ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc in Data Analytics

Tejasvi Mirle Nataraja
Student ID: 23217120

School of Computing
National College of Ireland

Supervisor: Vladimir Milosavljevic

‘-—
National College of Ireland \ National

MSc Project Submission Sheet fr()eligfglf
School of Computing
Student Name:Tejasvi Mirle Nataraja
Student ID: 23217120
Programme: Master of Science Year: 2024-2025
Module: Research Project
Lecturer: Vladimir Milosavljevic
Submission
Due Date: January 29, 2025

Project Title: Advanced thread detection in the IoT networks using hyper
parameter tuned machine learning models.

Word Count: 100 Page Count: 6

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Tejasvi Mirle Nataraja

Date: 29-01-2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Tejasvi Mirle Nataraja
Student I1D: 23217120

1 Environment setup

For executing the code, Google Colab IDE has been used with multiple runtime. For slow run
of the code or binary classification CPU or free T4 GPU has been used. For intense
classification tasks like multi class classification we have used paid subscription of colab pro
has been used where 100 compute GPU units have been utilized which is described in Figure
2.

Change runtime type

Runtime type

Python 3 -

Hardware accelerator @
(@ cru () T4cGRU
() vzeTPU

High RAM D

Want access to premium GPUs?
You are subscribed to Pro but have zero compute units available.

Purchase additional compute units

Cancel Save

Figure 1: Runtime setup of Google Colab

Colab Pro

€11.38 per month

Current plan

+" 100 compute units per month
Compute units expire after 20 days.
Purchase more as you need them.

+" Faster GPUs
Upgrade to more powerful GPUs.

+" More memory
Access our highest memaory machines.

«" Terrninal
Ability to use a terrninal with the
connectad VM.

Figure 2: Paid subscription for 100 GPU units for multi class classification (A100GPU).
2 Package management

All necessary libraries has been imported available in python.

import matplotlib.pyplot as plt
import seaborn as sns

import pandas as pd

import numpy as np

import sklearn

from sklearn.model_selection import train_test_split

from sklearn.model selection import Gridsearchcyv

from sklearn.model_selection impert cross_wval score

from sklearn.metrics import accuracy_score, confusion_matrix, classification_repert, precision_score, recall_scere, fi_score
from sklearn.preprocessing impert standardscaler

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SvC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.ensemble import RandomrorestClassifier

from sklearn.neural_network import MLPClassifier

from sklearn.naive_bayes import Gaussianng, Multinomialne, Bernoulline

Figure 3: Code snippet of necessary libraries import

3 Random sampling

Library for random sampling.

from imblearn.under_sampling impcrt RandomUnderSampler

Figure 4: Library for random sampling

4 Model Building

An example of Logistic regression model building process.

Create an instance of the LogisticRegression model
clf = LogisticRegression{)

default_params = clf.get params(}
print(f"Training model with default hyperparameters of: {default_params}")

Fit the model to the training data
clf.fit(¥_train_resampled, y_train_label resampled)

Predict the labels for the test data
y_pred = clf.predict(x_test)

Evaluate the model
accuracy = clf.score(¥_test, y_test_label)
print{"Accuracy:", accuracy)

save accuracy for later comparison
accuracy_lr_undersampled_unoptimized = accuracy

show a running total of elapsed time for the entire notebook
show_elapsed_time()

Figure 5: Model building code
5 Hyperparameter tuning

Hyper parameter tuning done to improve the model performance.

Create an instance of GridsearchCy
grid_search = GridsearchCv(clf, param_grid, cv=cv_count, n_jobs=-1)

Fit the grid search to the training data
grid_search.fit{¥_train_resampled, y_train_label resampled}

Get the best hyperparameters
best_params = grid_search.best_params_
best_scores = grid_search.best_score_

print{"gest Parameters:", best_params)
print{"Best Scores:”, best_scores)

Create a new instance of the model with the best hyperparameters
clf = LogisticRegression{**best_params)

Fit the model to the traiming data
clf.fit(¥_traim_resampled, y_train_label resampled}

Predict the labels for the test data
yv_pred = clf.predict(x_test)

Figure 6: A glimpse of hyper parameter tuning

6 Results:
All the results are tabulated in an excel file which is attached as part of code artefacts.

Confusion Matrix

True Negative False Positive
205658 13844

0

i
w 35.86% 2.41%
0
]
-
5 False Negative
o - 70101
12.22%
1
0 1

Predicted Labels

Figure 7: Confusion matrix of logistic regression model before hyper parameter tuning for
binary classification.

200000

Harmal 1056 li] 364 310 191 323 96 247
175000
Dos - 3878 3381 4726 9755 17832 691 15463
150000
Reconnaissance - 405 1 1135 434 £ 418 €9 353
125000
n Spoofing 216 35 380 562 117 276 22 200
A
5 100000
g
= mjection - 12585 1608 12101 16901 13935 31365 18506
~ 73000
Malware - 377 9 1397 197 125 4476 328 5l4
- 50000
Brute Force 7539 203 7295 5054 6059 8017 26463 3194
25000
Other - 2784 3853 3917 3541 3723 2032 715 15044
i i i i i i -0
. & .
=]] = i B
2 e 2 g = g
o [= = 3
= =
= o
i

Predicted Labels

Figure 8: Confusion matrix of logistic regression model before hyper parameter tuning for
multiclass classification.

7 Label encoding for multi class classification

For multi classification, initially the attack types are mapped to particular category of 8 types
in general and later label encode.

Define mappimg from specific attack types te general categories
attack_mapping = {

‘BenignTraffic': 'Normal’,

‘Mirai-udpplain®: 'DoS’,

‘MITM-ArpSpoofing': "Dos‘,

‘Recon-Portscan’: 'Reconnaissance”,

‘DNS_Spoofing': 'spoofimg’,

‘Recon-055can’: 'Reconnalssance’,

'X55': "Injection’,
"Recon-HostDiscovery®: 'Reconnalssance”,
'CommandInjection': "Imjection',
"WulmerabilityScan': "Other',

'Backdoor _Malware': "Malware",
'BrowserdHijacking': "Malware’,
‘DictionaryEruteForce’: 'Brute Force',
‘sqlinjection’: 'Injection’,
"Recon-Pingsweep': "Reconnaissance”,

‘Uploading_Attack': "Other’
1

apply the mapping
df["attack_category'] = df['aAttack_type'].map(attack_mapping)

Figure 9: Mapping of 10T attack types to 8 categories

8 References:

1.

2.

Scikit-learn , Scikit-learn: Machine Learning in Python. Available at: https://scikit-
learn.org/stable/ (Accessed: 8 September 2024)

Matplotlib , Matplotlib 3.10 Documentation. Available at:
https://matplotlib.org/stable/index.html (Accessed: 6 September 2024).

Seaborn , Seaborn: Statistical Data Visualization. Available at:
https://seaborn.pydata.org/ (Accessed: 5 September 2024).

Pandas, Pandas Documentation. Available at: https://pandas.pydata.org/docs/
(Accessed: 5 September 2024)
NumPy , NumPy Documentation. Available at: https://numpy.org/doc/stable/
(Accessed: 5 September 2024).

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://matplotlib.org/stable/index.html
https://seaborn.pydata.org/
https://pandas.pydata.org/docs/
https://numpy.org/doc/stable/

