*
\ National

Collegeof
Ireland

Configuration Manual

MSc Research Project
Data Analytics

Diwakar Muthuraj
Student ID: X23106824

School of Computing
National College of Ireland

Supervisor: Aaloka Anant

\-
National College of Ireland \ National

MSc Project Submission Sheet
School of Computing

Student Name: Diwakar Muthuraj

Student ID: X23106824

Programme: MSc - Data Analytics Year: 2024
Module: Research Project

Lecturer: Aaloka Anant

Submission Due

Date: 12/12/2024

College
Ireland

Project Title: Sentiment Analysis in Tamil-English Code-Mixed Data Using Hybrid

Deep Learning Techniques

Word Count: 1658 Page Count: 16

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Diwakar Muthuraj
Date: 12/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. Itis
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Diwakar Muthuraj
Student ID: X23106824

1 Introduction

This research project looks to classify sentiments found in Tamil-English code-mixed data
from YouTube comments using a pre-trained model with Text Graph Convolutional Network
such as IndicBART+TextGCN (Dowlagar, 2021). This configuration manual discusses the
step-by-step implementation procedure, by providing an overview of setting up the working
environment in order to implement efficiently. It details the hardware, software, programming
language, and libraries used in this working environment. And also shows the various
experiments done during this research project and its evaluation results.

2 System Configuration
The hardware and software resources that were used are provided in this section.

2.1 Hardware Configuration

The Hardware configuration of the computing device:
e Computing Device Name: HP Victus
e Operating System: Windows 11
e Processor: AMD Ryzen 5 5600H — 3301 MHz — 6 Core(s)
e RAM: 16 GB
e Number of Core(s): 6
e Dedicated Graphic Memory: NVIDIA GeForce RTX 3050
e Storage: 500GB NVMe SSD

2.2 Software Configuration

The Software configuration of the computing device:
e Web Browser: Google Chrome
e Platform As a Service: Google Colabatory (Colab Pro)
e Runtime Type Name: T4 High RAM
e Runtime Type Configuration: 51GB — RAM / 15GB — GPU / 240GB Storage
e Programming Language: Python 3

e Documentation: MS Word

3 Project Implementation

The overall implementation of this research project is provided in this section including steps
such as data collection, data preprocessing, feature extraction, experimental model and
proposed model’s training together with its evaluation.

The first step is setting up the working environment. Hence, Google Colabatory Pro
with T4 High-RAM was chosen for developing the code as shown in figure 1. In order to access
the environment, a Google account is needed to be signed in.

QO Making the Most of your Colab Subscription B & &see D

File Edit View insert Runtime Tools Help Cannol
v Gemini A

W
High-W pisk

— +Code +Tet CopytoDiive
Resources X
.] You are subscribed to Colab Pro. Le:
v Making the Most of your Colab Subscription Avalable: 6686 computeus
Usage rate: approximately 1.66 per hour

You have 1 active session.

v Faster GPUs Manage sessions

Users who have purchased one of Colab's pid plans have access tofaster GPUs and more memory, You can upgrade your notebook's Python GoogeConput Engn acend (G)

GPU settings in Runtise > Change runtise type inthe menu to select from several accelerator options, subject to availability. Showing resources from 7:55AM to 10:17AM

The free of charge version of Colab grants access to Nvidia's T4 GPUS subject to quota restictions and availabiity
System RAM GPURAM Disk
You can see what GPU you've been assigned at any time by executing the following cell. I the exe sult of running the code cell 45/51068 00/15068 329/235768

below s Not connected to.a GPU', you can change the runtime by going 10 runtise > Change ru pe inthe menuto enable a
6PU accelerator, and then re-execute the code cell

AV 40808

In order to use a GPU with your notebook, select the Runtime > Change runtise type menu, and then set the hardware accelerator to
the desired option.

Change runtime type

Figure 1: Setting up Google Colab Pro

After that as shown in Figure 2 all the necessary libraries that were installed and imported
into the colab working environment.

load dataset

_extraction.text t CountVectorizer, TfidfVectorizer
wWordCloud

t stopwords
WordNetLemmatizer

SpellChecker
t LabelEncoder, StandardScaler
train_test_split

ADASYN
t RandomUnderSampler
sklearn.neighbor kneighbors_graph, NearestNeighbors
networkx nx
torch
torch.nn
torch.optim

Dataloader, Dataset, WeightedRandomSampler
t Data, Batch
DatalLoader GeometricDataloader
t BertTokenizer, BertModel, AutoTokenizer, AutoModel, Adami

nltk.download(inet ")
nltk.download(i p)

Figure 2: Installing and importing all the necessary libraries.

3.1 Data Collection

Then in the next step, dataset used for this research project ‘Tamilmixsentiment’ is fetched
from ‘Hugging Face’. This dataset contains code-mixed Tamil-English (Tanglish) as text and
sentiment labels (Chakravarthi, 2020). The train and test data that were directly fetched from
the Hugging Face is shown in the figure 3.

(4]

[9] tam_eng code full = load dataset(
print(tam eng code full)

TEC_train = tam eng _code full[
TEC_test = tam eng_code_full[

print(TEC_train))
print(TEC_train)

v DatasetDict({
train: Dataset({
features: ['text', 'label'],
num_rows: 11335
h
validation: Dataset({
features: ['text', 'label'],
num_rows: 1260
hH
test: Dataset({
features: ['text', 'label'],
num_rows: 3149
h
hH
<class ‘datasets.arrow_dataset.Dataset'>
Dataset({
features: ['text', 'label'],
num_rows: 11335

Figure 3: Fetching data as DatasetDict from Hugging Face.

In this step as Figure 4 shows, the train and test data being converted into a pandas data
frame.

[]

[10] TEC train df = TEC train.to_pandas()
TEC_test_df = TEC_test.to_pandas()

print (type(TEC_train_df))
print(TEC_train df)

<class 'pandas.core.frame.DataFrame">
text label
Trailer late ah parthavanga like podunga
Move pathutu vanthu trailer pakurvnga yaru

Dhanush oda character ,puthu sa erukay , mass ta

0
1
2 Puthupetai dhanush ah yarellam pathinga
3
4 vera level ippa pesungada mokka nu thalaivaaaaaa

11330 Yuvan shankar Raja anna fan's like here...
11331 A masterpiece best revenge film I’ve ever scene
11332 Enna pa thala ya kamiya than katringa
11333 RAASHIKHANNA
11334 Trailer la nalla thaan iruku ana sound thaan k...

[11335 rows x 2 columns]

Figure 4: Loading data as pandas data frame.

3.2 Exploring Data

Figure 5 to figure 7, shows the data exploration and visualization steps where the data is further
explored and understood. This data has symbols, numbers and punctuations which have to be
cleaned. Hence, feature engineering and handling class imbalance were done to prepare the
data for model training.

print("TRAIN DataFrame:")

print(TEC_train_df.head())

print(EST D me:")
print(TEC_test_df.head())

TRAIN DataFrame:
text label
Trailer late ah parthavanga like podunga 0
Move pathutu vanthu trailer pakurvnga yaru
Puthupetai dhanush ah yarellam pathinga
3 Dhanush oda character ,puthu sa erukay , mass ta
4 vera level ippa pesungada mokka nu thalaivaaaaaa

TEST DataFrame:
text
Yarayellam FDFS ppga ippove ready agitinga
Ennada viswasam mersal sarkar madhri time la 1...
yuvan vera level ya valuable script. SK i...
70 vayasulayum thanoda rasigargala sandhosapad...
all the best anna...Telugu makkal selvan fans

Figure 5: Loading data as pandas data frame

The class distribution of the train and test data are visualized in figure 6 and the frequently
occurring words are visualized as Word Cloud in figure 7.
handles = [plt.Line2D(|@], |@], marker='0', color='w', markerfacecolor-palette|i|, markersize=10

r i in range(len(label _mapping))]
plt.legend(handles, label mapping.values(), title="I - » loc="upg rig!)

plt.show()

Label Distribution of Train

8000
Labels
— @® Positive
® Negative
® Mixed Feeling
6000 - ® Unknown State

Non Tamil
5000 -

4000 A

Count

3000 -

2000 -

1000 A

(o] 1 2 3 4
Label

Figure 6: Class Distribution of the train and test data.

wordcloud _train = WordCloud(width=1000, height=500, background color="wt ').generate(' '.join(TEC_test df[’
plt.figure(figsize=(10, 5))

plt.imshow(wordcloud train, interpolation= r')

plt.axis()

plt.show()

il comma
ra]lnl d
virpadam e
fans hit
illa

dhanug@l

podunga
comment

:‘release
0 ru Yuvan V]

intha ‘
Kaithi

waltlng SUPerda

nu maari
(ind " ikes
K i ove

Bigil hit indha
na Enpa Nalla -

-] = Diwali beS(
Sl

UéVf an

n pgkka

Superb

trending

ia Thala Thala

dialogue s
thar mela petta

varum

Figure 7: Word Cloud of frequent words.

3.3 Data Preprocessing

Next the data is cleaned and pre-processed as shown from figure 8 to figure 12. In order to
maintain uniformity, both train and test data were converted into lowercase and the special
characters, punctuation, numbers and stop words were removed (Dowlagar, 2021). The special
characters, punctuation and numbers were removed from the data using regex as shown in
figure 8 and figure 9.

)

remove_special characters(text):
n re.sub(r - » text)

TEC_train_df['text'] = TEC_train_df['text'].apply(remove_special_characters)
TEC_test_df['text'] = TEC_test_df['text'].apply(remove_special_characters)

print("TRAIN Dat)
print(TEC_train_df.head())

TRAIN DataFrame:

text label contains_tamil
0 Trailer late ah parthavanga like podunga (*] False
1 Move pathutu vanthu trailer pakurvnga yaru False
2 Puthupetai dhanush ah yarellam pathinga False
3 Dhanush oda character puthu sa erukay mass ta False
4 vera level ippa pesungada mokka nu thalaivaaaaaa False

]
0
0
0

Figure 8: Removing special characters and punctuation

remove_numbers(text):

re.sub(r'\d+", "', text)

TEC_train_df["text'] = TEC_train_df['text'].apply(remove_numbers)
TEC_test_df['text'] = TEC_test_df['text'].apply(remove_numbers)

print("Test DataFrame:")
print(TEC_test_df.head())

Test DataFrame:
text label
yarayellam fdfs ppga ippove ready agitinga %)
ennada viswasam mersal sarkar madhri time la 1...
yuvan vera level ya valuable script sk in action
vayasulayum thanoda rasigargala sandhosapadut...
all the best annatelugu makkal selvan fans

Figure 9: Removing Numbers

After normalizing the text, it was then converted into lowercase using the str function as shown
in the figure 10. This step standardized the text and makes the data consistent.

TEC_train_df['text’ TEC_train_df["text'].str.lower()
TEC_test_df['text'] = TEC_test_df['text’'].str.lower()

print("TRAIN DataFrame:")
print(TEC_train_df.head())

TRAIN DataFrame:

text
(%) trailer late ah parthavanga like podunga
1 move pathutu vanthu trailer pakurvnga yaru
p puthupetai dhanush ah yarellam pathinga
3 dhanush oda character puthu sa erukay mass ta
4 vera level ippa pesungada mokka nu thalaivaaaaaa

Figure 10: Converting to lowercase

After conversion to lowercase, figure 11 shows the removal of stop words.

stop_words = set(stopwords.words('eng

remove_stopwords(text):
‘.join([word for word in text.split if word not in stop_words])

TEC_train_df['text'] = TEC_train_df['text'].apply(remove_stopwords)
TEC_test_df['text'] = TEC_test_df['text'].apply(remove_stopwords)

print("Test DataFrame:")
print(TEC_test_df.head())

Test DataFrame:
text label contains_tamil
yarayellam fdfs ppga ippove ready agitinga @ False
ennada viswasam mersal sarkar madhri time la 1...) False
yuvan vera level ya valuable script sk action %] False
vayasulayum thanoda rasigargala sandhosapaduth... 2 False
best annatelugu makkal selvan fans (%] False

Figure 11: Removing stop words

6

Finally, the text is lemmatized as shown in the figure 12.

lemmatizer = WordNetLemmatizer()

lemmatize_text(text):

lemmatized text = ' '.join([lemmatizer.lemmatize(word word in text.split()])

n lemmatized text

TEC_train_df["text'] =

TEC_train_df['text'].apply(lemmatize_text)

TEC_test_df['text'] = TEC_test_df['text'].apply(lemmatize_text)

print(TEC_train_df
print(TEC_test_df

text
] trailer late ah parthavanga like podunga
1 move pathutu vanthu trailer pakurvnga yaru
2 puthupetai dhanush ah yarellam pathinga
3 dhanush oda character puthu sa erukay mass ta
4 vera level ippa pesungada mokka nu thalaivaaaaaa

Figure 12: Lemmatizing text

3.4 Feature Engineering

After the preprocessing step, the ‘text’ column containing code-mixed Tamil-English data is
feature engineered. ‘“Text’ column is a raw data where it consists of a mix of words with English
and Tanglish (Romanized Tamil words). Due to this, the model will struggle to convert these
words into proper embedding (Banerjee, 2020). Hence, in order for the model to properly
embed the words and classify the sentiment, the ‘text” was back transliterated into its original
script, such as English text into English script and Tamil ‘text’ into Tamil script.

This is done using the following steps such as tokenizing words, Back Transliteration,
Combining the English words and the Back Transliteration for better word embedding
(Dowlagar, 2021). Initially the ‘text’ column is tokenized based on the whitespace and moved
into a new column name ‘Wordset’, with a list of words from the text column shown in the
figure 13.

text = re.sub(r
text.split()

, text.lower())

word_counts = Counter()

idx, row in TEC_train_df.iterrows():
words = tokenize(row)}
word_counts.update(words)

create_wordset(text):
words = tokenize(text)
words

resamp_df_test[] = resamp_df_test[
resamp_df_train[t'] = resamp_df_train[

1.apply(create_wordset)
1-apply(create_wordset)

print(a wit)
resamp_df_test[t

Test Data with Wordset:

Wordset

=

original_text

Ean nu theriyala thalaya paakkum podhu kannu k.
90 kid madilaruthu kuthicha shakthiman kapathu...

1 am thalapathy fan but idhula thala semmaya i...

[ean, nu, theriyala, thalaya, paakkum, podhu,
[kid, madilaruthu, kuthicha, shakthiman, kapat

[i. am, thalapathy, fan, but, idhula, thala, s.

Figure 13: Tokenization of text based on white-space

The tokenized words are then back transliterated. This process converts the text back to the
original script which is Tamil in this case. The transliterate tool ‘XlitEngine’ from the library
‘ai4bharat-transliteration’ (Dowlagar, 2021) is used for this. This model converts the tokenized
words from the “Wordnet’ to Tamil scripts and stores it in a new column named ‘Back_trans’
as shown in the figure 14.

rd, beam_width=10)

transliterated_line}")

e - start_time:.2f

print(
print(resamp_df_train

Loading ta...
XlitEngine initialized successfully.

. :
Processed line 1/1131: ['gesr
Processed line 2/1131: ["8&°
Processed line 3/1131: ["men

Figure 14: Back-Transliteration of the Wordset

Based on the words dictionary from ‘nltk’ library, the proper English words are identified and
a new column named ‘combined words’ is created. This has the English and Tamil words in
respective scripts from the ‘Back trans’ column shown in the figure 15.

combined.append(back_trans_dict[word])

combined

safe_eval(va

resamp_df_train[
row: ¢

print(resamp_df_train

[nltk_data] Downloading package words to /root/nltk data...
[nltk_data] Package words is already up-to-date!
sentiment_words \

@ [trailer, late, ah, parthavanga, like, podungal

[move, pathutu, vanthu, trailer, yaru]

[dhanush, ah, yarellam, pathinga]

[dhanush, oda, character, puthu, sa, mass, ta]
[vera, level, ippa, pesungada, mokka, nu, thal.

Back_trans
(9T, CL, 2, LMTSSeamks, 6o, Qun@ms)
[Goney, LSHLE, bsl, BOTOT, goi]

SLT, FTIEST, LS, €T, Ty, L]

e

1

2 (6, &, WATEMD, USHIkSs]

3 [Been.

4 [Gam, @e\mﬂsu AOUN, CUSRIGLT, GLNES, ST, SHEOH. .

combined_words
] [trailer, late, ah, like, UNTSFUks, QAUTEMEES]
1 [move, trailer, USSIL®), eubsl, gmi]
2 [dhanush, ah, WQUEEIMD, USIMAIS]
3 [dhanush, oda, character, sa, mass, ta, L]

Figure 15: Combining Back-Transliteration and Wordset

The final column ‘combined words’ has text data with both Tamil and English in the proper script
shown in the figure 16.

resanp_df test['conbined'] = resamp_df test['combined words'].apply(x: ' ".join(x))

resanp_df train['conbined'] = resamp_df train['conbined words'].apply(x: | '.join(x))
print(resamp_df train['conbined'].head())

0 @ 986 uLTD QGESS but G GFOT super L...
1 a6 expect QueTa Covelég QA but 246
2 ore super star ARG predafl WL QD gD Qur...
3 kilo BBGE ULD LT @G5S

4 9 & confidence level @AIR) B

Name: combined, dtype: object

Figure 16: Combined column with Tamil and English words

3.5 Handling Class Imbalance

Given the dataset is highly imbalanced, so the data is being resampled by using the random
under-sampling technique as it showed a better outcome after experimenting with multiple
resampling techniques. As suggested by (Banerjee, 2020; Chakravarthi, 2020), the
‘unknown_state’ and ‘non-tamil’ labels contribute significantly less of total data and also
introduces noise into data, so those two labels were ignored. The majority three classes are
being resampled using random under sampling mentioned by (Gokhale, 2022) as shown in the
figure 17.

3 yir‘csamplgd

print("\nNew Cla Distribution after Undersampli
new_class_distribution = Counter(y_resampled)
print(new_class_distribution)

plt.figure(figsize=(10, 5))

sns.countplot(x=resamp_df_ train[‘label’], order=new_class_distribution.keys())
plt.title(" A 1, 2)")
plt.xlabel("Cl:)2 sative xed, 2:

plt.ylabel ("Frequ

plt.show()

print("\nDescriptive Statistics of Re
print(resamp_df_ train.describe(includ

mpled Data:"

print("\nSample of
print(res _df_train.head())

original Class Distribution in Training Data (Filtered to ©, 1, 2 labels):
Counter({@: 7492, 1: 1443, 2: 1264, 3: 601, 4: 345})

New Class Distribution after Undersampling:
: 1264, 2: 1264

Figure 17: Resampling using Under sampling

3.6 Model Building and Training

3.6.1 MBERT+TEXTGCN (BASE MODEL)

The mBERT model is used as the base model for all experimenting. The feature extraction
process is performed by the multilingual BERT tokenizer to create word embeddings with
padding (Dowlagar, 2021). The label is encoded using label encoder function as shown in the
figure 18.

BERT_MODEL_NAME = ‘bert-t
tokenizer = BertTokenizer.from pretrained(BERT_MODEL_NAME)

sampled_df = resampled df val.sample(n=500, random_state=42)

label_encoder = LabelEncoder()

sampled_df['label'] = label encoder.fit_transform(sampled df['label'])
num_classes = len(label encoder.classes_)

train_texts, test texts, train_labels, test labels = train_test split(
sampled_df[‘original text'], sampled df['label'], test_size=0.2, random_state=42

)

tokenize_text(texts, max_len=128):
inputs = tokenizer(texts, return_tensors padding=True, truncation=True, max_length=max_len)
return inputs["input_ids'], inputs[‘attention mask']

Figure 18: Feature Extraction and Label encoding for mBERT

The graph data is created with the word embedding token, generated by the mBERT Tokenizer.
Figure 19 shows the token as the node of the graph data and the edges are the relationships
between them.

create_graph_data(texts, labels, p=3):
graph_data_list = []
or idx, text in enumerate(texts):
input_ids, attention mask = tokenize text([text])

edges = []

for i in range(input_ids.size(1) - p):
jinrange(i+1, i +p+1):
edges.append([1, j])
edges.append([j, i])

edge index = torch.tensor(edges, dtype=torch.long).t().contiguous()

data = Data(x=input_ids.squeeze(0), edge index=edge index, y=torch.tensor([labels[idx]]|, dtype=torch.long))
data.attention_mask = attention mask.squeeze(0)

data.original_text = text

graph_data_list.append(data)

return graph_data_list

train_graphs = create_graph data(train texts.tolist(), train labels.tolist())
test_graphs = create graph data(test_texts.tolist(), test labels.tolist())

Figure 19: Creating graph data with mBERT Tokens

As shown in the figure 20, mBERT pretrained model tokenizes the word into embeddings.
Based on this embedding, graph data is generated which then passed into three layers of GCN
to process the inter-word relationship. The first two layers identify first and second order
relationships. The final fully connected SoftMax layer captures and predicts the sentiment
(Dowlagar, 2021).

10

init (self, model name, hidden dim, num_classes)
super (MBERT_TextLevelGCN, self). init_ ()

self.bert = BertModel.from_pretrained(bert model name)
self.gcnl = nn.Linear(768, hidden_dim)

self.gen2 = nn.Linear(hidden_dim, hidden_dim)
self.fcl = nn.Linear(hidden dim, hidden dim // 2)
self.fc2 = nn.Linear(hidden dim // 2, num_classes)

nn.init.xavier uniform_(self.gcnl.weight)
nn.init.xavier_uniform (self.gcn2.weight)
nn.init.xavier_unifo elf.fcl.weight)
nn.init.xavier uniform (self.fc2.weight)

forward(self, data):
x, edge index, attention mask = data.x, data.edge index, data.attention mask
outputs = self.bert(input_ids=x.unsqueeze(®), attention mask=attention mask.unsqueeze(0))[

x = F.relu(self.gcnl(outputs))
x = F.relu(self.gcn2(x))

x = torch.max(x, dim=1).values
x = F.relu(self.fci(x))
=

self.fc2(x)
turn F.log_softmax(x, dim=-1)

MBERT_TextLevelGCN(bert model name=BERT MODEL NAME, hidden dim=128, num classes=num_classes)

Figure 20: mBERT + Text GCN Model.

Figure 21 shows the model is trained with cross-entropy function and optimized with adam
optimizer to reduce prediction errors.

train_model(model, train loader, optimizer, criterion, device):
model.train()
total loss = @
for batch in train_loader:
batch = batch.to(device)
optimizer.zero grad()

output = model(batch)
loss = criterion(output, batch.y)
loss.backward()
optimizer.step()
total loss += loss.item()
return total loss / len(train_loader)

Figure 21: Model training function of mBERT+TextGCN.

Figure 22 shows the evaluation is done by the test data to evaluate the metrics such as
precision, recall, F1-score and the confusion matrix.

ota: / - 1, f1,

Figure 22: Model Evaluation of mBERT+TextGCN.
11

The figure 23 shows the model training process with epoch, train loss and other metrics.

poch 5/5, Train Loss: 0.3370, Test Loss: 0.8909, Test Accuracy: 0.6600

Precision: 0.6506, Recall: 0.6600, F1-Score: 0.6373
Figure 23: Model Training of mBERT+TextGCN.

The figure 24 shows the classification report of the model for each class.

Classification Report:
precision

accuracy
macro avg
weighted avg

Figure 24: Classification Report mBERT +TextGCN.

The figure 25 shows the Confusion matrix of the model classification for each class.

Confusion Matrix

14
o 5 = o

Positive

12

Negative

10

True Label

Non Tamil Unknown State Mixed Feeling
\ |
w
o

o (o] 1 (o]
' ' ' ' =0
Positive Negative Mixed Feeling _Unknown State Non Tamil

Figure 25: Confusion Matrix mBERT+TextGCN.
3.6.2 INDICBART+TEXTGCN (PROPOSED MODEL)
The proposed model IndicBART+TextGCN performs a feature extraction process by the
multilingual IndicBART tokenizer. This is to create word embeddings with language tags that

improves the embedding process (Dabre, 2022). The label is then encoded using label encoder
function as shown in the figure 26.

12

ODEL_NAME = arat/Indi
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
indic_bart_model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME).to(torch.device('cuda

resamp_df_train
resamp_df_test

tc_df = pd.concat([ta_df, tb_df], axis=0)
ta_df, tb_df = train_test_split(tc_df, test~size:O.ZL random_state=42)

label_encoder = LabelEncoder()
'] = label_encoder.fit_transform(ta_df["'l
sbel’] = label_encoder.transform(tb_df[’
num_classes = len(label_encoder.classes_)

texts_a = ta_df[c ']-tolist()
labels_a = ta_df[’].tolist()
texts_b = tb_df[" i'].tolist()
labels b = tb_df[]-tolist()

Figure 26: Feature Extraction and Label encoding for IndicBART+TextGCN.

The embedding token generated by the IndicBART Tokenizer is used to create graph
data. Figure 27 shows the node of the graph data as the token while the edges are the
relationships between them.

create_graph_data(texts, labels, p=3):
graph_data_list = []
for idx, text in enumerate(texts):
input_ids, attention mask = tokenize_text([text])
edges = []
for 1 in range(input_ids.size(1) - p):
for j in range(i + 1, i + p +1):
edges.append([i, j])
edges.append([3, 1])

edge_index = torch.tensor(edges, dtype=torch.long).t().contiguous()
data = Data(x=input_ids.squeeze(0), edge index=edge_index, y=torch.tensor([labels[idx]], dtype=torch.long))

data.attention_mask = attention mask.squeeze(@)
data.original_text = text

graph_data_list.append(data)

turn graph_data_list

Figure 27: Creating graph data with IndicBART Tokens.

As shown in the Figure 28, IndicBART pretrained model tokenizes the word and the
language tags with the appropriate language for better contextual understanding. Based on this,
graph data is generated which then passed into three layers of GCN to process the inter-word
relationship. The first two layers identify first and second order relationships. The final fully
connected SoftMax layer captures and predicts the sentiment (Dowlagar, 2021).

13

ndicBAR

(nn.Module):

init (self, hidden_dim, num_cla

super(IndicBART TextLevel6ON, self
self.indic_bart = AutoModelForSeq2Seq
self.genl = nn.Linear(1624, hidden_dim)
self.gen2 = nn.Linear(hidden_dim, hidden_dim)
f.fcl = nn.Linear(hidden_dim, hidden_dim // 2)
self.fc2 = nn.Linear(hidden_dim // 2, num_classes)

.from_pretrained(MODEL_NAME)

nn. init.xavier_uniforn_(self.fc2.weight)

forward(self, data):
X, edge_index, attention mask = data.x, data.edge_index, data.attention mask
encoder_outputs = self.indic_bart(input_ids=x.unsqueeze(0), attention_mask=attention mask.unsqueeze(®)).encoder_last_hidden_state
x = F.relu(self.gcnl(encoder_outputs))
x = F.relu(self.gen2(x))
x = torch.max(x, dim=1).values
x = F.relu(self.fcl(x))
1f.fc2(x)
n F.log_softmax(x, dim=-1)

Figure 28: IndicBART Model.

Figure 29 shows the model training function which has cross-entropy and is optimized
with adam optimizer to reduce prediction errors. The evaluation is done using test data to
evaluate the metrics such as precision, recall, F1-score and the confusion matrix.

train_model(model,

train_loader, optimizer, criterion, device):

model . train()

total loss

=}

batch in train_loader:

batch

batch.to(device)

optimizer.zero_grad()

output =
loss = criterion(output,

model(batch)
batch.y)

loss.backward()
optimizer.step()

total loss +=

returr

evaluate model(model,

loss.item()
total loss / len(train_loader)

test_loader, criterion, device):

model .eval()

total loss, correct

e, o

all_preds, all labels = [1, []

with

accuracy

returr

torch.no_grad():
batch in test_loader:

batch
output

batch.to(device)
model (batch)
criterion(output,

loss batch.y)

total_loss += loss.item()
pred = output.argmax(dim=1)
correct += pred.eq(batch.y).sum()-item()
all preds.extend(pred.cpu() -numpy())

all labels.extend(batch.y.cpu()-numpy())

correct / len(test_ loader.dataset)

total loss / len(test_loader), accuracy, all preds, all labels

Figure 29: IndicBART Model Training and Evaluation.

In order to avoid the overfitting of the model, early stop is used based on the test loss.
Figure 30 shows the function used to get classification reports and visualize confusion matrix

performed.

14

delta=0.01)

ftest_loss: .4f 4 f epoch_time: .2f total_time:.2f}s')

epoch + 1}.")

Figure 30: Functions for Early stopping and Classification report.

Figure 31 shows the early stop triggered at epoch 22 and the evaluation metrics such as
precision, recall, F1-score, and the accuracy of the IndicBART+Text GCN model.

Epoch 22/5©
Loss: ©.6947, Test Accuracy: ©.6839
Epoch Time: 441.19s
Classification Report:
precision recall fi-score

o 0.79 9.69 - 73
1 ©0.60 9.90 .72
2 9.76 9.46 57

accuracy .68
macro avg - - .67
weighted avg - = .67

Confusion Matrix:
[[1142 356 162]
[78 15ee 82]
[231 665 764]]
Early stopping at epoch 22.

Figure 31: Classification report for the IndicBART+TextGCN Model.

Figure 32 shows the confusion matrix of three classes of sentiment classified by
IndicBART+Text GCN.

Populated Confusion Matrix 1400

1200

Class O 162

1000

K]

@
=

S class 1 82 - 800
@
]
=

- 600

Class 2 231 665 764 L 200

Class O Class 1 Class 2 200

Predicted Labels

Figure 32: Confusion matrix for the IndicBART Model.

15

References

Banerjee, S. J. (2020). Sentiment Analysis of Code-Mixed Dravidian text using XLNet.
Proceedings of the FIRE 2020 Working Notes Track on Dravidian-CodeMix. CEUR
Workshop Proceedings. Retrieved from https://doi.org/10.48550/arXiv.2010.07773

Chakravarthi, B. M. (2020). Corpus creation for sentiment analysis in code-mixed Tamil-
English text. Proceedings of the Ist Joint SLTU and CCURL Workshop (SLTU-CCURL
2020), at the Language Resources and Evaluation Conference (LREC 2020), Marseille,
France. European Language Resources Association (ELRA). Retrieved from
https://aclanthology.org/2020.sltu-1.28.pdf

Dabre, R. S. (2022). IndicBART: A pre-trained model for Indic natural language generation.
Findings of the Association for Computational Linguistics: ACL 2022. Association for
Computational Linguistics. Retrieved from https://doi.org/10.18653/v1/2022 findings-
acl.145

Dowlagar, S. &. (2021). Graph Convolutional Networks with Multi-headed Attention for
Code-Mixed Sentiment Analysis. Proceedings of the First Workshop on Speech and
Language Technologies for Dravidian Languages (DravidianLangTech 2021) (pp. 59—
67). Association ~ for =~ Computational Linguistics. Retrieved from
https://aclanthology.org/2021.dravidianlangtech-1.8.pdf

Gokhale, O. P. (2022). Optimize Prime@DravidianLangTech-ACL2022: Emotion Analysis
in Tamil. Association for Computational Linguistics. ACL 2022 DravidianLangTech
Workshop. Retrieved from https://aclanthology.org/2022.dravidianlangtech-1.35

16

