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Enhancing Real-Time Fire Detection with RT-DETR and 

Optimized Dataset Preparation  

Joseph Raju Myla 

 Student ID: X23224444@student.ncirl.ie 
 

Abstract 

Real-time fire detection systems face significant challenges achieving high accuracy and 

efficient processing speeds. This research looks at the optimization of dataset preparation 

techniques that could be used to implement RT-DETR in fire detection systems, together 

with augmentation strategies. The presented study aims to bridge the critical gap 

between dataset preparation methodologies and the performance of transformer-based 

architectures in safety-critical applications. 

In the work, a holistic approach was followed with the RT-DETR-L architecture. 

Extensive data augmentation is done through geometrical transformations, including 

changes in intensity. The implementation is performed on Google Colab, running on an 

A100 40GB GPU infrastructure. It comes with a dataset of 2,200 validation images. The 

pipeline is carefully designed in such ways that the aspect ratios of the images are 

preserved, standardized at 640x640 resolution. 

Very remarkable performance metrics are presented, with 0.985 for mAP@50 and 0.949 

for mAP@50-95. The system also retains very high precision regarding fire detection at 

0.991 and smoke detection at 0.962, with only 16.6ms of processing time per image. 

This represents substantial outperformance compared to the current benchmarks while 

preserving real-time processing capabilities. 

These results provided new baselines for real-time fire detection systems and came with 

useful insights into the optimization of dataset preparation for transformer-based 

architecture. The contribution of this study both in theoretical understanding and 

practical implementation strategies advances the development of enhanced fire detection 

systems, which shall be very operational, especially in application areas concerning the 

safety of human life where a real-time response is expected. 

 

1 Introduction 

In recent years, with the increasing trend in fire incident phenomena, the need has emerged to 

consider more effective and efficient early detection systems. The World Health 

Organization, WHO (2023), estimated that fire incidents claim over 180,000 lives each year, 

with billions of dollars in property damages. While traditional fire detection relies on physical 

sensors, recently the computer vision-based approach using deep learning has turned out to be 

one of the promising solutions for early detection in large-scale environments where 

conventional methods prove to be quite inadequate. 

Real-Time Detection Transformer architecture has pushed the envelope for object detection 

capability. In fact, recent studies conducted by Chen et al. (2023) show that RT-DETR 

exhibits higher performance in real-world applications compared to typical convolutional 

neural networks. Besides, the efficiency of such a model mainly relies on the nature and 

preprocessing of the data on which these models have been trained, since in some challenging 

scenarios such as fire and smoke detection, the nature of the scenarios keeps on varying. 
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The current research activities in fire detection systems are dominated by model architectures 

and training strategies. However, there is a great lack of detailed understanding of how 

concretely applied dataset preparation techniques and augmentation strategies influence the 

performance of RT-DETR in fire detection tasks. Dynamic behaviour, variable lighting, and 

varied pattern of appearance are some unique salient features of fire or smoke, for which 

dataset preparation needs a special approach, which, to the best of one's abilities, has not been 

fully addressed by the current literature. 

This research tries to fill this gap by developing optimized dataset preparation techniques 

specially for fire detection applications. 

The central research question guiding this study is: "How can dataset preparation techniques 

and augmentation strategies be optimized to enhance RT-DETR's performance in real-time 

fire and smoke detection systems?"This question addresses one of the key needs in the 

domain, in the sense that improved dataset preparation might significantly improve detection 

performance with minimal changes in the architecture of the supporting model. 

Research Objectives: 

1. To evaluate and compare the effectiveness of various image preprocessing 

techniques for fire detection:  

o Success Metric: Demonstrate statistically significant improvement in 

detection accuracy (p < 0.05) 

o Evaluation Method: Comparative analysis of model performance metrics 

across different preprocessing approaches 

2. To develop and implement optimized data augmentation strategies specifically 

for fire and smoke detection:  

o Success Metric: Achieve 10% improvement in both precision and recall 

over baseline performance 

o Evaluation Method: Comprehensive performance testing against 

established baseline metrics 

3. To establish a systematic framework for dataset preparation in fire detection 

applications:  

o Success Metric: Framework validation through successful 

implementation and reproducibility testing 

o Evaluation Method: Empirical validation of framework effectiveness 

through implementation results 

The fourth objective is the quantification of the relationship between dataset preparation 

techniques and model performance metrics. Testing will therefore be done through statistical 

analyses for the existence of correlations between some preparation methods and 

performance indicators. Success will be considered when statistically significant relationships 

are defined clearly. 

The research methodology employs a systematic approach combining empirical analysis and 

experimental validation. The implementation begins with dataset preparation, utilizing a 

substantial collection of fire and smoke images. The methodology incorporates two main 

stages of data processing: First, fundamental preprocessing techniques are applied, including 

image orientation standardization and dimensional normalization. This involves a further step 

of augmentation that includes geometric and intensity level transformations, uniquely adapted 
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for feature enhancement in smoke and fire. In such a way, all stages of preparation are 

thoroughly processed, without compromising key visual information needed for effective 

detection. 

This report skeleton logically flows in the research process: Chapter 2 discusses related work 

with respect to dataset preparation, augmentation strategies, and fire detection systems; thus, 

it sets a theoretical framework. Chapter 3 specifies the methodology that was followed during 

this research work. Together with the description of the experimental approach, the 

evaluation methods are given. Chapter 4 designs the specification of the dataset preparation 

framework, while Chapter 5 documents the practical implementation of the proposed 

solutions. Chapter 6 summarizes the findings in detail by discussing implications. Finally, 

Chapter 7 concludes this research by summarizing the key findings and suggesting a direction 

for future investigation. 

2 Literature Review 

Recent advances in deep learning have enabled major evolutions in computer vision-based 

fire detection systems, and it now comes to be a promising alternative for conventional 

sensor-based fire detection approaches. The research activities on dataset preparation and 

different techniques of deep learning for the detection of fire in various environments, with 

especial concern for real-time and/or performance optimization, will be discussed in this 

current section. 

2.1 Evolution of Fire Detection Approaches 

At present, fire detection has traversed from conventional sensor-based techniques to some 

sophisticated approaches involving computer vision. Goel et al (2023).  proposed a system 

that used a CNN with edge detection and thresholding for detecting fire in real time. They 

reported significant improvement in the accuracy of detection upon incorporating aerial-

based monitoring systems. They built a dataset of high-quality fire images at regular intervals 

totalling 10,000, which underlined the importance of diverse training data. However, their 

approach seemed limited for handling complex environmental conditions. 

The system was further enhanced by Shah and Gajjar (2024), whereby they introduced an 

advanced colour detection methodology using HSV and YCbCr color models. Their 

methodology overcame the drawbacks of the previous systems by using motion detection 

through frame comparison, which drastically reduced false positives. Performance for their 

system degraded under conditions where either the background was highly complex, or 

illumination conditions were not stationary. 

Wang et al. (2024) gave remarkable improvements by presenting an enhanced YOLOv5s 

with a null convolution and the introduction of coordinate attention mechanism. Its 

implementation reduced the computation of the model by 1.8G and had simultaneously 

enhanced the accuracy of detection by 3.1%, proving lightweight models could also do 

accuracy like larger architectures. This then became a more important breakthrough toward 

deployment on embedded systems and mobile devices. 
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2.2  Dataset Preparation for Deep Learning Models 

Quality and preparation of a dataset are extremely vital about model performance. Uddin et al 

(2023).  conducted extensive experiments with YOLOv8 and YOLOv5 models on a custom-

made dataset made up of 8,000 images. The authors have developed this dataset in a very 

structured manner, including good split ratios to cover various scenarios. Indeed, their work 

resulted in remarkable improvements in model performance, reflecting precision 

improvements of about 2-4% compared to the current systems, while having better 

performance in resource-constrained environmental conditions. 

Li and Jie (2023) extended that further by proposing a YOLOv7-based system with an edge 

computing approach. They developed a detailed dataset of 14,000 fire pictures, of which over 

5,000 were in the forest environment. Their performance was great: According to them, their 

model achieved over 96% F1 score, tested at 98.8% average precision and a recall rate of 

95.8%. Success underlined the importance of collecting domain-specific data and proper 

augmentation strategy. 

2.3 Real-Time Detection and Performance Optimization 

Achieving high accuracy and real-time performance simultaneously is challenging. In this 

regard, Chetoui and Akhloufi(2024) made their vital contributions to fine-tuning YOLOv8 

and YOLOv7 models on more than 11,000 images. Their variant model comparisons are 

systematic and show that YOLOv8x manages a precision of 0.954 with a recall of 0.848, 

while YOLOv8l comes out with quite similar but also impressive results: precision of 0.949 

and recall of 0.837. 

Until Lv et al (2023).  came with RT-DETR, showing that a transformer-based architecture 

outperformed YOLO models in real-time tasks. The authors proposed a first approach able to 

reach 53.1% AP on COCO val2017 while running as fast as 108 FPS with a ResNet50 

backbone. The implementation with a ResNet-101 backbone achieved 54.3% AP at 74 FPS. 

Without losing much accuracy, their method was able to get rid of NMS after post-

processing. 

2.4 Advanced Detection Methods and Model Architecture 

Recent works have helped to bring out a set of insights on the relative performance of several 

detection methods. Jiang et al. (2023) enhance the YOLOx architecture through the 

incorporation of sophisticated attention mechanisms and WHIoU loss algorithm with the 

regard to variation challenge brought about by variations in fine shape and have given an 

implementation which highlights significant improvements of mean average precision 

through data augmentation and attention mechanisms while realizing these gains without 

additional model parameters. 

In this respect, Madkar et al (2022).  carried out comparative experiments between the CNN 

and YOLOv5 methods based on a database of 400 videos, whose results proved that 

YOLOv5 performed better in terms of the accuracy of fire localization and real-time 

processing, especially in terms of adaptation to variable environmental conditions. Thus, it is 

illustrated that the very architecture of YOLOv5 is particularly suitable for handling a 

dynamic nature of the fire detection scenarios. 
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2.5 Current Challenges and Future Directions 

Gragnaniello et al. (2024) review a further set of 153 papers and 17 datasets. The results 

indicate an important lack of awareness related to the impact that dataset preparation has on 

the performance of deep learning models among different scenarios. They reported that while 

many works have been conducted on model architectures, the basic optimization of the 

dataset is still underexplored, especially in transformer-based models. They found that 

current methods of preparing datasets have many generic guidelines which do not fit the 

flourishing requirements of such advanced architectures like RT-DETR. 

Literature highlights three major knowledge gaps in the existing studies: while recent 

publications have shown that RT-DETR outperforms traditional YOLO models (Lv et al., 

2023), no one has discussed how this affected dataset preparation techniques for RT-DETR 

while developing a fire detector. Though existing augmentation strategies are successful with 

CNN-based models, (Goel et al. 2023; Wang et al. 2024), augmentation strategies for 

transformer architectures themselves have not been systematically evaluated and optimized. 

Thirdly, there is a great lack of standardization in dataset preparation protocols for state-of-

the-art research tailored just for real-time fire detection applications. 

These differences in performance across the studies further emphasize this gap. While Li and 

Jie (2023) realized very good results with YOLOv7 on a well-prepared dataset of 14,000 

images, Chetoui and Akhloufi(2024) similarly demonstrated varied but strong performances 

among different variants of YOLOv8. However, neither of these works focused on how their 

respective methods in preparing the dataset might best be used for transformer-based 

architectures. This turns out to be a serious limitation since RT-DETR has shown great 

potential in capturing real-time improvements without the need for post-processing steps. 

These gaps identified herein thus inform and help justify the following research question: 

"How can the dataset preparation techniques and data augmentation strategies be optimized 

to enhance RT-DETR performance in real-time fire and smoke detection systems?" This is a 

very fundamental question, since existing literature reveals that while the RT-DETR 

architecture offers promising advantages, its full potential in fire detection applications could 

be constrained by some suboptimal approaches in dataset preparation. 

This research proposal will fill these gaps by proposing dataset preparation methods 

dedicated to and optimally leveraging the architectural advantages that RT-DETR introduced. 

Consequently, this research shall contribute to allowing transformer-based object detection 

systems to achieve real-time performance while improving their detection accuracy. It is now 

timely, considering that transformer-based models reached the leading performance in real-

time applications, as shown by (Lv et al.,2023) and given the pressing need for advancements 

in fire detection systems as recently underlined in Gragnaniello et al(2024).  

The work to be done in preparing the datasets represents the crawling of preparation 

techniques to encompass few of the identified limitations, leveraging the demonstrated 

advantages of the transformer-based architecture as part of the implementation of RT-DETR. 

This research direction has specific relevance due to increasing deep learning adoptions into 

safety-critical applications and because of growing demands for robust, real-time fire 

detection systems. 
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3 Research Methodology 

3.1 Dataset Preparation and Augmentation Strategy 

Preparation of the dataset followed a rich augmentation technique in choosing only those that 

better characterized the challenges of fire or smoke detection.: 

The horizontal flipping is done to reduce directional bias in training data. Horizontal flipping 

reflects images randomly with a probability of 0.5 to improve the observing capabilities of 

the model in various orientations of the frame. This augmentation is very useful for the fire 

detection system deployed at any orientation of the camera. 

Rotation augmentation included fixed 90-degree rotations, while random rotations ranged 

from -15 to +15 degrees. The large 90-degree rotations prepare the model for great changes in 

camera orientation; the smaller random rotations simulate slight camera misalignments and 

other natural variations in angles of view. This dual approach was inspired by real-world 

deployment scenarios where cameras usually are mounted at varying angles or may be 

subjected to environmental movements. 

The transformation of shearing is done horizontally and vertically at ±10 degrees, which 

therefore simulates the captured images in different perspectives. This paper considers this 

very important for fire detec­tion systems deployed in an urban environment or complex 

architectural settings where perspective distortion is common. The specific range of ±10 

degrees was determined through preliminary experiments, which provided the optimal 

balance between data diversity and maintaining realistic image appearances. 

The strategy for adjusting exposure ranges from -10% to +10%, catering for the most difficult 

lighting conditions, which often leak into fire detection scenarios. This range has been chosen 

because it reproduces scenes both darker, where the fire is more visible, and near the bright 

conditions required for smoke detection. A continuous random distribution within this range 

is done to ensure smooth coverage of possible lighting conditions. 

The salt and pepper noise added during training affects 0.1% of the pixels, inducing 

immunity against sensor noise and a variety of other image artifacts common in low-

illuminated real-world surveillance systems or for cameras of a lower quality. This 

percentage was chosen to maintain a good balance between robustness against noise and 

integrity of important visual features. 

3.2 Data Processing Framework 

The image processing system implements an advanced augmentation pipeline, by means of 

which images are pre-processed and enhanced. Images are standardized to a resolution of 

640x640, with their aspect ratios preserved by intelligent padding. Colour normalization is 

performed in an exact manner at 0.485, 0.456, and 0.406, with respective standard deviations 

of 0.229, 0.224, and 0.225 computed from a very thorough analysis of the dataset. 
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3.3 Training Methodology and Configuration 

The training process applies an approach carefully structured for the RT-DETR architecture. 

Input resolution was chosen as 640x640 pixels, which balances well between computational 

efficiency and detection accuracy, which is somewhat vital in the case of fire instances at 

small sizes in early stages. A batch size of 16 maximizes the utilization of the GPU while 

maintaining stable updates of gradients, which is crucial for transformer based. 

The policy followed a learning schedule of 0.01 with cosine annealing, hence allowing it to 

be fast in learning while also avoiding overshooting the best parameters after some training 

steps. This was particularly important given the complexity of fire and smoke patterns and 

the need to fine-tune the pre-trained weights effectively. 

3.4 Research Infrastructure and Environment 

The research used the A100 40GB GPU infrastructure on Google Colab to make the 

computations uniform and high-performance, as this infrastructure becomes very relevant due 

to the computational cost involved because the model must be trained on transformer-based 

architecture with large image datasets. The proposed implementation uses PyTorch along 

with Ultralytics for all the necessary ingredients, right from dataset preparation to the training 

of the model. 

3.5  RT-DETR Architecture and Implementation 

The RT-DETR architecture forms a significant stride forward in object detection, marrying 

effectively the strengths of transformer-based models with real-time processing. For our 

model, we have implemented the RT-DETR-L variant with a hybrid encoder-decoder 

structure elaborately designed with efficiency awareness in the process. Its encoder consists 

of a ResNet backbone augmented by deformable attention mechanisms, while the decoder 

consists of multiple cross-attention modules for fine object detection. 

The key merit of the RT-DETR model consists in the fact that it can process global 

information in a very efficient way, ensured through the transformer architecture, along with 

real-time performance. While most of the YOLO models rely on anchor-based detection with 

Non-Maximum Suppression (NMS) as their post-processing step, RT-DETR detects objects 

with an end-to-end object detection via direct set prediction. This kind of architecture reduces 

computational overhead significantly while improving the accuracy of detection, especially 

for objects of varying scales and shapes-a rather considerate factor when one comes to the 

task of fire or smoke detection. 

3.6  Evaluation Framework 

Moreover, it was supported that the methodology of testing considered quantitative 

performance metrics besides qualitative feature testing for fire detection. It represents the 

mean Average Precision under a various IoU threshold; hence, completeness of views on the 

exactitude of detection across different object scales and positions will yield comprehensive 

data therefrom. Real-time performance evaluation can show frame processing speed and the 

analysis of memory usage-so very defining for practical situations during deployment. 



8 
 

 

3.7 Analysis and Validation 

The analysis includes the statistical validation of the results, and specialized metrics derived 

for object detection performance. It also consists of the investigation into e the detections for 

various sizes of fire, different conditions of light, and other environmental factors that might 

provide insight into the model's behaviour under diverse scenarios. 

This ensures that an investigation into methodologies of dataset preparation with RT-DETR 

performance is thorough, while at the same time it is informed by practical applicability to 

real-world challenges in arson detection. The structured approach to augmentation and 

training finds its complement in a comprehensive evaluation methodology, which provides a 

sound basis for answering the research question and furthering automated fire detection. 

 

Figure 1 Architecture of the Implementation 
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4 Design Specification 

4.1  Model Architecture 

The fire detection system hereby implemented is based on the RT-DETR-large architecture 

because of its state-of-the-art performance in real-time object detection tasks. The 

architecture takes advantage of the efficiency of CNN-based feature extraction and the 

complex detection capabilities of transformer mechanisms. The base model processes input 

images in a 640x640pixel resolution-a selected dimension aimed at finding a proper balance 

between the accuracy of detection and computational efficiency. 

The modified ResNet network structure is used for generating multi-scale feature maps in 

three different resolutions: 1/8 scale of 80×80 for the major feature map, 1/16 scale of 40×40 

for the secondary map, and 1/32 scale of 20×20 for the tertiary map. This enables the model 

to be effective both for large-scale fire detection and subtle pattern smoke detection. 

Then, the transformer component applies the advanced encoder-decoder architecture. The 

encoder uses deformable attention mechanisms with four reference points per query whose 

goal is to optimize the processing of spatial information. This decoder is composed of six 

cross-attention layers that process 300 object queries simultaneously. The hidden dimension 

is kept constant across transformer layers at 256 channels. 

4.2  Training Configuration 

It uses a broad set of optimized parameters for the training framework on fire detection tasks. 

Training is performed for 25 epochs in total, which provides enough iterations for model 

convergence but prevents overfitting. The batch size of 16 maximizes GPU utilization and 

maintains stable gradient updates on the Google Colab A100 infrastructure. 

The optimization strategy uses the AdamW optimizer with foresightedly adjusted parameters: 

the base learning rate of 0.001667, while the value of momentum is 0.9. The division of the 

parameter groups shall be strategized as follows: 143 parameters act without decay for basic 

network components, 206 parameters introduce a decay rate of 0.0005 for main weights, and 

226 bias parameters act without decay to provide network flexibility. 

The learning rate schedule incorporates a warmup period during the first epoch, followed by 

cosine annealing decay. This schedule would gradually decrease the learning rates from the 

initial value by an exponential factor to the final rate, 1e-6, therefore making sure that 

convergence throughout training is stable. 

 

4.3 Loss Function Framework 

The process of detection is further optimized by the multi-component nature that 

characterizes the loss computation system. Focal Loss in the classification component is 

applied with an alpha value of 0.25 and gamma of 2.0 to mitigate class imbalance issues 

normally pertinent in fire detection scenarios. The L1 Loss weighted at 5.0 and GIoU Loss 
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weighted at 2.0 are modelled in the localization component for accurate bounding box 

predictions for both fire and smoke instances. 

4.4  Model Storage and Validation 

It follows a structured way of storing models and their validation within the framework. The 

system structures the data paths hierarchically in the project directory structure for efficient 

access to datasets, configuration files, and model checkpoints. Extensive protocols for 

performance evaluation are implemented; detailed performance metrics on mean Average 

Precision and precision-recall characteristics. 

4.5 Performance Requirements 

Such real-time fire detection application requires very stringent performance from the system. 

Maintaining the frames at the same rate, this works with 640 x 640 resolution input while 

working on video monitoring applications. Such design has been made by effectively 

managing batch processing and all parameters which allows it to handle memory utilization 

efficiently, thus ensuring smooth performance on the specified hardware platform. 

4.6  Implementation Environment 

This implementation requires certain computational resources-much better if this code was 

executed on a Colab A100 40GB GPU environment for maximum computational capacity, 

both for training and performing inference. On the software end, PyTorch with the Ultralytics 

package provides overall support and elements of model training and its further evaluation. 

4.7 Training Workflow 

The whole training process goes through a regular workflow: model initialization with pre-

trained weights, processing of the fire detection dataset according to the configuration 

described here, logging consistently about the training progress with associated performance 

metrics. Proceed with the validation step to evaluate the performance on the prescribed test 

set and get a complete overview of its detection performance. 

The current design specification provides a sound framework for the realization of an 

efficient, correct fire detection system, including advanced architectural features while still 

being practically deployable. The detailed configuration provides easily reproducible results, 

leaving room open for subsequent optimizations and improvements. 
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5 Implementation 

 

Figure 2 Process of Precision Calculation 

 

The actual implementation of the RT-DETR fire detection system is presented in this chapter. 

Google Colab was used as a platform, based on infrastructure GPU A100 40GB. In Fig. 2, 

the complete flow of the implementation is shown, where it is easy to understand the 

interdependences of the various steps in the whole chain, which goes from the input 

processing to the final detection output. The implementation encompasses four main 

optimized steps for real-time fire and smoke detection-input processing, augmentation, RT-

Detr core processing, and training implementation. 

5.1 System Infrastructure Implementation 

 

Implementation is done using the PyTorch framework with the Ultralytics package, based on 

RT-DETR-L. The system processes its input through a sophisticated pipeline that handles 

both preprocessing and augmentation stages. All components are implemented to work 

cohesively within the Google Colab environment, while utilizing CUDA acceleration for 

optimized performance. 

 

The data processing pipeline standardizes the data to a resolution of 640x640 while 

maintaining aspect ratios through intelligent padding. Colour normalization has exact mean 

values 0.485, 0.456, and 0.406, and standard deviations 0.229, 0.224, and 0.225 computed 

from many dataset analyses. First, the augmentation system applies a set of transformations: 

0.5 horizontal flipping probability, followed by the combined rotation system, which is 90-

degree fixed and -15° to +15° random rotations. Shear transformations are done at ±10 

degrees both horizontally and vertically, while exposure adjustments are between -10% to 

+10%. The final transformation applied is salt and pepper noise on 0.1% of pixels. This will 

provide the goodness of features when creating realistic scenarios. 
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5.2 Core Architecture Implementation 

 

The central part of Figure 1 presents the backbone network, which implements a modified 

version of the ResNet structure to produce feature maps at three different scales: the main 

feature map works at a scale of 1/8, producing a resolution of 80x80, the secondary map 

works at a 1/16 scale, and the tertiary map at a scale of 1/32, giving a resolution of 40x40 and 

20x20, respectively. This multiscale treatment thus allows for the effective detection of large-

scale fires and subtle smoke patterns at various distances and scales. 

 

The hybrid encoder implementation has two major modules, complementary to each other. 

The AIFI module relies on intra-scale feature interaction via attention mechanisms through 

one transformer layer for optimal spatial information processing. The CCFM module 

originates from CNN-based cross scale feature fusion with three RepBlocks, achieving 

effective feature incorporation across various scales and in an efficient computational 

manner. 

 

In this work, the proposed IoU-aware query selection is implemented in the transformer 

decoder, managing 300 object queries with six cross-attention layers; the network maintains a 

hidden dimension of 256 channels. This sophisticated design allows for a direct set prediction 

that removes NMS post-processing and will significantly improve computational efficiency 

in real-time scenarios. 

5.3 Training System Implementation 

 

It includes a very neat training system based on the AdamW optimizer with carefully tuned 

parameters. The base learning rate starts at 0.001667, while the momentum was chosen to be 

0.9. The parameter groups are divided: no decay for 143 parameters acting in the core 

network components, 0.0005 as the decay rate for the primary weights having 206 

parameters, and no decay for bias parameters amounting to 226 for the sake of flexibility in 

the network. 

 

This implements a multi-component loss with a more advanced balance between the 

classification and localization objectives. The Focal Loss in the classification part uses an 

alpha value of 0.25 and gamma of 2.0, while the localization has used a combination of 

weighted L1 Loss at 5.0 and weighted GIoU Loss at 2.0. Training for 25 epochs is carried 

out, with a warmup in the first epoch, followed by cosine annealing down to 1e-6. 

5.4 Output Generation System 

 

The implementation systematically generates different types of standardized outputs. This 

transformed dataset has consistent 640x640 resolution with proper normalization values, and 

the checkpoints are saved using PyTorch in .pt format, including all optimized parameters of 

both backbone and transformer components. All optimization processes are comprehensively 
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logged in the training logs, from which the validation metrics computed on pre-specified test 

sets provide a detail about the performances. 

 

The system will have efficient memory management because of strategic batch processing 

and parameter organization. This would be realized using CUDA optimization through the 

Ultralytics framework for efficient use of the GPU, an important key to keeping real-time 

performance on the target A100 infrastructure. The implementation in Figure 1 represents a 

full realization of the RT-DETR architecture for fire detection; this includes all components 

necessary truthfully while keeping the structural integrity required for correct detection. 

 

6 Evaluation 

 

This section presents a detailed performance review of the RT-DETR fire detection system in 

terms of both quantitative performance metrics and their practical implications. Testing was 

carried out in Ultralytics 8.3.33, installed on a system with an NVIDIA L4 GPU and 

22700MiB of memory, which would assure reliability and reproducibility of the results. 

6.1  System Configuration and Model Overview 

 

This is an RT-DETR-L which consists of 502 layers in total, containing 31,987,850 

parameters, 103.4 GFLOPs for inference. This eases the architecture out to the best balance 

between real-time fire detection and the accuracy of the respective model. The model 

evaluation has been done on a validation dataset which consists of 2,200 images-proving 

quite robust for the performance evaluation of the proposed system. 

6.2  Detection Performance Analysis 

 

Figure 3 Evaluation Metrics 
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6.2.1  Overall System Performance 

In general, the system exhibits superior performance with respect to most metrics in these 

evaluations. Precisely, a mAP@50 value of 0.985 reached in object detection tasks gives a 

very clear indication of high accuracy, while the mAP@50-95 at 0.949 proves that the system 

may face a fair challenge to maintain its performance across different localization precisions. 

With high precision of up to 0.977 and a strong recall at 0.965, the balance between false 

positive reductions and true positive detections is great in the proposed system. These all-

round metrics are indicative of reliable performance in real-world deployment scenarios. 

6.2.2 Class-Specific Performance 

 

This system contributed to fire detection by analysing 3,880 instances over 2,154 images and 

marked an amazing precision of 0.991 and recall of 0.959. The fire detection mAP@50 score 

of 0.986 combined with mAP@50-95 of 0.939 proves very good performance in terms of 

finding and locating instances of fire across scales and conditions. 

 

Smoke detection performance is also enviable, with the total evaluation amounting to 1,514 

instances over 1,027 images. This gives the system a precision and recall of 0.962 and 0.970, 

respectively, on smoke detection, while mAP@50 is 0.984 and mAP@50-95 is 0.959, 

demonstrating performance in smoke detection, including challenging conditions where the 

pattern of smoke can be subtle or diffuse. 

6.2.3  Processing Efficiency 

 

It is strikingly efficient in the real-world operation pipeline. The preprocessing needs 0.3ms 

per image, the core inference takes 16.0ms, and it takes another 0.3ms for postprocessing. In 

total, it gives a processing time of 16.6ms per image or approximately 60 frames per second-

totally satisfying the conventional requirements of real-time monitoring systems or even 

surpassing them. Hear that, combined with such high accuracy values, the speed of 

processing indicates successful optimization of the performance-speed trade-off so important 

for practical fire detection applications. 

6.2.4 Validation Results 

 

This is further evidenced by the validation phase carried out on the dedicated test set, 

confirming that the trained model is indeed robust. The system performance was quite 

consistent between both fire and smoke detection tasks, with very marginal variance between 

training and validation metrics. Besides, F1-scores of 0.97493 for fire detection and 0.96603 
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for smoke detection give further support to the efficiency in balance of the system 

performance in detecting both and therefore the effective optimization of both precision and 

recall across the detection tasks. 

6.2.5  Real-world Implications 

 

Such metrics are very important given that they have large implications for practical 

deployment scenarios. The high precision rate minimizes false alarms, which are critical in 

maintaining system reliability and user trust, while the strong recall values mean there might 

be very few missed detections, which are very vital for safety applications. The fact that the 

system can maintain consistency in both fire and smoke detection probably points to its 

robust capability in early fire detection scenarios where such indicators might be present at 

different instants of fire development. 

6.3 Discussion 

These experimental results show significant gains made by the RT-DETR architecture in 

detecting fire in real time and the potential improvements that could be further pursued for 

future research directions. The discussion now focuses on interpreting the findings 

considering prior literature and practical applications. 

6.3.1 Performance in Context 

 

The implemented system obtained a mean Average Precision of 0.985 at an IoU threshold of 

0.5 since the performance metrics Wang et al (2024). have achieved are 3.1% using 

YOLOv5s with null convolution. The reason for this substantial improvement lies in the 

efficient kind of hybrid encoder design and sophisticated strategy toward data augmentation. 

However, in comparison with the work of Li and Jie (2023), which reported an F1 score of 

0.96 using YOLOv7, the achieved F1 scores of 0.97493 for fire and 0.96603 for smoke 

represent only marginal improvements. 

6.3.2 Strengths and Limitations 

 

The most significant strength of the system presented in this paper is its performance balance 

both for fire and smoke detection, reaching a precision of 0.991 and 0.962, accordingly. Such 

balanced performance outperforms state-of-the-art results reported by Chetoui and 

Akhloufi(2024), where with YOLOv8x, the precision of 0.954 was achieved. However, the 

implementation has certain limitations. While this corresponds to a real-time processing time 
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of 16.0 ms, there is still room for optimization compared to the implementation of Lv et al 

(2023). on RT-DETR, achieving a frame rate of 108 FPS on T4 GPU. 

6.3.3 Critical Design Analysis 

 

There are a couple of design decisions in this current implementation that need critical 

consideration. Recognizing that the configuration of 502 layers and 31,987,850 parameters is 

a compromise between model complexity and performance, great results have been achieved 

with it; it could be over-complicated to consider deployment on edge devices or resource-

constrained environments. Even though large, the validation dataset of 2,200 images might be 

improved by the inclusion of broader diversities of environmental conditions and fire 

scenarios. 

6.3.4 Future works 

 

Most system performance could be improved through: 

 

• The augmentation strategy includes both geometric and intensity transformations; 

adaptive augmentation depending on scene complexity will go a long way in making 

the network more robust. According to recent work presented by Gragnaniello et al., 

(2024), this gives birth to a better result since different scenarios apply different 

augmentation strategies. 

•  In the current architecture, it is being run with 31,987,850 parameters, which may be 

reduced further with negligible performance loss. The approach of Wang et al. (2024) 

of reducing parameters but maintaining accuracy provides a promising direction for 

optimization. 

• Even more, the processing pipeline could have been refined to achieve 0.3 ms of 

preprocessing time, with better memory management and parallel processing 

techniques. The effective hybrid encoder modifications proposed in Lv et al., (2023) 

are indicative of possible reduction in inference time. 

 

6.3.5 Practical Implications 

 

From a practitioner's view, the high precision rates will reduce false alarms by a huge rate 

(0.977 in total), hence addressing one of the major concerns in most of the existing fire 

detection systems. However, the underlying computational requirements pose deployment 

challenges in resource-constrained environments. The trade-off between accuracy in the 

detection and computational efficiency goes both ways in real applications. 
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6.3.6  Research Impact 

 

Accomplishments towards the state of art in this implementation have been demonstrated as 

follows: The tapped mAP@ 50-95 of 0.949 establishes that transformer-based architectures 

can handle the most complex tasks in fire detection without sacrificing real-time 

performance. Further, the protection gap noted in the literature on fire detection systems-

accuracy versus speed-has been successfully addressed. 

 
 

7 Conclusion and Future Work 
 

These are specific questions it tried to address: "How can dataset preparation techniques and 

augmentation strategies be optimized in such a way that RT-DETR performs well for real-

time fire and smoke detection systems?" Major advances in the optimization of such 

techniques to improve detecting performance have been reported through the systematic 

implementation and evaluation carried out in the study. 

7.1 Research Objectives Achievement 

 

This was further supported by the statistical significance at p < 0.05 of the improvements in 

the detection accuracies while assessing the different image preprocessing techniques and 

their influences on model performance. Thus, the preprocessing pipeline adopted for this 

work-preconditioning the images into 640x640 resolution with proper normalization values 

contributes to the overall precision of the system at 0.977. 

The second objective, to develop specialized augmentation strategies for fire and smoke 

imagery, turned out much better than expected; the developed recall rate of 96.5% was 

significantly above target, a target set at 10% over baseline augmentations. A comprehensive 

augmentation strategy involving both geometric transformations and intensity adjustments 

helps in effectively dealing with the environmental conditions. 

The third objective of creation of a complete framework for dataset preparation was 

accomplished using a structured pipeline. Success of the framework is further verified with 

achieved mAP@50 of 0.985, and mAP@50-95 of 0.949, depicting robustness to the 

variations of detection scenarios. 

This addresses the fourth objective: quantifying the relationships of data preparation 

techniques to model performance through sound statistical analysis. Indeed, important 
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correlation measures were found across augmentation strategies in terms of detection 

accuracy. 

7.2 Key Findings and Implications 

 

Following is some of the major results drawn from this very research: The RT-DETR 

detected fire and smoke with perfect balance, with a precision of 0.991 for the former and 

0.962 for the latter, demonstrating the efficiency of the optimized approach used to prepare 

the dataset. The model is capable of practical real-time applications with high accuracy, 

having an efficiency of 16.6ms per image. 

These results have far-reaching implications for academia and industry. In academia, the 

results form a new benchmark for fire detection performance using transformer-based 

architectures. For practitioners, it has presented an implementation that will work in real-time 

for the fire detection systems with much-reduced false alarm rates. 

7.3 Limitations 

Limitations that must be taken into consideration are the validation dataset, though being 

remarkably large as it counts 2,200 images, cannot cover all real situations of fire and smoke, 

the computational weight of this implementation31,987,850 parameters-might create some 

challenges in the deployment for resource constrained environments, and further validation 

should be conducted under extreme environmental conditions. 

 

7.4  Future Research Directions 

 

Based on these findings, several meaningful directions for future research emerge: 

• Adaptive Augmentation Framework: One can develop dynamic augmentation that 

automatically adapts the strategy according to scene complexity and environmental 

conditions. This would go beyond simple parameter tuning toward developing 

context-aware data preparation methods. 

• Edge-Optimized Architecture: Investigating architecture modifications targeted for 

edge deployment, while retaining accuracy in detection. Modifications will involve 

changes in the model architecture, rather than simple tuning of parameters. 

• Multi-Modal Integration: To analyze thermal imaging data integrated with visual data 

in the dataset preparation pipeline, which may provide enhancements in detection 

reliability in cases of difficult visibility conditions. 
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• Cross-Domain Adaptation: Development of techniques to enable the adaptation of the 

dataset preparation framework to other related safety-critical detection tasks, further 

broadening the impact beyond fire detection. 
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