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Abstract 

The rapid proliferation of IoT devices has been introducing unprecedented 

challenges in the context of security, especially around the detection of network traffic 

anomalies in highly imbalanced datasets. The work proposes a new approach to 

detecting IoT network traffic anomalies with conditional generative adversarial networks 

and focuses on the challenge posed by an extremely imbalanced class problem where 

attack patterns take about 97.69%, while benign constitutes about 2.31% of the entire 

traffic.This paper used the NF-BoT-IoT dataset with a balanced sampling strategy and 

sophisticated feature engineering for IP addresses and port numbers. With this GAN-

based architecture incorporating batch normalization and adaptive learning rates, it 

yields an accuracy of 97.40% on the real data, which, of course, is impressive in 

comparison to the random forest baseline of 94.74%.Importantly, the GAN approach 

reduced FPs from 10 to 4.4% when attaining high attack detection accuracy in various 

scenarios. The carried-out study contributes to the field by handling class imbalance in 

network security data with a novel approach and in proving the practical viability of 

GAN-based techniques in IoT security. Results show that hybrid implementations can 

provide the efficiency of traditional methods combined with advanced detection 

capabilities of GANs, especially in critical infrastructure protection, where accuracy and 

adaptability are paramount. 
 

1 Introduction 
 

The rapid proliferation of devices in the IoT has completely changed the modern network 

infrastructure and brought several unprecedented challenges to security. It is estimated that, 

in 2024, connected IoT devices will increase from 16.6 billion in 2023 to 18.8 billion (IoT 

Analytics, 2023). This exponential growth has increased the attack surface of cyber threats 

geometrically, which makes the network security challenges complex and highly critical in 

modern times, as expressed by Ullah et al. (2023). 

 

Several challenges are characteristic of network traffic anomaly detection in IoT 

environments: the heterogeneity of IoT devices creates diverse traffic patterns, the 

sophisticated evolution of cyber-attacks asks for adaptive detection mechanisms, and 

traditional security approaches are struggling with the scale and complexity of IoT networks. 

Traditional rule-based and signature-based methods of detection have significant limitations 

in finding new attack patterns in IoT networks; they often fail to adapt to changing device 

behaviors that make IoT traffic different from traditional network communications. (Wang 

and Liu, 2023). 

 

This makes NF-BoT-IoT the chosen dataset on which the research was conducted with 

representation on newer attack vectors on IoT through some 600100 network flows and given 

an unusually high imbalance in class sets as observed-only 2.31 percent is benign traffic 
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against 97.69 percent attacks; it covers all different classes of attack categories at present 

with variants including DDoS, DoS, reconnaissance, theft, and more, presenting appropriate 

challenges as a real test area while employing one among diverse strategies in detection 

mechanisms (Chen et al., 2024). The inherent imbalance reflects real-world scenarios where 

the normal traffic pattern is overwhelmed by malicious activities; hence, robust detection 

approaches that can handle such skewed distributions effectively are called for. (Kumar and 

Singh, 2023). 

 

Thus comes Generative Adversarial Networks, first visualized by Goodfellow et al(2014) to 

rise to all such challenges. These include architecture with the incorporation of two 

competitive neural networks: one for the generation of artificial data samples, and one for 

discerning between the real ones from generated ones. Our approach uses a variant of the 

Conditional GAN that is adapted for network traffic analysis, considering batch 

normalization and adaptive learning rates to help improve the stability of training. Such an 

approach is then complemented by a balanced sampling strategy that considers the natural 

class imbalance within the data while preserving the integrity of attack patterns. 

 

The performance of the GAN-based approach will be evaluated against traditional machine 

learning baselines, including Random Forest and Support Vector Machines, using a 

comprehensive metric suite comprising accuracy, precision, recall, F1-score, and Area Under 

the Receiver Operating Characteristic curve (AUC-ROC). These have been specifically 

chosen because the model needs to be evaluated from two important aspects: its attack 

detection capability and its robustness against false positives-a critical consideration in 

operational network security environments. 

Research Question: How good will the performance of the GAN-based anomaly detection 

model be in classifying normal and attack patterns in network traffic data based on 

conditional adversarial training? 
The GAN-based approach with balanced sampling techniques will ensure that the detection 

accuracy is higher than that of traditional methods for anomaly detection, while the false 

positive rate in identifying IoT network traffic attacks is lower. 

Research Objectives: 

1. Develop a GAN-based architecture optimized for network traffic anomaly detection 

in IoT environments 

2. Implement balanced sampling techniques for handling the significant class imbalance 

present in IoT network traffic data 

3. Evaluate the model's capability to detect various attack patterns while maintaining 

accuracy in normal traffic identification 

4. Analyze the effectiveness of feature engineering approaches in improving model 

performance 

5. Compare the performance against established baseline methods using a 

comprehensive metric suite 

The most constructive contribution of this work pertains to the approach based on GAN 

towards handling class imbalance with non-compromised detection accuracies. Concretely, 

IoT network traffic-suited feature engineering-balanced sampling methodologies will be 

devised and adapted within this work. Most importantly, through empirical evidence 

obtained, this paper contributes to an area of deep learning research connected with GANs on 

several highly imbalanced network security data sets. 

 

The rest of this report is organized as follows: Section 2 provides a critical review with 

related work in network anomaly detection and GAN applications. Section 3 then elaborates 

on the detailed methodology of the research, followed by specification design in Section 4. 
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Section 5 describes how to implement the details, while Section 6 presents the results about 

the evaluation. Finally, in Section 7, the research will be concluded, and some future work 

directions will be discussed. 

2 Related Work 

2.1 Evolution of Network Security Approaches 

The landscape of network security has profoundly changed with the increasing sophistication 

of cyber threats. In a broad analysis, Varanasi and Razia(2022)  showed that traditional rule-

based and signature-based detection methods, even while achieving reasonable accuracy on 

known patterns of attack, fundamentally cannot adapt to emerging threats. Their findings 

have indicated that even the deep machine learning-based approaches, such as Random 

Forest and SVM, are extensively based on feature engineering and are poorly resistant 

against zero-day attacks, hence requiring more adaptive detection mechanisms. 

2.2  Deep Learning Advancements in Network Security 

The appearance of deep learning really advanced the capability of network intrusion 

detection. Anwer et al(2022).  proposed a very effective GPU-accelerated implementation of 

LSTMs, which achieves an accuracy of 99.79% by combining the architecture of LSTM with 

convolutional layers. This work set a milestone that deep learning models can learn complex 

patterns of network traffic effectively without extensive human efforts on feature 

engineering. However, the approach showed limitations in terms of processing speed and 

resource utilization when large-scale network traffic had to be handled. 

 

Hnamte et al. (2023) proposed new limitations with the development of a two-stage LSTM-

AE model managed to attain as high as 99.99% accuracy over the CICIDS-2017 dataset but 

minimized training time usage to just 184 seconds. This research pointed out the implications 

on appropriate design decisions regarding the overall architecture to meet the best criteria in 

detection without necessarily lagging behind computationally. There it impinges that such 

research influences the design consideration for appropriate architectures that could balance 

performance and simplicity of models using GAN. 

 

2.3 GAN Applications in Cybersecurity 

The introduction of GANs has provided several possibilities in network security. For this 

paper, Karthika and Durgadevi (2021) provide in-depth analysis with regard to different 

GAN variants and their applications in a security context. They have pointed out the main 

challenges regarding GANs when these are applied, among others, about stability in training, 

and mode collapse issues. These works underlined the importance of a conditional 

architecture GAN due to its capability for imbalanced data processing. This analysis provides 

important insights for GAN-based network security systems, especially in designing stable 

training procedures for network traffic analysis. 

2.4 Feature Learning and Optimization 

Recent research has identified efficient feature learning in terms of its applications for 

network security. Ghani et al(2023). ran feature selection that broke any previous results, 

showing that radical computational overhead reduction can hold high accuracy in detection. 

Their model recorded an accuracy of 91.29%, with only nine features, demonstrating that, if 

done efficiently, feature selection dramatically improves model efficiency without 

compromising its detective capability. These findings bring insights into GAN-based 
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approaches, especially when it comes to the design of discriminator architectures focusing on 

the most relevant characteristics in traffic. 

 

2.5 Real-Time Detection and Processing 

Real-time threat detection is one of the most active research fields in network security. 

Ahmad et al. (2022) developed an early detection system that could identify attacks within 

the first few packets of network flow, with 80.3% balanced accuracy while maintaining real-

time processing capabilities. Their work showed that fast threat detection is possible, but 

maintaining high accuracy for various types of attacks remains problematic, especially in 

cases where the attack pattern is rare. This is a limitation that motivates the use of GANs for 

generating synthetic training data in order to improve the detection against rare attack 

patterns.. 

2.6 Research Gap and Motivation 

The comprehensive review of the literature identifies several critical gaps in the existing 

approaches. Deep learning models, while promising, have mostly failed to handle imbalanced 

datasets and often require heavy computational resources. Traditional machine learning 

approaches, though computationally efficient, lack the ability to adapt to new attack patterns. 

Current GAN implementations in network security, while showing promise, have not fully 

exploited the capabilities of conditional adversarial training for balanced detection of both 

normal and attack patterns. 

 

These identified gaps lead to the development of a GAN-based approach that combines 

generative capability with an efficient mechanism of adversarial networks on feature 

learning. In the system, conditional GAN architecture was employed to handle class 

imbalance issues with high detection accuracy while considering computational efficiency. 

This complementary work further overcomes various previous works in terms of challenges 

on handling imbalanced data and adapting to new kinds of attack patterns. 

 

This synthesis of current research findings provides strong justification for GAN-based 

approaches and forms a basis for understanding how the proposed solution may make a 

difference in mitigating current challenges with network intrusion detection systems. The 

succeeding sections, methodology, and implementation approach shall be elaborated on, 

leveraging these insights from existing literature. 
 
 

3 Research Methodology 
 

3.1 Research Approach 

This research adopts a quantitative experimental approach for performance evaluation of 

GAN-based anomaly detection in IoT network traffic. The methodology is based on the 

extension of fundamental work in the GAN architecture by Goodfellow et al. (2014) via 

techniques from conditional adversarial training to adapt to applications in network security. 

Accordingly, in the experimental design, an iterative process of model development, training, 

and evaluation ensues; particular attention shall be attached to handling intrinsic class 

imbalances in all network security datasets. 
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This research methodology will develop a balanced sampling strategy inspired by the work of 

Kumar and Singh (2023) to present strategies for handling imbalanced cybersecurity data. In 

this way, it ensures representative sampling across attack categories while maintaining the 

integrity of attack patterns in their original form. The designed experimental framework will 

provide enough ground to perform a comparative analysis between the proposed GAN-based 

solution against traditional machine learning approaches concerning the generalizability of 

the model to different attack patterns. 

3.2 Dataset Analysis and Preparation 

 

This research uses the NF-BoT-IoT dataset, which consists of 600100 network flows and is 

highly imbalanced, with 97.69% of the samples being attacks and only 2.31% benign. The 

first steps of data preprocessing involve elaborate feature analysis and transformation. The 

source and destination IP addresses, port numbers, protocol information, flow statistics as 

byte counts, and flow duration are the main features in this dataset. 

 

The binary encoding of categorical IP addresses converts them into numerical representations 

that the neural network can process. Encoding keeps the hierarchical structure in IP 

addresses. Frequency encoding is applied to port numbers based on their occurrence 

frequencies in the dataset. This is because, as established by previous research in network 

traffic analysis, it captures the importance of frequently used ports in attack patterns. 

 

Addressing class imbalance is done through strategic sampling, where one selects a balanced 

subset with care for maintaining attack pattern diversity. This balanced dataset contains a 

ratio of 1:1 between benign and attack samples through random sampling, with fixed random 

state for reproducibility. The statistical analysis has been done to confirm key attack 

characteristics in the balanced dataset. 

3.3 Model Architecture Design 
 

The core of this implemented research is a GAN architecture optimized for network traffic 

analysis. The generator network makes use of a two-layer dense architecture, each with 64 

and 128 units, respectively, followed by LeakyReLU activation with alpha = 0.2 and batch 

normalization projecting a 100-dimensional latent space input into synthetic network flow 

data. The discriminator network takes a complementary structure, where the input is 

processed via dense layers with batch normalization and dropout for improved regularization. 

 

The training process implements the Adam optimizer with a learning rate of 0.0002 and beta 

values (0.5, 0.9), settings empirically set to provide optimal training stability. Both networks 

include batch normalization layers as a means of preventing internal covariate shift and 

ensuring stable gradient flow during training. 

3.4 Feature Engineering 

Feature engineering processes transform raw network flow data into meaningful 

representations that can be fed into the GAN architecture. The IP addresses are transformed 

from string format to numerical representations using the ipaddress library, maintaining the 

structure of IP addressing schemes. Furthermore, port numbers are encoded based on their 
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frequency distribution in the dataset, which captures the importance of commonly used ports 

during attack patterns. 

 

StandardScaler is used in the research for statistical feature scaling so that numerical features 

contribute proportionally to the learning process of the model. Frequency encoding will be 

carried out for categorical features representing protocols and Layer 7 applications by 

transforming them based on their occurrence pattern in the dataset. It doesn't lose the 

relevance of different combinations of protocols w.r.t identifying attack patterns. 

3.5 Evaluation Framework 

Fundamental metrics inform the proposed model evaluation methodology. Accuracy with 

confusion matrix analysis of models that will be developed within this work, focusing mainly 

on differentiating between normal patterns from attack ones. The presented framework 

considers visualization at the detailed confusion matrix level for assessing the performance 

classification ability of the model across the variety of attack categories. 

 

It compares, at baseline, a Random Forest classifier with optimized hyperparameters 

(n_estimators=3, max_depth=2), providing a real-world benchmark against traditional 

machine learning approaches. Then it performs straightforward train-test splitting with a test 

size of 20% to ensure performance assessment is consistent across multiple runs. 

 

Performance metrics are computed by the implementation in scikit-learn to ensure 

standardization of evaluations. The training stability is also covered in this evaluation 

framework through an analysis of discriminator and generator loss curves and their insights 

into adversarial training dynamics. 

4 Design Specification 
 

The design specification outlines the architectural framework of the anomaly detection 

system developed for IoT network traffic analysis. The system's core components form an 

integrated solution that processes, analyzes, and classifies network traffic patterns through a 

conditional adversarial learning approach. 

4.1 Core System Components 

At the heart of  the anomaly detection system is a dual-network architecture: a generator and 

a discriminator network, each complementing the other in a well-designed adversarial 

relationship where the former will generate synthetic network traffic patterns while the latter 

has to learn to tell the difference between real and synthetic traffic. Because of such a design, 

the system will be able to learn complex patterns of traffic while still being sensitive to subtle 

anomalies that could serve as some sort of potential attack. 

4.2 Feature Processing Design 

The feature processing framework handles 14 different network flow characteristics, each 

requiring specialized transformation in order to maintain their security relevance. Network 

addressing information undergoes a custom numeric conversion process that maintains the 
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hierarchical relationships inherent in the IPv4 addressing schemes, crucial for subnet-level 

pattern recognition capabilities. The port analysis framework implements frequency-based 

transformation, capturing the importance of port usage patterns in attack detection. This will 

enable the system to find unusual port activities that mostly describe specific attack vectors. 

4.3 Generator Architecture 

The generator network consists of a specialized two-layer architecture to generate realistic 

network traffic patterns. The 100-dimensional noise vector serves as input to the two dense 

layers composed of 64 and 128 units, respectively, each followed by LeakyReLU activation. 

This enables  the generator to capture complicated patterns of traffic and then synthesize the 

same; and lastly, having a tanh-activated output layer that produces synthesized network 

flows whose format and character will equal real network flows. 

 

Perform batch normalization after every dense layer to stabilize training and avoid the 

internal covariate shift. This architecture gives one benefit: consistency in the gradient flow 

allows for stable learning in the course of training. 

4.4 Discriminator Architecture 

The discriminator is designed very similarly to the generator, with a focus on strong 

classification capabilities. Both actual and synthetic network flows have been passed through 

dense layers enhanced with batch normalization. This kind of design allows for clear 

differentiability between genuine and generated traffic patterns to be maintained with 

stability in training. The final layer implements sigmoid activation for binary classification to 

provide clear decision boundaries between normal and anomalous traffic patterns. 

4.5 Conditional Input Integration 

The adversarial training process involves the direct embedding of the generator and 

discriminator network in the system. Original network flows first enter into the preprocessing 

pipeline for raw feature transformation and normalization towards creating trained data. 

Considering the generator creates synthetic samples as the discriminator evaluates real and 

synthetic samples, performance updates for each of these networks in the context of the 

feedback loop relate to gradient-based optimization. 

 

This allows for incorporation with heavy lifting of network traffic while sustaining the ability 

to learn in complex traffic patterns. It allows those designs in which information between the 

components is exchanged in an efficient manner with ease, thereby having straightforward 

architecture and stable training processes. 

4.6 Data Flow Architecture 

The system applies a cyclic design to the data in such a way that network traffic information 

consecutively passes through a number of processing stages. Preprocessing will be done in 

the pipeline by taking raw network flows as input, featuring transformation and 

normalization. Further, the generator will generate synthetic samples conditioned on some 

input, while the discriminator will score both real and synthetic samples.. This creates a 

continuous feedback loop that updates both networks through adversarial training. The design 
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ensures efficient processing of network traffic while maintaining the ability to adapt to 

emerging attack patterns. 

 

5 Implementation 

5.1 Development Foundation and Tools 

The IoT Network Traffic Anomaly Detection will be built using the Python Data Science 

ecosystem. Thus, it will leverage the power of pandas for handling data from configuration 

settings for extended column visibility to NumPy for numerical computations; and on the 

visualization stack-seaborn, matplotlib, and finally plotly express. Consequently, using this 

implementation will result in wide data analysis functionality with very flexible visualization 

options through the particular aspects of the detection procedure. 

5.2 Data Processing Pipeline 

The implementation of data processing focuses on the handling of the NF-ToN-IoT dataset 

through different transformation steps. This initial processing consists of standardizing 

column names to lowercase and filtering attack categories systematically. Implementation 

focuses on four attack types: backdoor, dos, password, and Benign traffic. Balanced data 

selection is implemented in the sampling mechanism, with fixed random states for 

reproducibility, maintaining the benign samples at a volume three times that of other 

categories to reflect real-world scenarios. 

5.3 Feature Transformation System 

Feature engineering implementation transforms raw network features with specialized 

encoding processes: The ipaddress library deals with the numeric conversion of the IP 

addresses, processing both the source and destination while maintaining hierarchical features 

of these. In port number processing, a frequency-based encoding of port information will 

generate numerical values based on their usage. This transforms the protocol information by 

considering frequency encoding at both layers 4 and 7. 

5.4 Neural Network Architecture 

The GAN architecture is then materialized through an implementation using TensorFlow's 

Sequential API. The generator network processes 100-dimensional noise vectors through two 

dense layers: 

 First dense layer: 64 units with LeakyReLU activation (alpha=0.2) 

 Second dense layer: 128 units with LeakyReLU activation (alpha=0.2) 

 Output layer: Shaped to match input dimensions with tanh activation 

The discriminator implementation mirrors this structure with reversed dimensions: 

 Input layer: Matched to network flow dimensions 

 First dense layer: 128 units with LeakyReLU activation 

 Second dense layer: 64 units with LeakyReLU activation 
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 Output layer: Single unit with sigmoid activation 

Both networks make use of the Adam optimizer with a learning rate of 0.0002 and beta 

values of 0.5 and 0.9, using batch normalization after every dense layer but not after the 

output layers. 

5.5 Training Framework 

Standard batch training is used throughout the adversarial learning process driven by the 

training implementation. The system processes data in batches of 64 samples, with generator 

and discriminator networks performing alternating updates. Loss tracking continues to log 

discriminator real/fake losses and generator losses separately for basic training progress 

monitoring. 

The training process implements a straightforward loop structure: 

1. Generate synthetic samples from random noise 

2. Train discriminator on real and synthetic samples 

3. Train generator through the combined GAN model 

4. Track and store loss values for monitoring 

This implementation provides stable training while maintaining computational efficiency. 

5.6 Analysis and Visualization 

The implementation of the analysis sheds light on the statistics of interest by implementing 

histogram analysis and confusion matrix visualization. Histogram implementation makes use 

of 15 bins for numerical feature analysis, while the box plots provide distribution 

visualizations across attack categories. The analytics framework narrows down to key 

performance metrics such as accuracy, classification performance through confusion matrix 

analysis. 

Visualization components include: 

 Feature distribution histograms 

 Box plots for numerical features 

 Confusion matrix heatmaps 

 Loss curve plotting for training monitoring 

5.7 Benchmark Implementation 

The base system is based on a Random Forest classifier based on three estimators at 

maximum depth of two. In general, this will give the basic metric like accuracy and 

confusion matrices made through scikit-learn sklearn.metrics modules. The overall 

comparison directly compares the GAN-based approach against the simple Random Forest 

baseline by considering classification accuracy and confusion matrix analysis. 
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5.8 System Integration 

The integration phase will realize coherent interaction among all system components while 

maintaining modular independence. The implementation will involve outlier management 

through computation of IQR and Winsorization, statistical verification of data transformation, 

and comprehensive performance monitoring in order to implement a robust and scalable 

system that will be able to perform processing of network traffic data along with anomaly 

detection while ensuring high functioning standards. 

 

Figure 1 Architecture of the GAN implementation 
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Figure 2 GAN Working Architecture in Depth 

 

6 Evaluation 

6.1 Introduction to Model Selection and Evaluation Framework 

This section provides the performance comparison between two approaches to the task of IoT 

network traffic anomaly detection, represented by a random forest classifier as the baseline 

and the Conditional GAN approach, representing an advanced approach. The model was 
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chosen because these are both the strong points in an attack-evaluation scenario concerning 

IoT Network Security. 

Used a Random Forest baseline because of its very rich literature in network security 

applications. In particular, it has been highly efficient for high-dimensional feature spaces 

and provided interpretable results. Ensemble learning natively offers robust protection against 

overfitting, while the feature importance ranking is a built-in tool providing valuable insights 

into network traffic patterns. Besides, computational efficiency places Random Forest as an 

ideal candidate for real-time deployment scenarios. 

 

In contrast, Conditional GAN has been chosen because it can learn complex data distributions 

in order to generate synthetic samples more profoundly. The ability of this model to handle 

class imbalance by generative learning and detecting novel attack variants through 

adversarial training makes it particularly suitable for the evolving landscape of IoT security 

threats. 

6.2 Random Forest Model Analysis 

The Random Forest classifier achieved a very good result with a total accuracy of 94.74%. Its 

precision for classifying benign traffic was 0.99, meaning a very low rate of false positives. 

Given the recall for benign traffic being 0.90, this would correspond to the detection of 

normal network behavior as strong, though not perfect, leading to an F1-score of 0.94, 

reflecting performance that is well-balanced for this category.. 

 

It also showed very strong attack detection capabilities, with precision at 0.91 and an 

extremely high recall of 0.99, thereby giving an F1-score of 0.95. This is very strong 

performance in terms of picking out malicious patterns of traffic while keeping false 

negatives very low. 

 

The confusion matrix is giving further detail on performance: among instances that in fact 

belonged to benign traffic, the model correctly identifies 9,336 (true negatives) but was 

flagging 1,037 instances wrongly as an attack, being actually false positives; concerning 

attacks, it spotted 10,272, missing just 52 attacks. It also proves that the model takes the 

concept of security seriously, because it has not missed a lot of attacks, but at some cost 

regarding some error rates shown by the rate of the false positives. 
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Figure 3 Confusion Matrix of RandomForest 

 

6.3 GAN-based Model Analysis 

 

Figure 4 Confusion Matrix GAN model tested on fake vs original data 

The Generative Adversarial Network performed better, with an accuracy of 97.40% on real 

data, which was a large improvement from the baseline. In the confusion matrix for real data, 

478 were true negatives that were correctly classified as benign, 496 were true positives that 

were correctly identified as attacks, 22 were false positives, and 4 were false negatives. 

Therefore, the resultant false positive rate is considerably lower than the 10% for Random 

Forest at 4.4%. 

 

Equally impressive was the performance on synthetic data, which achieved 96.30% accuracy. 

The model showed perfect discrimination of synthetic attacks, with 963 correct classifications 

versus only 37 misclassifications, hence showing strong generalization capabilities and 

effective learning of underlying data distributions. 
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6.4 Comparative Analysis 

 

Figure 5 Accuracies of Random Forest and GAN 

Comparative analysis on the basis of their key differences shows that GAN-based models 

offer significant gains. The 2.66% improvement in the overall accuracy is a major advance 

for the detection capability of these kinds of attacks. Of more importance, the reduction of the 

false positive rate from 10 to 4.4% meets one of the most serious challenges in network 

security systems-minimal false alarm. 

 

For operational characteristics, the Random Forest model demonstrates higher training 

efficiency with low resource utilization and thus is a perfect choice for quick deployment on 

systems with limited computational resources. The GAN-based approach, though 

computationally expensive during training, is highly adaptable and can deal with novel attack 

patterns much better. 

6.5  Operational Implications 

These results will have immense implications for practical IoT security deployments. Both 

models perform very well and beyond typical operational requirements; the GAN, especially 

for keeping the number of false alarms very low while maintaining high detection rates, 

performs well. The Random Forest provides a good baseline protection with efficient 

resource utilization and hence can be deployed using a hybrid strategy. 

The scalability analysis done here will show the undisputed capabilities of both models in 

handling different volumes of traffic, while the GAN seems to adapt even better in the case of 

new attack patterns. In any case, the stable baseline given by Random Forest complements 

the advanced capabilities of GAN to support the idea of hybrid implementation that 

maximizes security coverage while optimizing resource utilization. 

 

These findings validate the hypothesis that GAN-based approaches have higher efficiency 

than others in network anomaly detection. The analysis done in this paper has indicated that 
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though both models exhibit strong performance characteristics, the GAN-based approach 

shows higher accuracy and control over false positives but at higher computational costs. 

That would point toward hybrid deployment strategies as an optimal solution, leveraging the 

strengths of both models based on specific operational requirements and resource 

constraints.. 

 

The GAN is able to generate artificial samples and, therefore, adapt to new attack patterns, 

positioning it as more robust for the protection of critical infrastructure, while the Random 

Forest acts like an efficient and reliable baseline detector. This complementarity suggests that 

future deployments will exploit tiered implementations, using the Random Forest for initial 

screening and the GAN for in-depth analysis of suspicious traffic patterns. 

 

In conclusion, This evaluation therefore indicates that, although traditional machine learning 

methods like Random Forest provide a very good baseline performance, the introduction of 

advanced techniques like GANs can substantially improve the efficacy of IoT network 

security systems. The superior performance related to reducing false positives while 

maintaining high detection rates makes the GAN-based approach particularly valuable for 

applications where accuracy and adaptability are paramount concerns. 

6.6 Discussion 
 

These results present some important lessons that can be learned from the application of 

GAN in IoT network security, coupled with a number of key limitations and further 

improvements that could be carried out. This section will place the findings in the light of 

previous literature, while discussing critically experimental design and outcome. 

6.6.1  Contextualizing Results with Previous Research 

The GAN-based model achieved an accuracy of 97.40%, which is quite higher compared to 

traditional approaches. This agrees with the work of Karthika and Durgadevi, which shows 

the great potential of GAN in security applications. However, our implementation 

demonstrated better false positive control, 4.4%, compared to their reported metrics, 

indicating that our balanced sampling strategy effectively addressed the class imbalance 

issues they identified. 

 

The performance of the Random Forest baseline, with an accuracy of 94.74%, follows 

closely in the wake of the results indicated by Ghani et al.( 2023), at 91.29% accuracy with a 

simplified feature set. These findings further validate our approach for feature engineering 

and suggest that our expanded feature set contributed toward the marginal performance 

improvement. 

 

6.6.2  Critical Analysis of Experimental Design 

Several aspects of the experimental design warrant critical examination: 

First, the use of balanced sampling with a 1:3 ratio between attack and benign traffic was 

effective to train the models but may not reflect real-world deployment conditions. As Kumar 

and Singh (2023) mentioned, IoT networks are usually highly imbalanced. Future work 

should test more realistic traffic distributions. 
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Second, This GAN architecture training stability proved sensitive to the choice of 

hyperparameters, most notably in respect of the generator's learning rate. Although we did 

manage to get stable training with our eventual choices for those hyperparameters, namely, 

learning rate 0.0002 and beta values of 0.5 and 0.9 at the end, this was after a lot of trial and 

error. This result also goes hand in hand with remarks by Wang and Liu regarding general 

difficulties while trying to guarantee stability when working with GANs on security 

applications. 

6.6.3 Limitations and Areas for Improvement 

Several limitations of the current study deserve attention: 

1. Dataset Constraints: While NF-BoT-IoT is one of the most comprehensive datasets, it 

generally represents static attack patterns. In that respect, this inherently limits our 

ability to explore how well the models might perform against an evolving set of 

threats. Future work can thus be directed toward dynamic generation of attacks at 

training itself, as also suggested by the approach of Ahmad et al. (2022). 

 

2. Computational Efficiency: The computational time and cost for processing in the 

GAN model were significantly higher than those of its baseline, representing Random 

Forest training. Although the latter represents consistency with previous observations 

according to Anwer et al. (2022), for realistic deployments across resource constraint 

IoTs, the research implementation will strongly be informed by a choice towards 

leveraging lightweight GAN architectures or an application of partial training. 

 

 

3. Feature Engineering: While effective, our approach to IP address encoding may not 

capture all relevant spatial relationships in network topology. Frequency-based 

encoding of port numbers, though computationally efficient, may oversimplify 

temporal patterns in attack behaviors. 

 

4. Real-time Processing: As much as both models have shown acceptable inference 

speed, comprehensive evaluation of real-time processing with different traffic loads is 

not taken into consideration in this current implementation. This aspect calls for 

further investigation, especially in view of the findings by Hnamte et al. (2023), who 

established the importance of speed in processing for practical deployments. 

6.6.4  Proposed Improvements 

Several modifications could enhance the experimental design: 

1. Architecture Optimization: The progressive growing technique in GAN architecture 

might provide better stability during training and reduce the computational overhead. 

This will solve resource utilization issues and may provide better results with 

improved model performance. 

 

2. Feature Selection: It can be further extended by the incorporation of automated 

feature selection mechanisms, similar to that proposed by Ghani et al. (2023), in order 

to optimize the feature set without compromising detection accuracy. This would be 

useful, especially for deployments involving resource-constrained environments. 

3. Training MethodologyThese might be further developed by the introduction of 

curriculum learning approaches to GAN that handle complex patterns of attacks with 
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reduced time consumption. This would also extend insights into adaptive learning in 

security contexts, as noted by Varanasi and Razia (2022). 

4. Evaluation Framework: Enhancement of the evaluation framework to include stress 

testing under various network conditions and attack scenarios would provide more 

comprehensive performance metrics. This should include assessment of model 

degradation over time and adaptation to new attack patterns. 
 
 

7 Conclusion and Future Work 

7.1 Research Summary 

This research sought to answer one of the most fundamental questions in IoT network 

security: how effective can a GAN-based anomaly detection model be in classifying normal 

and attack patterns in network traffic data using conditional adversarial training? The study 

tried to develop a robust detection system that could handle the significant class imbalance 

inherent in IoT network traffic while ensuring high detection accuracy and low false positive 

rates. 

The research objectives were systematically addressed through: 

1. Development of a GAN-based architecture optimized for network traffic anomaly 

detection 

2. Implementation of balanced sampling techniques for handling class imbalance 

3. Evaluation of the model's detection capabilities across various attack patterns 

4. Analysis of feature engineering approaches 

5. Comparative analysis against established baseline methods 

7.2 Achievement of Research Objectives 

It indeed met the major intentions of the research, significantly improving those of the 

traditional approaches. The GAN-based model performed with an accuracy of 97.40% in real 

data classification, while that of the Random Forest baseline was 94.74%, at significantly 

reduced false positive rates from 10% to 4.4%. This improvement justifies the efficiency of 

the conditional adversarial training approach in handling imbalanced network traffic data. 

 

7.3 Key Findings and Implications 

Several significant findings emerged from this research: 

First, GAN-based methods showed their better adaptability to various complex attack 

patterns with high detection accuracy. This clearly means that the adversarial training 

conveys the intrinsic pattern of network flow, and hence it differentiates between normal and 

malicious behavior. 

 

Second, it was a balanced sampling strategy that was important to treat the extreme class 

imbalance of IoT network traffic. The approach has kept the detection accuracy intact while 

significantly reducing the false positives, which are considered one of the biggest challenges 

to operational security systems. 

 

Third, comparison analysis has shown that on one hand, traditional solutions such as Random 

Forest provide consistent baseline performance. On the other hand, generally speaking, 

GAN-based methods are much broader in capability when an evolving threat landscape has to 

be handled-in particular, with subtle anomalies in novel attack-pattern detection. 
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7.4 Research Limitations 

Despite these successes, several limitations should be immediately acknowledged with this 

research: 

 

While the training overhead of GANs presents a challenge for resource-constrained IoT 

environments, it is balanced by the enhanced detection performance attained in critical 

applications, though limiting some options in the deployment scenario. 

 

This may be because the present implementation is based on static training data, which 

cannot fully represent the dynamic nature of the emerging attack patterns. The GAN 

architecture shows a promising performance in generating synthetic attack patterns, but the 

real-world validation of such capabilities needs further investigation. 

 

The assessment framework, while comprehensive, was focused mostly on known attack 

patterns, which leaves the question as to how it will perform against zero-day attacks and 

previously unseen attack vectors. 

 

7.5 Future Research Directions 

Looking forward, several promising research directions emerge from this work: 

7.5.1 Adaptive Learning Frameworks 

Future research should explore the development of continuous learning frameworks that 

allow the GAN to adapt to emerging attack patterns in real-time. This could involve: 

 Integration of online learning mechanisms 

 Development of dynamic feature extraction methods 

 Implementation of adaptive threshold mechanisms for anomaly detection 

 Creation of feedback loops incorporating human analyst input 

7.5.2  Resource Optimization 

Investigation into lightweight GAN architectures specifically designed for IoT environments 

presents a crucial research direction. This could include: 

 Development of compressed model architectures 

 Exploration of model quantization techniques 

 Implementation of selective training approaches 

 Investigation of distributed learning frameworks 

7.5.3  Zero-Day Attack Detection 

Advancing the system's capability to identify previously unseen attacks represents a critical 

research direction. Future work should focus on: 

 Development of generative models for attack pattern synthesis 

 Implementation of novelty detection mechanisms 

 Creation of hybrid detection approaches combining signature-based and anomaly-

based methods 

 Integration of threat intelligence feeds 

7.6 Concluding Remarks 

This research has really demonstrated the feasibility and effectiveness of GAN-based 

methods for security in IoT networks; simultaneously, it has also pinpointed some areas to 
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explore further. The proposed conditional adversarial training could achieve this, especially 

for such key issues as class imbalance and less false positive anomaly detection related to IoT 

security. 

 

These proposed future research directions and commercialization opportunities provide a 

possible route that this work may take in laying the foundation for the development of more 

robust and practical security solutions for IoT networks. While large-scale IoT deployments 

continue to grow, there is an increasing need for advanced security mechanisms. The 

developed approaches provide a promising framework to handle evolving security 

challenges. 
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