer 

prediction with an MAE of 0.0115, RMSE of 0.0228, MAPE, 9.11%, and R² of 0.9994. 

LSTM networks are also the best suited for time series data given their capacity for capturing 

long-term temporal structures and connections. The other issues like vanishing gradients are 

also handled well by LSTMs and are useful in learning patterns over extended sequences 

which in fact is beneficial when analysing factors such as soil moisture, climate and crop 

rotations when it comes to fertilizer prediction tasks. 

 

4 Design Specification 
 

This design specification involves source data from Kaggle and then Analysis to get the best 

model for the three categories: crop classification, yield, and fertilizer prediction. Each 

Analysis involves data cleaning, where missing values, duplicates, and outliers are checked. 

Exploratory data analysis and data preprocessing using label encoder and scaling are also 

performed. The best models were picked from each section and data is merged for hybrid 

modelling. The Figure 4 below illustrates all the steps followed to achieve the hybrid model. 
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Figure 4: The Process flow design for Crop Classification, Yield and Fertilizer Prediction 

4.1 Modelling Technique.  
 

The hybrid model used in this research integrates traditional machine learning, deep learning, 

and ensemble learning techniques to accomplish three tasks: crop classification, yield 

prediction and fertilizer prescription. 

4.1.1 Base Models Layer. 
 

The base models layer includes the Random Forest classifier model, the Gradient 

Boosting regressor model and the LSTM neural network model, each of which is trained to 

perform a specific function on the data on agriculture. The Random Forest model was applied 

to estimate the type of crop with class probabilities of every potential crop. For the prediction 

of crop yield, Gradient Boosting Regressor was used. This model is especially suitable for 

regression problems and provides gradient boosted predictions. The LSTM neural network 

architecture was then applied to predict the amount of fertilizer needed. LSTMs are 

particularly good at capturing sequential dependencies in a given dataset and therefore work 

very well with temporal patterns and modelling of prior conditions that will determine the 

fertilizer requirement. The selected LSTM network unit consisted of 50 nodes using the 

ReLU activation function; however, the dropout rate set at 0.3 to prevent over-training of the 

network model during training 

In the implemented model, outputs from the base models: Random Forest for crop 

classification, Gradient Boosting Regressor for yield prediction, and LSTM for fertilizer 

prediction were concatenated to form a unified feature set. Random Forest provided crop 

class probabilities, Gradient Boosting Regressor output a scaled yield prediction, and LSTM 

predicted fertilizer needs. These outputs were combined into an enriched feature matrix 

(ensemble_features) and used as input for the meta-models: SVR, MLP, and XGBoost 

Regressor. This approach allowed the meta-models to leverage the combined insights from 

all base models, enhancing overall prediction performance. 
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4.1.2 Meta-model Layer. 
 

In this layer, different types of meta-models have been used and experimented such as 

XGBoost (Extreme Gradient Boosting), SVR (Support Vector Regressor), and MLP (Multi-

Layer Perceptron). XGBoost was used as the meta-model because it is highly resistant to 

overfitting, highly scalable, and capable of picking up intricate patterns in the data. The SVR 

was deemed appropriate because it applies a kernel-based method that may be particularly 

beneficial in determining the most suitable hyperplane to fit datasets in high dimensions. The 

MLP is a feedforward neural network, which is known as one of the best types of networks in 

finding complex relations due to the multi-layer structure. 

4.1.3 Meta-model Layer. 
 

 

Figure 5: The Final Neural Network architecture for Crop, Yield and fertilizer Prediction. 

The final layer in the neural network architecture as seen in Figure 5 is an MLP which 

accepts the enriched feature set from the base models and the meta-model. This was the final 

neural network used for making comprehensive predictions of crop classification, Yield, and 

fertilizer recommendation in one single model. This final stage included the following: Input 

Layer concatenated outputs from the base models and the meta-model became the input to 

this layer. The next layer to the network was a hidden dense layer with the aim of improving 

the merged features and identification of non-linear associations. This layer was composed of 

64 units and used ReLU as the activation function while Dropout of 0.3 was also applied to 

control for overfitting. The output layer consisted of nodes representing each of the three 

tasks crop classification, yield and fertilizer prediction. The dense neural network was trained 

with 50 epochs, each epoch having the batch size of 32, the model weights were tuned using 

the Adam optimizer. It incorporates all these models into one framework for stability and 

accurate multiple task predictions. These different models in combination together ensured 

that every kind of learning approach for the estimation of crop type, yield, and fertilizer was 

taken into account and a very robust manner of generating predictions could be given. 

4.1.4 Model Evaluation. 
 

The Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute 

Percentage Error (MAPE) were used to assess the hybrid model's performance. Each metric 

provided a different perspective on prediction accuracy, capturing both absolute and related 

errors. These metrics as seen in table 4 below will be used for crop yield and fertilizer 

prediction. 
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Table 4: Evaluation metrics for the Crop classification, Yield and fertilizer prediction 

Metric  Formula  What it measures  

Root Mean 

Squared Error 

(RMSE)  

This metric measures the square root of average squared 

errors between actual and predicted values, making it 

sensitive to large deviations.  

Mean Absolute 

Error (MAE) 

 

This metric calculates the average of absolute differences 

between actual and political values. 

Mean Absolute 

Percentage Error 

(MAPE)  

MAPE expresses errors as percentages, offering a 

normalized measure of accuracy that is easy to interpret. 

R2 score  

 
 

It shows how a healthy model predicts actual data by 

indicating the proportion of variance in the target variable 

that is predictable from the independent variables.  

Precision TP / (TP + FP) It measures the model's accuracy in predicting positive 

cases.  

Recall TP / (TP + FN) It measures the model's ability to capture all actual positive 

cases.  

F1 Score 2 * (Precision * Recall) / 

(Precision + Recall) 

It provides a single measure of a model's accuracy by 

combining precision and recall.  

 

5 Design Specification 
 

At every level of development and implementation, there are a number of steps and methods 

involved in creating a machine learning model. Therefore, a thorough strategy is necessary to 

guarantee the model's correct functioning in the real-world application. In this section we 

explore the implementation that resulted in the hybrid model crop yield and fertilizer 

prediction model. 

5.1 Tools Used  
 

Jupyter Notebook is used for Analysis with Python as the programming language. Python 

libraries such as matplotlib, seaborn, NumPy, pandas, sklearn, and TensorFlow are used for 

data reading, preprocessing, EDA, and modelling.  TensorFlow and Keras were used to build 

and train neural networks, specifically Long Short-Term Memory (LSTM) models and the 

final multi-layer perceptron.  

5.2 Hyperparameter Tuning  

When optimizing the performance of the model, hyperparameter is a crucial approach that 

must be taken. Schratz et al. (2019) conducted a study and concluded that in order to 

minimize bias, parameter tuning was critical in maintaining the performance of the 

classifier’s consistency. Classification and regression meta-models such as Random Forest, 

Gradient Boosting Regressor, SVR, MLP, and XGBoost Regressor were tuned using the grid 

search method which systematically tests a range of combinations in order to identify the 

hyperparameters with the best performances as presented in Table 5.  

• Tuning the Support Vector Regression involved adjusting additional factors such as 

C, epsilon, kernel and gamma in a bid to better suit the model’s fitting strength while 
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at the same time not compromising on the generality of the model. The tuned 

parameters used for tuning were C: For the Sigma, Epsilon, Kernel, and Gamma 

options, specific values have been selected as shown below; Sigma: [0.1, 1, 10], 

Epsilon: [0.01, 0.1, 0.2], Kernel: [Linear, RBF], and Gamma: [‘Scale’].   

• To find implicit relationships and prevent overfitting, MLP optimization used a 

hyperparameter tuner to discover the best combinations of hidden_layer_sizes, 

activation functions, alpha, and learning_rate. The parameters used for tuning were 

hidden_layer_sizes: [(64,), (128,), (64, 32), (128, 64)], Activation: [‘relu’, ‘tanh’], 

Alpha: [0.0001, 0.001, 0.01], and Learning_rate: [‘adaptive’]  

• XGBoost Regressor tuning uses n_estimators, learning_rate, max_depth, subsample, 

colsample_bytree and reg_alpha and reg_lambda to reduce the model complexity by 

strongly regulating the interactions between features and decreasing the likelihood of 

over-fitting. The parameters used for tuning were N_estimators: [100, 300, 500], 

[0.01, 0.1], [3, 5, 7], [0.8, 1.0, 1.0], [0.8, 0.6, 1.0], [0, 0.1, 1], and [1, 2].  

This approach guaranteed equal fit of all models with the data and reduced the probability of 

overfitting the models. 

Table 4: Detailed Summary Table of the Hyperparameter tuning done for the models. 

Model Configuration Hyperparameters 

Random Forest 

Parameters 

 Default random_state=42, default n_estimators=100. 

XGBoost Parameters  Default random_state=42, learning rate 0.1, max_depth=3 

LSTM Parameters  Default 1 LSTM layer with 50 units, ‘relu’ activation, dropout of 

0.3, optimizer='adam', loss='mse' , epochs=10, 

batch_size=32 

SVR MetaModel Default None 

 Basic Hyperparameters kernel='rbf', C=1.0, epsilon=0.1 

 

 Grid Search Optimized kernel='linear', C=1, epsilon=0.1, gamma='scale' 

 

XGBoost MetaModel Default None 

 Basic Hyperparameter 

Tuning 

n_estimators=200, learning_rate=0.1, max_depth=4, 

random_state=42 

 

 Grid Search Optimized n_estimators=500, learning_rate=0.1, max_depth=5, 

subsample=1.0, colsample_bytree=1.0, reg_alpha=0.1, 

reg_lambda=2, random_state=42 

MLP MetaModel Default None 

 Basic Hyperparameters hidden_layer_sizes=(64, 32), max_iter=1000, 

random_state=42 

 Grid Search Optimized hidden_layer_sizes=(128, 64), activation='relu', 

solver='adam', alpha=0.01, learning_rate='adaptive', 

max_iter=1000 

 

Final Neural 

Network 

Basic Hyperparameter 

Tuning 

Input layer: Combined outputs from the Meta models 

Dense layer: 64 units, ReLU activation,  

Dropout layer (0.3),  

Output layer:  3 units (Crop Classification, Yield and 

Fertilizer Prediction) 

optimizer='adam', loss='mse’, epochs=50, batch_size=32 
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5.3 Model Architecture and Training 
 

In this study, the hybrid model comprises of three layers that is the base-model layer, meta-

model layer and the final neural network layer. For the Training Process, the dataset was split 

it into 70% of the data for training and 30% of the data for testing using the Sklearn libraries. 

The base models were then trained in parallel with the training data of the dataset as 

discussed above. 

 

6 Evaluation  
 

A critical step in the machine learning process is evaluation, which aims to determine the 

model's efficiency and make sure its functionality matches the desired design. This procedure 

guarantees accurate prediction of crop type, yield, and fertilizer needs by applying suitable 

assessment criteria and carefully examining the model's performance.  

6.1 Experiment / Case Study 1  
 

This analysis established that the Default, Basic, and Grid Search Optimized models were 

different in task-specific variations in performance as seen in Table 6. All the configurations 

in crop classification showed relatively similar results, with Default SVR possessing the best 

accuracy, error rates, and efficiency, recording an accuracy of 1.000, RMSE of 0.0000, MAE 

of 0.0000, and coefficient of determination of 1.000. The Grid search optimized 

configuration, showed a slightly lesser accuracy of 99.96% and RMSE of 0.0207, essentially 

implying that tuning of the hyperparameters had only a minimal influence on crop 

classification.  

 

Table 5: Evaluation metrics for the SVR Meta-model 

Metrics Default 

SVR 

Basic Hyperparameters Grid Search Optimized 

Hyperparameters 

Crop Classification Metrics    

Accuracy 1.0000 1.0000 0.9996 

RMSE 0.0000 0.0000 0.0207 

MAE 0.0000 0.0000 0.0004 

MAPE 0.00% 0.00% 0.05% 

R² 1.0000 1.0000 0.9997 

Yield Prediction Metrics    

RMSE 0.1642 0.1574 0.1628 

MAE 0.0885 0.0873 0.0926 

MAPE 20.3553% 20.2267% 21.6354% 

R² 0.9765 0.9784 0.9769 

Fertilizer Prediction Metrics    

RMSE 0.0590 0.0366 0.0386 

MAE 0.0307 0.0277 0.0251 

MAPE 21.59% 29.61% 30.31% 

R² 0.9960 0.9985 0.9983 
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In yield prediction, Default SVR performed well with an RMSE of 0.1642 and MAPE 

of 20.35% better than Grid Search Optimized SVR which had an RMSE of 0.1628 and 

MAPE of 21.63%. From the above analysis, it can be deduced that tuning has provided 

minimal returns for the yield prediction in terms of error metrics. 

In the case of fertilizer, the best configuration was Grid Search Optimized SVR, which 

yielded an RMSE of 0.0386, MAE of 0.0251, and R² of 0.9983. These measures demonstrate 

that hyperparameter tuning is useful for models tasks involving complex relationships and 

variability since it boosts the enhanced configurations.  

6.2 Experiment / Case Study 2  
 

This study investigated how the XGBoost meta model performed in Default, Basic 

Hyperparameter Tuning, and Grid Search Optimized configurations and established that 

performance differ according to task type as seen in Table 7. 

For crop classification, Default XGBoost gave us 99.97 % accuracy, RMSE of 0.0169, 

and MAE of 0.0003. Slightly increased RMSE = 0.0207 and MAE = 0.0004 were observed 

for Grid Search Optimized configuration as compared to Basic configuration which 

confirmed that hyperparameter tuning did not offer much improvement.  

For yield prediction, Default XGBoost had an RMSE of 0.1552, MAE of 0.0874, and 

MAPE of 20.36%, while Grid Search Optimized had RMSE of 0.1583 and MAPE of 20.95%. 

The increase patterns also indicate that tuning had a fairly minor effect for this task, which 

aligns with the general aggression of default values for regression.  

Regarding the fertilizer prediction, the Grid Search Optimized XGBoost was 

statistically significantly superior to the Default and Basic configurations in terms of all the 

performance indicators, including the lowest RMSE (0.0322), MAE (0.0251), and MAPE 

(18.70%), and the highest R² (0.9988). These results further support the notion that 

optimizing hyperparameters is crucial particularly when working with data exhibiting 

complexity and variability in their interactions. 

Table 6: Evaluation metrics for the XGBoost Meta-Model 

Metrics XGBoost 

Default 

XGBoost Basic 

Hyperparameter Tuning 

XGBoost Grid Search 

Optimized Hyperparameters 

Crop Classification 

Metrics 

   

Accuracy 0.9997 0.9996 0.9996 

RMSE 0.0169 0.0207 0.0207 

MAE 0.0003 0.0004 0.0004 

MAPE (%) 0.03% 0.05% 0.05% 

R² 0.9998 0.9997 0.9997 

Yield Prediction Metrics    

RMSE 0.1552 0.1621 0.1583 

MAE 0.0874 0.0928 0.0914 

MAPE (%) 20.36% 21.54% 20.95% 

R² 0.9790 0.9771 0.9782 

Fertilizer Prediction 

Metrics 

   

RMSE 0.0573 0.0574 0.0322 



17 
 

 

MAE 0.0296 0.0329 0.0251 

MAPE (%) 33.38% 24.44% 18.70% 

R² 0.9962 0.9962 0.9988 

 

Overall, XGBoost’s default configuration is effective for simpler tasks like crop 

classification and yield prediction, while tuning is crucial for enhancing performance in more 

demanding tasks like fertilizer forecasting. 

6.3 Experiment / Case Study 3  
 

The MLP meta model exhibited task-specific variations in performance across Default, Basic 

Hyperparameter Tuning, and Grid Search Optimized configurations as illustrated in Table 8. 

 

Table 7: Evaluation metrics for the MLP Meta-Model 

Metrics MLP 

Default 

MLP Basic 

Hyperparameter Tuning 

MLP Grid Search Optimized 

Hyperparameters 

Crop Classification Metrics    

Accuracy 0.9996 0.9996 0.9996 

RMSE 0.0207 0.0415 0.0415 

MAE 0.0004 0.0009 0.0009 

MAPE (%) 0.05% 0.09% 0.09% 

R² 0.9997 0.9989 0.9989 

Yield Prediction Metrics    

RMSE 0.1772 0.1623 0.1628 

MAE 0.0932 0.0892 0.0912 

MAPE (%) 20.26% 19.91% 21.23% 

R² 0.9726 0.9770 0.9769 

Fertilizer Prediction Metrics    

RMSE 0.0459 0.0298 0.0294 

MAE 0.0274 0.0210 0.0225 

MAPE (%) 30.73% 25.96% 18.66% 

R² 0.9976 0.9990 0.9990 

 

In the crop classification assignment, all models offered comparable results with the 

Grid Search optimized model offering a 99.96% accuracy, 0.0415 RMSE and 0.09% MAPE. 

From the confusion matrix, it is evident that the Grid Search Optimized configuration has 

very low misclassification level, which proves its accuracy and suitability for classifying 

samples 

When it comes to yield prediction, Grid Search Optimized MLP was slightly better 

than the Default with the RMSE being 0.1628, MAE of 0.0912 and MAPE of 21.23%. 

Although these differences are small, the fact that the model had this performance suggests 

that it is well-suited for regression tasks, even on complex data  

Out of all the models, the Grid Search Optimized model was the best model for fertilizer 

prediction that had the lowest RMSE of 0.0294, MAE of 0.0225, and MAPE of 18.66 % with 

the highest R² of 0.9990. One of the key aspects that can be derived from the plot of 

predictions vs. actual for the fertilizer prediction is that the model shows a near perfect fit for 

the various patterns present in the fertilizer data.  
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These results confirm that Grid Search Optimized MLP Meta Model is the most 

preferred due to its relatively lower errors and the highest R², especially in a regression 

analysis. Although the hyperparameter tuning did not improve the classification performance 

much, the regression tasks such as fertilizer prediction benefited a lot from this tuning. From 

these findings, it is clear that there is room for further improvement when it comes to 

hyperparameter optimization in context of the MLP Meta Models.  

The evaluation visualizations show the effectiveness of the MLP model on different 

tasks. The Figure 6 shows the confusion matrix which makes it very clear how well it has 

classified the crops for classes like Sugarcane and Maize with high accuracy while 

misclassifications were fewer for Wheat and Barley classes. Furthermore, the Predicted vs 

Actual Fertilizer Scatter plot also shown in Figure 6 defines an excellent correlation between 

the predicted and actual values of fertilizer since most points lie on or very close to the line 

named “ideal fit” representing well-estimated fertilizers. 

 

Figure 6: Confusion matrix for the Crop classification and Fertilizer prediction for MLP Meta-Model   

6.4 Discussion  
 

As seen the model was trained and tested with default hyperparameters for SVR achieving an 

RMSE of 0.1642 and MAPE of 20.35% showed that it was effective in predicting the yield. 

However, in prediction of fertilizer, the results were slightly lower with RMSE of 0.0590 and 

MAPE of 21.59%. Hyperparameter tuning slightly increased the performance; nevertheless, 

the grid search parameter optimization further enhanced the outcome of the fertilizer, with an 

RMSE of 0.0386 and R² of 0.9983. Poor performance of SVR in relation to other benchmarks 

are attributed to its high fluctuations with respect to data variance and inability to capture 

non-linearity in utmost cases. While SVR was sufficient for basic operations, it failed to 

provide the best solutions when it came to more complex predictions (Rashid et al., 2021).  

The performance of the XGBoost meta model remained relatively stable across almost 

all analyses, specifically in the fertilizer prediction where, Grid Search Optimized achieved 

RMSE of 0.0322 and MAPE of 18.70%. For yield prediction, it achieved an RMSE of 0.1583 

and MAPE of 20.95%, which are ideal for regression-based models. Nonetheless, in crop 

classification specifically, its performance was not as commendable as that of the MLP 

model, achieving only 99.96% accuracy. Such outcomes verify the effectiveness of XGBoost 

with tasks involving regression analysis (Sitienei et al., 2023), especially when 
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hyperparameters are appropriately tuned. However, since XGBoost is built around the 

decision tree, its capacity to capture complex interactions is more limited than in the case of 

neural networks; therefore, it simply cannot outperform every task. 

Finally, in terms of the comparative evaluation, the MLP meta model turned out to give 

the highest performance and the best results for all of the tasks. For crop classification, it 

provided the output with an accuracy of 99.96% along with a very low level of confusion as 

seen in the confusion matrix. Also, in yield prediction, the Grid Search Optimized 

configuration yielded the lowest RMSE of 0.1628, and the lowest MAE of 0.0912, with R² of 

0.9776, meaning the model was producing predictions closer to the actual yield. For fertilizer 

prediction, MLP recorded the lowest RMSE of 0.0294, MAE of 0.0225, and MAPE of 

18.66%. The difference between the predicted vs. actual values is even more evident when 

plotted on a graph implying a perfect fit for fertilizer data. These findings reaffirm that MLP 

is capable of learning and mimic non-linear and intricate dependencies, which makes it the 

most flexible and suitable model in this experiment. MLP performs better than other models 

specifically in carrying out complicated tasks such as fertilizer prediction (Archana & 

Saranya, 2020). Nevertheless, MLP is not without its limitations, especially, the high 

computational costs need during the training of the network especially when the 

hyperparameters are involved 

6.4.1 Integration of Results and Theoretical Implications. 
 

Supporting models like Random Forest, Gradient Boosting, LSTM, and meta-learning 

models (SVR, XGBoost, MLP) are also used in this research. Among them, the MLP meta 

model showed the greatest overall potential because it provided the best results across tasks. 

The findings affirm the effectiveness of using mixed models and neural networks in 

considering higher-order relations and enhanced prediction capability (van Klompenburg et 

al., 2020). Previously done research is supported by these study that meta-learning and neural 

network models are applicable in large agricultural dataset datasets.  

6.4.2 Implications and Limitations. 
 

The results also highlight the real-world applicability of integrating multiple ML algorithms 

in crop identification, yield and fertilizer prediction. The dominance of the MLP meta model 

underscores the appropriateness of using neural networks for tasks that involve non-linear 

patterns. These insights can inform practitioners in designing decision support systems to 

optimize resource management which enhances farming sustainability. However, since the 

data set is specific to a region the results may not be fully generalizable to other locations or 

weather conditions. The challenge with training and tuning these models such as MLP is that 

it is expensive in terms of computational complexity especially in resource constrained 

settings. While hyperparameter tuning has enhanced performance, other sophisticated 

optimization methods should be examined further to enhance efficiency.  
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7 Conclusion and Future Work  
 

From this study we can conclude that machine learning methods allow for the improved and 

efficient prediction of crop types, yield, and fertilization which are all important factors in 

effective farming practices. Training base models including Random Forest, Gradient 

Boosting, and LSTM in conjunction with meta-models like SVR, XGBoost, and MLP helped 

in improving performances across all the predictive classes. MLP meta-model was the most 

accurate in crop classification with an accuracy of 99.96% with a lowest RMSE of 0.0294 

and MAPE of 18.66% in the fertilizer prediction process after hyper-parameter tuning. 

Overall, it was observed that MLP was learning the data well and was capable of capturing 

nonlinear relationships, which making it the best and most flexible model. Moreover, the 

results from the study revealed that XGBoost performed better in regression tasks, especially 

in the case of fertilizer prediction, which proved that it can effectively work with non-linear 

data dependencies. 

Although the hybrid model was proved to have high efficiency in this paper, some 

issues were also found, such as the complexity of computation due to usage of several base 

and meta-models. Handling these issues in future research such as enhancing model design to 

avoid high computational complexity while still obtaining precise probability estimates will 

be appropriate. Expanding the dataset to cover other regions, crops, and weather conditions 

will improve models in terms of generalizability and versatile.   

In order to capture spatial correlations more effectively in crop and yield data, future 

work could explore advanced architectures such as Convolutional Neural Networks (CNNs). 

The efficiency and performance of the models can be enhanced furthermore with the help of 

automated optimization methods such as Bayesian optimization or AutoML for superior 

tuning. These methods will enhance scalability and applicability of the model in real-life 

farming environments. Such techniques will improve the ability to scale and apply the model 

within real-world farming practices.  

In general, these study findings assist in providing valuable data that aids in the 

improvement of superior agricultural practices. From the results obtained from this study, the 

various stakeholders in the farming industry will be in a position to enhance productivity 

through the use of hybrid machine learning models. Such outcomes provide some guidance 

towards the further development of more innovations practices in farming especially by 

harnessing the potential of data in farming. 
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