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Enhancing Brain Tumor Detection with Deep 
Learning Models: A Comparative Analysis 

Asish Mathai Mathai 

x23173645 

 
Abstract 

Medical imaging for the detection of brain tumors has lately been significantly 
enhanced by the inclusion of deep learning technologies. However, detailed compar- 
ative research into the clinical practicality of state-of-the-art models has been scant. 
This is a comparative study of three deeper architectures of convolutional neural 
networks, namely YOLOv9, PaliGemma, and Detectron2, in detecting brain tu- 
mors based on their performance metrics concerning accuracy, speed of processing, 
computational efficiency, and clinical applicability. Implementing and testing each 
model with the standardized protocols in this work, the dataset used contained 
8,903 brain MRI images covering four categories: with no tumor, meningioma, 
pituitary, and glioma. The results obtained indicate that YOLOv9 topped with 
an mAP50 of 0.958 and mAP50-95 of 0.78, leveraging far in front of any results 
obtained with Detectron2 with a mAP50 of 0.698, and PaliGemma at a mAP50 of 
0.482. Although PaliGemma introduces a very unique approach of vision-language, 
its mediocre performance indicates that domain-specific optimizations are required. 
Detection performance: Overall, Detectron2 has shown great specialisation capab- 
ility. It seems particularly good in detecting meningioma (76.86% AP). These find- 
ings give evidence-based recommendations for the choice of models toward specific 
clinical needs and further contribute to the advance of AI-assisted medical ima- 
ging. The study illustrates the potential clinical implementation of YOLOv9 while 
pointing toward a future direction for hybrid architectures that model strengths of 
traditional object detection with advanced language understanding relative to spe- 
cific tasks. This comprehensive evaluation lays the ground for further developments 
in automated brain tumor detection systems. 

 

1 Introduction 

The advancement of medical imaging technology has transformed health diagnostics, es- 
pecially regarding the most critical domain: the detection of brain tumors. Recently, deep 
learning architectures have shown great promise in enhancing the effectiveness and speed 
of the process of tumor detection. This current study performs a comparative analysis 
between three deep learning models, at the state-of-the-art, namely the YOLOv9, Pali- 
Gemma model, and Detectron2, on the task of brain tumor detection from medical ima- 
ging data. Among various medical image analyses, the detection and diagnosis of brain 
tumors are some of the most challenging tasks and usually involve great consequences in 
patient outcomes. Conventional detection relies heavily on expert radiologists’ interpret- 
ation, which is often time-consuming and prone to human variation. Hence, according 



2  

to the views of Solanki et al. (2023), such a strategy of embedding deep learning tech- 
nologies has come forth as a very hopeful answer to these issues, making automated, 
consistent, and fast detection of tumors possible. With growing diversity and complexity 
of the models available for deep learning, another challenge has emerged: which architec- 
tural approach will serve the specific needs associated with clinical brain tumor detection. 
The motivation for this study is huge and lies in the identification of a critical gap in 
the current literature. Works were done by several authors to prove the efficiency of 
different single deep learning models for medical image analyses; in comparisons of the 
recently performed architectures are still very few. According to Mahmud et al.(2023) the 
validation and performance assessment of general deep learning models involve multiple 
dimensions on the medical imaging context beyond mere assessment on accuracy. This 
research has been done to fill this gap through a rigorous critical analysis of three of 
the most recent state-of-the-art models, each representing different approaches to object 
detection. 

The central research question guiding this study asks: How do the advanced deep 
learning models - YOLOv9, PaliGemma, and Detectron2 - compare in terms 
of accuracy, processing speed, computational efficiency, and clinical applicab- 
ility for brain tumor detection in medical imaging? In this direction, the research 
outlines some of the key objectives such as the implementation and optimization of the 
proposed models for carrying out brain tumor detection, ensuring that conditions for fair 
comparisons are met; performance evaluation of the model with standardized metrics 
such as mAP, speed of processing; evaluating each model with respect to requirements 
and efficiency concerning computational resources; and clinically considering applicab- 
ility and potentials for integrating such models into real-world medical settings. This 
comparative study is based on a carefully developed dataset of 8,497 brain MRI images 
divided into four categories: glioma, meningioma, pituitary, and no tumor conditions. 
The distribution is balanced in the training set of 7,497 images, with glioma accounting 
for 30.37% of all images , meningioma for 27.77% , pituitary for 32.13% , and no tumor 
cases for 15.37% . This considerable set of data, along with careful class balancing in the 
dataset, has made robust trainability and evaluation capability possible while providing 
a very critical essence of medical imaging applications, for which characteristics of data 
quality and representatives directly influence diagnosing reliability. 

This research will help both academic and clinical stakeholders. For the academia, 
it provides a comprehensive comparison framework for several advanced deep learning 
models in use within medical imaging applications. To the clinicians, evidence-based 
recommendations on model selection decisions, considering a particular operational re- 
quirement and resource limitation, are provided. These will in particular help health 
facilities make informed decisions on where to install AI-assisted diagnosis systems. Con- 
firmation of the scenarios for reaching research goals required the development of some 
key tests and metrics of evaluation. These include quantitative measures of model ac- 
curacy through mAP, processing speed assessments under different computation condi- 
tions, and comprehensive analysis of resource utilization studies. Clinical applicability 
will be assessed by structured examination of integration requirements, workflow com- 
patibility, and real-world performance scenarios. The rest of the report logically falls 
into six major sections. Following this introduction, Section 2 resumes related efforts 
relevant to the deep learning benchmarks within the domain of brain tumor detection, 
presenting thus this research effort within its theoretical frame. Section 3 describes in 
detail the methodology regarding research and experimental setup with regard to data 
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preprocessing, the implementation of models, and protocols for evaluation. Section 4 
presents the design specifications, taking architectural aspects into consideration in the 
optimization strategies. Section 5 discusses implementation details, including problems 
found and the solutions that were developed. Section 6 presents the results of a complete 
evaluation and comparison analysis. Finally, Section 7 summarizes the findings, limita- 
tions, and recommendations for future research. This structure ensures that the research 
work provides critical insights into strengths and weaknesses of the deep learning state- 
of-the-art models so far developed for brain tumor detection, while contributing to the 
advance of AI-assisted practices in medical diagnosis. Their results will provide the basis 
for further research to be chronicled in this fast-evolving field, while providing practical 
guidance on how to clinically implement such technologies. 

 

2 Related Work 

Deep learning in medical imaging has been undergoing phenomenal changes; especially, 
in the detection of brain tumors, it has undergone immense changes in the last ten 
years. A critical review of the literature is provided in this paper on the evolution from 
traditional approaches to state-of-the-art architectures. The research reviews related 
works concerning the YOLOv9, PaliGemma, and Detectron2 comparative studies on 
brain tumor detection. 

 

2.1 Evolution of Brain Tumor Detection Approaches 

The main problems in detecting brain tumors were highlighted by Solanki et al.(2023), 
where the researchers pointed out the challenge related to tumor variability with regard 
to position, structure, and proportions. This paper showed that there was a significant 
gap between machine learning and deep learning techniques, indicating how deep learn- 
ing demonstrates excellent performance while operating with big volumes of data; at the 
same time, with limited datasets, which is typical for medical domains, it demonstrates 
worse performance. This finding is particularly relevant when assessing the practical 
implementation of advanced architectures in clinical practice. Expanding on this, Bira- 
jdar(2023) that it is practically feasible to implement CNN; using real-time processing on 
embedded systems, he achieved 92.17% accuracy. While their work proved the viability 
in deploying deep learning models in resource-constrained environments, the relatively 
modest accuracy with regard to recent approaches indicates significant latitude for im- 
provement. 

 

2.2 Architectural Innovations in Deep Learning Models 

There has been a great improvement in model architectures, therefore pushing the limits 
of detection accuracy. G et al.,(2023), obtained very impressive results with accuracy rates 
of 98.02% using ResNet50 and 98.32% with Xception architectures. In fact, the extensive 
comparison of the architectures by them provides useful insight into the strengths of 
various design choices; however, it also lacks any notable analysis of the computational 
requirements, which are very important for clinical deployment. The work by Kartheeban 
et al(2022). exposes more sophisticated architectures when they introduced their version 
called Intelligent Deep Residual Network-based Brain Tumor Detection and Classification. 
Their new combination of ResNet for feature extraction and multilayer perceptron for 
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classification optimized with Chicken Swarm Optimization outperforms others in terms 
of accuracy and computational efficiency. 

 

2.3 State-of-the-Art Model Analysis 

Recent breakthroughs in architecture have really transformed object detection capabilit- 
ies. 

• The work of Wang et al. (2024) has introduced YOLOv9, proposing the Program- 
mable Gradient Information mechanism for handling serious issues connected to 
information loss in deep networks. The developed GELAN module in the struc- 
ture introduced improvements in feature preservation and computational efficiency, 
while medical image adaptations need extensive validation. 

• PaliGemma (Beyer et al., 2024) represents a big step forward in vision-language 
modeling, largely fusing a SigLIP-So400m vision encoder with a Gemma-2B lan- 
guage model. Its versatile architecture, comprising 3B parameters, has shown prom- 
ising transfer learning capabilities that are highly relevant for medical imaging ap- 
plications in which knowledge from pretraining can be effectively used. 

• Applications of the potential of Detectron2 are presented by Singh et al.(2021);, 
and Abdusalomov et al. (2023);, showing its excellent performance for small object 
detection with high precision under challenging conditions. Detection tasks per- 
formed on Detectron2 reached impressive precision rates as high as 99.3%, hence 
showing great potential for applications in tumor detection. 

 

2.4 Implementation Strategies and Clinical Considerations 

Recent literature has explained several practical aspects of the models’ implementation. 
Mahmud et al. (2023) achieved an accuracy of 93.3%, emphasizing the fact that the qual- 
ity of the evaluation metrics should go beyond simple accuracy. This work establishes 
crucial benchmarks in model performance evaluation in clinical settings. Indeed, useful 
insight has emerged from the comparative study of Alhamdi and Alshanta( 2023) show- 
ing that the performance gap between deep learning approaches stands at an accuracy of 
90.41%, as opposed to that of traditional methods, which is at 73.97% accuracy. Their 
work points out the importance of model complexity combined with practical implement- 
ation requirements. 

 

2.5 Transfer Learning and Model Optimization 

Transfer learning has great potential in the identification of brain tumors and attempts 
to overcome certain critical limitations of medical image databases. Rustom et al.(2024) 
achieved state-of-the-art results with the proposition of the use of CNN with transfer 
learning techniques that showed how networks can be trained to highlight subtle changes 
in normal-appearing structures and perform as well as trained radiologists. Building on 
this, Khyber et al.(2024) explored the architecture of InceptionV4, achieving an accuracy 
of 98.7% in classifying brain tumors. Their work placed strong emphasis on choosing 
the appropriate base models and resolving issues like overfitting and vanishing gradients 
using transfer learning methods. 
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Recent contributions by Tandel et al. (2023) compare the performances of various 
pre-trained models; their CNN-based approach gave accuracy up to 87.14% to 100% for 
different cross-validation procedures. Their work showed that this might be effective in 
transfer learning, particularly when considering a dataset with limited medical images. 
More recent works on different pre-trained models have further provided evidence for the 
effectiveness of transfer learning. Notably, MobileNetv3 reported an impressively high ac- 
curacy of 99.75% in historical settings, while the InceptionV3 model reported an accuracy 
of as high as 98.8% in operational contexts (Nature, 2024). Besides, the performance of 
YOLOv7, fine-tuned by transfer learning, has been fantastic in the detection of gliomas, 
meningioma, and pituitary tumors in different forms, which have reached an accuracy as 
high as 99.5%. 

 

2.6 Current Limitations and Research Opportunities 

The critical analysis of existing literature presents several deficiencies that are of relevance 
to the justification of the current research: 

• Comprehensive Model Comparison: While promising architectures have been shown 
individually, no systematic comparison of state-of-the-art models concerning both 
performance metrics and practical factors of implementation is available. 

• Clinical Integration Challenges: Existing studies inadequately address the complex- 
ities of integrating advanced models into clinical workflows, particularly regarding 
real-time processing requirements and resource constraints. 

• Performance Metrics: Although most studies are primarily focused on accuracy 
metrics, most of them do not pay enough attention to processing speed, computa- 
tional efficiency, and clinical applicability. 

• Implementation Framework: What is noticeably missing is standardized frameworks 
for evaluating and implementing advanced deep learning models within clinical 
practice. 

This forms an extensive review of the literature, indicating the dire need for a system- 
atic comparison to be made between YOLOv9, PaliGemma, and Detectron2 regarding 
the detection of brain tumors. Though promises are given by the existing solutions over 
different aspects, they do not provide a complete framework that considers crucial factors 
for clinical implementation. The current study will go beyond the shortcomings in pre- 
vious works by comparing these models on a variety of dimensions, including accuracy, 
processing speed, computational efficiency, and clinical applicability, hence contributing 
to the advancement of not only academic knowledge but also practical implementation 
of state-of-the-art deep learning models within clinical practice. 

 

3 Methodology 

The methodology of conducting the research laid down a structured process for bench- 
marking and comparison of three state-of-the-art deep learning models for brain tumor 
detection. The overall framework of the research process will be discussed in Figure 3.1, 
highlighting all phases of the research in their connected flow, from data preparation to 
the comparative analysis. 
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Figure 1: Research Methodology 
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3.1 Research Framework Overview 

The methodology will be quantitative, and the experiment will be designed in five major 
phases, as depicted in Figure 3.1. The framework is based on the evaluation methodologies 
developed by Mahmud et al. (2023), extended with elements to fulfill the particular needs 
of multiple deep learning architectures comparison. The flow of the research process is 
sequential since each phase will consider the output of the previous ones, keeping in mind 
that the independence of training and evaluation data avoids biased results. 

 

3.2 Data Collection and Preparation 

The current study uses a complete dataset of 8,903 brain MRI images. The dataset dis- 
tribution is strategically split into 7,500 images for training, accounting for 84% of the 
total dataset. It would then be followed by the validation set of 1,000 images, equivalent 
to 11%, while the remaining 5%, amounting to 403 images, comprise the test set. Such 
a distribution provides enough data for model training while maintaining adequate in- 
dependent sets for its different purposes like validation and final testing. This dataset 
consists of four classes: no tumor, meningioma, pituitary, and glioma. Each class has 
different pathologies, and hence the models should learn different features and character- 
istics for each kind of tumor. 

 

Figure 2: Class wise data Distribution 
 

 
3.2.1 Preprocessing Pipeline 

The steps that have been implemented in image preparation in the preprocessing workflow 
include the elimination of various variables to guarantee homogeneity and the improve- 
ment of quality in model training. Standardization steps include, but are not limited to, 
an auto-orientation called EXIF. It is a process that deletes metadata orientation inform- 
ation, standardizes images, and, therefore, keeps the orientation of all images the same 
regardless of their origin or parameters of acquisition. Image resizing forms a critical 
component of the preprocessing pipeline; all images undergo uniform scaling to 640x640 
pixels. This standardization maintains aspect ratios through controlled scaling algorithms 
to avoid the distortion of important anatomical features, making sure input dimensions 
are similar for deep learning models. 
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Figure 3: Annotations per Image 

 
3.2.2 Data Augmentation Strategy 

The augmentation pipeline performs a wide variety of transformations that help in en- 
hancing the generalization capability of the model. Geometric transformations include 

random rotations within a range of ±15°, which introduces variability in the orientation 
of the tumors but still keeps the anatomical plausibility. Shear transformations are done, 
for example, between -10 to +10 degrees horizontally and vertically, allowing the models 
to be insensitive to minor variations in the angle of view and positioning of the patient 
while acquiring MRI. Intensity-based augmentations alter image features to simulate dif- 

ferent MRI acquisition conditions. Brightness changes of ±15% accommodate differences 
in the image exposure, while changes in exposure of ±10% are used to simulate different 
calibration of an MRI machine. Application of Gaussian blur from 0 to 2.5 pixels helps 
models be invariant to diverse ranges of image sharpness and clarity. Addition of salt and 
pepper noise to 0.1% of the pixels approximates many of the common medical imaging 
artifacts, training these models for robustness against imperfections within the images 
themselves. These augmentation methods have been implemented using the Roboflow 
platform and go toward increasing the robustness and generalization performance of such 
models across a wide range of image qualities and conditions. 

 

3.3 Model Implementation Methodology 

3.3.1 Technical Environment Configuration 

The code proposed here uses the Google Colab Pro+, with an NVIDIA A100 GPU of 
40GB VRAM. This high-performance computer allows one to efficiently train large-scale 
deep learning models. The integration of storage with Google Drive allows easy access 
to data and model artifacts throughout a research pipeline. 

 
3.3.2 Model-Specific Implementations 

• Implementation of YOLOv9 is performed using the Ultralytics framework with a 
new programmable mechanism in the name of Programmable Gradient Information- 
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PGI. Architecture utilizing Generalized Efficient Layer Aggregation Network, GELAN 
for efficient and preserved feature extraction. Training configurations are kept con- 
sistent across experiments: batch size = 32, base learning rate = 0.001, and train 

for 25 epochs. Input pipeline preprocesses the images at 640 × 640 resolution-a 
sweet spot that yields an optimal trade-off between the accuracy of detection and 
computational efficiency. 

• The PaliGemma is implemented using the JAX/FLAX framework since it has 
proven very transparent in matrix operations and has been very helpful during 
the automatic differentiation. Model variant: paligemma-3b-pt-224 combines the 
great feature extraction from medical images through SigLIP - Vision Encoder with 
the true understanding of anatomical structures developed in the Gemma-2B lan- 
guage model. The SigLIP encoder can internally process visual information with 
multiple self-attention layers, building very rich feature representations for tumor 
characteristics. 

• Its implementation is done using PyTorch. It uses Faster R-CNN architecture com- 
bined with ResNet-101 backbone. Multi-scale feature detection has been implemen- 
ted using FPN. On tumor detection, there is a great practical need to detect tumors 
of different sizes. The architecture of FPN will develop a hierarchical pyramid of 
feature maps and hence form a basis of the model that can show efficiency in tumor 
detection at different scales. The ROI heads process 128 regions per image, striking 
a fine balance between detection accuracy and computational resources. 

 

3.4 Training Protocol 

During this training process, a standardized protocol is followed for all three models to 
make sure their comparison is not biased. All the models train according to 25 epochs, 
although the batch size was optimized with regard to the GPU memory constraint. Learn- 
ing rate scheduling used in this work is cosine annealing, a technique in which the learning 
rate decreases duly toward the best convergence of performance. Model checkpointing 
saves the weights of the model with the best performance according to the validation 
performance to retain the best state of a model. 

 

3.5 Evaluation Framework 

This is the evaluation framework that benchmarks model performance from many dif- 
ferent angles: it includes comprehensive metrics in order to assess model performance. 
The Mean Average Precision at 0.5 and 0.5:0.5:0.95 IoU thresholds is calculated in detail, 
with minute insight into various detection accuracies. Class-by-class measurement of pre- 
cision and recall allows deliberation on model performances across every tumor variety. 
In addition, an evaluation of processing speed provides a measure of inference time within 
a number of computational loads, while tracking GPU memory utilization ensures that 
resource efficiency is assessed. Clinical relevance assessment is done concerning metrics 
that are of interest to medical applications. This makes the framework apply an analysis 
with respect to the false positives for each class of tumor. Furthermore, the accuracy 
of the detection concerning different sizes of the tumors has been measured. The ana- 
lysis of the confidence distributions of models returns insight into the reliability of the 
predictions-a fact particularly relevant when. 
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3.6 Experimental Validation 

The process of experimental validation includes some strict controls to be followed, main- 
taining perfect scientific rigor. Each experiment at random will be fixed with a seed to 
guarantee that it is reproducible; similarly, the preprocessing steps for data are stand- 
ardized so that inputs become identical to the model. The environment of evaluation 
will remain invariable in all tests, which excludes hardware and software variations as 
possible sources of discrepancy. 

 

3.7 Methodology Limitations 

The research methodology has inherent limitations, and this approach is embedded in 
the recognition of these tendencies. First, the dataset characteristics include pathologies 
related to tumor types; second, hardware conditions set restrictions on maximum achiev- 
able batch sizes. Moreover, the training time and computational resources involved may 
also vary due to possible variations in preprocessing. These limitations are in the back- 
ground of careful considerations in the analysis and interpretation of the results. What 
follows is a detailed methodology that allows for a comprehensive and consistent compar- 
ison of the three deep learning models in a scientifically valid and reproducible manner. 
The approach follows the current best practice in deep learning research, with additional 
nuances pertaining to medical image analysis. 

 

4 Design Specification 

The design specification provides the overall architectural frameworks, data organization 
structures, and technical requirements necessary for the realization of the comparative 
analysis of the brain tumor detection models. Figure 3.1 depicts the architecture re- 
garding the design, which consists of a number of interrelated components, each of them 
requiring the data in specific format and preprocessed by specific methodologies. 

 

4.1 Architectural Framework Design 

The system architecture combines three different deep learning frameworks, each of which 
has been optimized for tumor detection using a different approach. This design ensures 
consistent data flow while preserving unique advantages of each model’s architecture. 
This structure allows the processing of 8,903 brain MRI images using each model imple- 
mentation through its own specialized pipeline. 

 

4.2 YOLOv9 Design Architecture 

YOLOv9 architecture is designed with the implementation of Programmable Gradient 
Information with a hierarchical feature extraction network. The dataset organization is 
such that images and labels are in parallel directories; each image is linked with .txt files 
containing normalized bounding box coordinates along with class indices. The annotation 
format was one instance of the tumor per line, consisting of class index and normalized 
coordinates separated by space. The data format is specified as one tumor annotation per 
line for each label file in the format: class id center x center y width height. All values 
shall be normalized between 0 and 1, representing relative positions and dimensions within 
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the image. This provides the format that will best support processing with the system 
both at training and inference but provide the needed Specificity and accycarey of tumor 
location. 

 

4.3 PaliGemma Design Architecture 

PaliGemma architecture integrates the SigLIP vision encoder with the Gemma language 
model by means of a special attention mechanism. The dataset contains records in 
JSONL (JSON Lines) format, one full training example per line. Each entry consists of 
three main parts: an image path, a detection prompt, and a ground truth annotation. 
The format specification does this structuring for each entry, including image reference, 
prefix prompting for the detection task, and suffix containing ground truth annotations. 
Tumor coordinates are encoded in a specialized token system where the location of each is 
represented by angle-bracketed values normalized into 1024x1024 coordinate space. This 
allows for precise tumor localization while at the same time being compatible with the 
token-based processing of the language model. 

 

4.4 Detectron2 Framework Design 

Architecture from Detectron2 has a Feature Pyramid Network with a ResNet-101 back- 
bone, thus setting up a multi-scale feature representation system. Their dataset is in 
the COCO format: annotations are presented as a structured JSON format, signaling 
different sections for images, annotations, and categories. This format maintains a hier- 
archical structure where images and annotations are linked through unique identifiers. 
The metadata per image, COCO format specification, contains detailed information: 
dimension and identifiers. Annotations contain category identifiers, absolute values of 
bounding box coordinates in pixels, and area calculation. This design provides an ef- 
ficient way of batch processing, keeping only the representative critical data regarding 
tumor localization and tumor classification. 

 

4.5 Memory Management Design 

It corresponds to the implementation, in the architecture, of a memory management sys- 
tem designed especially for high-resolution medical image processing on GPU hardware. 
The system dynamically adjusts batch sizes based on the available memory of the GPU at 
runtime, so that resources are optimally utilized without running out of memory during 
either training or inference. 

 

4.6 Model Storage and Version Control 

The trained models reside in a duly organized repository in Google Drive, such that each 
architecture has a place. The storage system implements the following hierarchy: 

• Drive Organization: Each model implementation is done within a separate sub- 
directory from the root ”NCI Sep Thesis 2024/Asish Project/”. The YOLOv9 
models are implemented in the ”YOLOv9 Training” folder, where all checkpoints 
and configuration files are stored. Their PaliGemma models reside in ”BrainTu- 
mor paligemma/dataset/model”, where all model weights and tokenizers are main- 



12  

tained. Finally, the models in ”Detectron 2” store model checkpoints and evaluation 
results. 

• Model Versioning: Every training creates versions of the model that are timestamped, 
so different training iterations can be tracked. Versioning saves the best-performing 
weights of the models in ”best.pt” weight files and saves training history with 
”last.pt” checkpoints. This is carried out in order to ensure reproducibility and 
enable performance comparison between training sessions. 

• Configuration Management: Each of these model versions is accompanied by a con- 
figuration file, documenting hyperparameters, conditions of training, performance 
metrics, among others. These are versioned along with the model weights to ensure 
reproducibility and maintain clean documentation of how the model has evolved. 

 

4.7 Error Management System 

The design of error management includes comprehensive error-handling mechanisms per- 
taining to potential issues of data processing, model execution, and management of re- 
sources. The system comprises automatic recovery procedures for most common error 
conditions, hence providing fault tolerance with the longest running training and evalu- 
ation sessions. This design specification, with modularity and scalability across different 
model architectures, guarantees the tasks associated with brain tumor detection. Spe- 
cialized data format and processing pipelines ensure that each different model has its best 
performance while keeping consistency in the whole framework of detection. Efficiency 
with robustness has been emphasized in this design; it does not impede flexibility for 
comparative analysis between the different detection approaches. 

 

5 Implementation 

5.1 Development Environment Setup 

The implementation phase utilized the Google Colab Pro+ environment with an NVIDIA 
A100 GPU installed with 40GB VRAM and 83GB RAM. In such a high-performance com- 
putational environment, it was integrated with the Google Drive storage system through 
mounting protocols for quick and efficient access to both the dataset and model out- 
puts. Version control implementation tracked model iterations and performance metrics 
through timestamped directories in the project structure. 

 

5.2 YOLOv9  Implementation 

YOLOv9’s was implemented using the Ultralytics framework, with some modifications to 
customize its configuration for medical imaging tasks. The model implementation used in 
this framework required special configuration for the brain tumor dataset, and its weights 
were initialized with pre-trained parameters. The model weights, after training, could be 
saved into a file with timestamps in order to track the improvement in performance in the 
course of multiple training iterations. Implementation of performance tracking used the 
internal metrics system of Ultralytics, which provided very detailed logs of mean Average 
Precision values at different Intersection over Union thresholds. These are performance 
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metrics tracked by the system for each class-specific tumor type-granularity that provided 
detection capability insights across varied tumor classifications. 

 

5.3 PaliGemma Integration 

The PaliGemma implementation was based on model weights from Kaggle and performed 
efficient tensor operations using the JAX/FLAX framework. It implemented the Senten- 
cePiece processor for tokenization tasks, thereby taking detection results and formatting 
them into structured text formats. The implemented supervision library implemented 
the calculation of mean Average Precision scores through dedicated evaluation functions 
processing model predictions against ground truth annotations. The visualization of the 
results was done using Box Annotator, provided by the supervision implementation, and 
amounted to an appropriate modification in order to be able to handle the specific co- 
ordinate system used in PaliGemma. Evaluation The implemented pipeline included the 
custom metrics calculation through the class Detections, which was generated by super- 
vision. This gave the possibility of standardized performance assessment over all the 
dataset. This implementation handled a specific handler performing coordinate trans- 
formation between the normalized format of PaliGemma and the pixel-space coordinates 
needed for evaluation. 

 

5.4 Detectron2 Implementation 

Considering that Detectron2 is implemented based on the official Facebook repository, 
modifications should be performed in order to adapt to the medical imaging applica- 
tion. In the final stage, the Feature Pyramid Network implementation allows additions 
of custom anchor configurations towards adapting to different tumor sizes. The Region 
Proposal Network implementation has included specific modifications concerning medical 
imaging characteristics, where the IoU thresholds were adjusted for the specific tasks of 
tumor detection. These corresponded to some generated model checkpoints, storing the 
weights and biases along with configuration parameters, which are necessary for repro- 
ducibility. Training logs recorded the loss values across different network components 
to carry out a detailed analysis of model convergence patterns. Two custom protocols 
for the evaluation of the performance of the networks in detection were implemented for 
various types of tumors and sizes. 

 

5.5 Output Generation System 

A structured directory setup was created under Google Drive for organizing results by 
model type and iteration of training. Each model had specific forms of output format, 
namely: YOLOv9 generated compact weight files that are optimized for deployment; 
PaliGemma generated detection results for every tokenizer developed; and Detectron2 
generated rather comprehensive model checkpoints that capture feature extractor states 
each. 

 

5.6 Performance Analysis Implementation 

The actual implementation of performance analysis required the development of custom- 
ized metrics calculation systems for each model. Implementation of performance analysis 
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for YOLOv9 tracked mAP values through internal evaluation protocols. In PaliGemma, 
it was done using a class called MeanAveragePrecision that comes from the supervision 
library for standardized performance assessment. Implementation in Detectron2 utilizes 
COCO evaluation protocols adapted for tumor detection tasks. The PaliGemma im- 
plementation utilized the following components of the supervision library to handle the 
detection analysis: 

• MeanAveragePrecision Implementation: The model predictions are then fed into 
the evaluation pipeline of supervision, which is used to calculate precision and 
recall values over various IoU thresholds. This is how standard comparison with 
other models was allowed through common metric calculation methodologies. 

• Confidence Analysis Implementation: Its implementation tracked the distribution of 
confidence scores across tumor types, hence allowing the analysis of model certainty 
in different detection scenarios. Such a system could provide information about the 
reliability of detection over a range of tumor characteristics. 

 

5.7 Resource Management Implementation 

Resource management systems implemented dynamic batch size adjustment based on 
memory availability. The implementation monitored GPU memory utilization via the 
NVIDIA system management interface, adjusting the processing parameters to maintain 
optimal performance while preventing memory overflow conditions. 

 

5.8 Model Storage Implementation 

This implementation established structured storage conventions in the form of Google 
Drive. Each model kept separate folders for weights, configurations, and evaluation res- 
ults. The storage system implemented versioning by using timestamp-based naming 
conventions; thus, the model’s evolution throughout its training was tracked. Most of the 
implementation involved the rigorous placement in place of some quite solid systems for 
the training of the models, evaluating them, and then doing the analysis on the results. 
It has maintained precisely the same protocol constant for all three models, while main- 
taining the architectural advantages of each model, thereby allowing proper performance 
comparisons to be made on the tasks of brain tumor detection. 

 

6 Evaluation 

This part of the research represents a comprehensive test of YOLOv9, PaliGemma, and 
Detectron2 applied to the task of brain tumor detection. The section discusses several 
dimensions of model performance, computational efficiency, and clinical viability by re- 
course to standardized metrics and systematic testing protocols. 

 

6.1 Evaluation Framework and Metrics 

It requires special metrics that reflect both the localization accuracy and classification 
reliability to quantify object detection models applied to medical imaging. The mean 
Average Precision is a cornerstone metric in such an assessment and provides variable 
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threshold levels that enable the quantification of detection quality. mAP@0.50 or mAP50 
is the metric at a threshold of 50% IoU and acts like the basic measure in capability for 
detection. Contrarily, mAP75 requires 75% IoU, which reflects the precision of tumor 
boundary localization and is actually an important consideration in clinical practice, 
since exact dimensions define the treatment decisions. mAP50-95 gives a comprehensive 
view of the performance by averaging precision at multiple IoU thresholds and can be 
indicative of model robustness against various detection scenarios. 

 

6.2 Individual Model Performance Analysis 

 

 
Figure 4: Evaluation Metrics 

 

 
6.2.1 PaliGemma Model Analysis 

PaliGemma’s performance in brain tumor detection reveals interesting patterns accord- 
ing to the different evaluation criteria. Its mAP50 attains a value of 0.482, which signals 
a moderate success on the basic task of detection, while degradation in performance is 
observed with higher precision requirements; mAP75 drops to 0.278, the overall mAP50- 
95 reaching 0.269. This pattern in performance baselines hints that while PaliGemma 
can fairly identify tumor presence, it is challenging for it to delineate precise boundar- 
ies. While the architecture of the model is particularly strong for vision and language 
processing tasks, interpretation features-especially-call for outstanding capability; many 
limitations also concern spatially precise terms in some cases. These results would there- 
fore indicate that PaliGemma’s complex language modeling does not pose the same level 
of challenges as that required within medical image analysis. 

mailto:mAP@0.50
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6.2.2 YOLOv9 Performance Analysis 

YOLOv9 sets a very stellar performance against all metrics of evaluation, with an mAP50 
of 0.958, speaking of near-perfect detection at standard threshold. The model has contin- 
ued performance at higher precisions: mAP50-95 of 0.78, adding to its robust localization 
capability throughout different threshold levels. Remarkable in this performance is that 
the model does this with a comparatively lean architecture of 25,322,332 parameters. 
The innovative Programmable Gradient Information seems to be a key ingredient of the 
model. According to the detection patterns, rather constant accuracy can be observed 
across various types of tumors and sizes, indicating effective feature extraction and loc- 
alization. 

 
6.2.3 Detectron2 Performance Analysis 

Performance, in the case of Detectron2, paints a very balanced picture, with its mAP50 
at 0.698 and mAP75 at 0.624, indicating good general detection abilities backed by good 
precision maintenance at higher thresholds. These results pointed to particular strengths 
in given tumor types, most notably for meningiomas with high accuracy at 76.86% AP and 
handling no tumor cases at 78.37% AP. This model shows variable performance among 
tumor categories. The glioma detection is found at 58.52% AP, whereas the detection of 
pituitary tumors is poor in this model. The variability here thus gives way to a possible 
specialization capability which could be useful in certain clinical contexts. 

 
6.2.4 Detailed Performance Analysis 

The comparative study between the results obtained by YOLOv9, Detectron2, and Pali- 
Gemma demonstrated the differences in their detection and classification of brain tumors. 
The present comparison will provide the main information on each model’s strengths and 
limits regarding different tumor classifications and their consequent clinical applications. 

 
Table 1: Detection Accuracy Metrics (mAP) 

Tumor Type mAP Metric YOLOv9 Detectron2 PaliGemma 
Meningioma mAP50 98.7% 76.86% 44.47% 

mAP75 85.0% 62.36% 30.14% 
Glioma mAP50 91.3% 58.52% 20.81% 

mAP75 69.8% 43.21% 7.54% 
Pituitary mAP50 93.8% 0.00% 35.89% 

mAP75 70.6% 0.00% 13.63% 
No Tumor mAP50 99.4% 78.37% 43.95% 

mAP75 86.6% 65.89% 6.13% 

 
Meningioma detection demonstrated the most consistent performances across all mod- 

els, although success varied significantly among some. Among those, in meningioma de- 
tection, the performance of YOLOv9 was quite excellent-98.7% of mAP50 and 85.0% 
mAP75-set a new benchmark on the accuracy for the reviewed detection. Strong special- 
ized performance is given to Detectron2, while achieving 76.86% mAP50, and PaliGemma 
realized its best result in the category with 44.47% mAP50. That consistency within mod- 
els on the subject would therefore be due to the separate imaging characteristics, since 
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these meningiomas generally build up with circumscribed borders and homogeneous fea- 
tures in their medical presentation. 

 
Table 2: Precision and Recall Analysis 

Tumor Type Metric YOLOv9 Detectron2 PaliGemma 
Meningioma Precision 97.2% 74.52% 67.03% 

Recall 96.9% 71.89% 64.69% 
Glioma Precision 90.5% 55.73% 54.67% 

Recall 83.5% 52.18% 31.79% 
Pituitary Precision 90.8% 0.00% 35.12% 

Recall 87.5% 0.00% 33.45% 
No Tumor Precision 97.5% 76.23% 41.82% 

Recall 97.8% 73.56% 39.67% 

Glioma detection presented more significant challenges across all models, reflecting 
the complex nature of these tumors. As evidenced in Table 6.2.4.2, YOLOv9 maintained 
robust performance with 90.5% precision and 83.5% recall, demonstrating its superior 
feature extraction capabilities. Detectron2’s performance showed moderate degradation 
with precision at 55.73% and recall at 52.18%, while PaliGemma struggled significantly, 
with a notable gap between precision (54.67%) and recall (31.79%). The variable present- 
ation and infiltrative nature of gliomas likely contribute to these detection challenges, 
particularly for models with less sophisticated feature extraction mechanisms. 

Pituitary tumor detection revealed the most striking performance disparities among 
the models. YOLOv9 continued its strong performance with 93.8% mAP50 and 70.6% 
mAP75, while Detectron2 failed completely in this category with 0.0% AP. Table 6.2.4.3 
shows that YOLOv9 experienced a 23.2% performance drop from mAP50 to mAP75 for 
pituitary tumors, while PaliGemma showed a similar drop of 22.26%. This stark con- 
trast in performance highlights fundamental differences in the models’ architectures and 
their ability to adapt to specific tumor characteristics. The detection of cases with no 
tumors proved to be a critical differentiator in model performance. YOLOv9 excelled 
with the lowest performance drop of 12.8% between mAP50 and mAP75, demonstrating 
exceptional capability in distinguishing normal brain tissue. Detectron2 showed similar 
stability with a 12.48% drop, while PaliGemma exhibited the most severe degradation of 
37.82%, indicating potential issues with false positive detections at higher IoU thresholds. 
Analysis of detection efficiency patterns reveals several critical insights across the metrics 
presented in all three tables. Cross-model performance variation shows YOLOv9’s re- 
markable consistency with greater than 90% precision and recall across all classes, while 
Detectron2 demonstrates high variability, and PaliGemma maintains consistent but lower 
performance. The precision-recall trade-offs indicate that YOLOv9 maintains balanced 
metrics exceeding 90% for most classes, while Detectron2 shows stronger precision than 
recall in successful cases, and PaliGemma exhibits significant drops in recall compared to 
precision. Performance degradation at higher IoU thresholds provides additional insights 
into model robustness. As shown in Table 6.2.4.3, YOLOv9 maintains the smallest av- 
erage performance drop across all tumor types, while PaliGemma shows the most severe 
degradation, particularly for no-tumor cases. This pattern suggests fundamental differ- 
ences in the models’ ability to precisely localize tumor boundaries, a critical factor in 
clinical applications. These quantitative findings lead to clear recommendations for clin- 
ical implementation.  For general-purpose detection, YOLOv9 emerges as the primary 
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choice due to its consistent cross-class performance and robust detection capabilities, as 
evidenced by its superior metrics across all tables. In specialized applications, Detec- 
tron2 might be considered for meningioma-focused detection, given its relatively strong 
performance in this category, though it should be avoided for pituitary tumor detection. 
PaliGemma, While PaliGemma has shown great promise for integrated vision-language 
tasks, it still needs significant optimization before clinical deployment, as reflected in its 
uniformly lower performance metrics. 

 
Table 3: Performance Drop Analysis (mAP50 to mAP75) 

Tumor Type YOLOv9 Drop (%) Detectron2 Drop (%) PaliGemma Drop (%) 
Meningioma 13.7 14.5 14.33 
Glioma 21.5 15.31 13.27 
Pituitary 23.2 N/A 22.26 
No Tumor 12.8 12.48 37.82 

 
Looking ahead to future development, several key areas must be addressed based 

on the quantitative analysis. The complete failure of Detectron2 in pituitary tumor 
detection needs to be tackled through architectural modifications or special training ap- 
proaches. The results also depict that PaliGemma has the poorest performance at higher 
IoU thresholds, which further indicates that the model is still in need of optimization, 
especially for medical imaging. Besides, YOLOv9 showed superior performance, but 
additional validation in various clinical scenarios would further strengthen its position 
as the preferred model for clinical implementation. Ultimately, this in-depth analysis 
complemented the comprehensive quantitative metrics and provided a complex interplay 
between model architecture, tumor characteristics, and detection performance. Though 
YOLOv9 generally performs better on all metrics compared to the other models, there is 
a need to comprehend strengths and limitations specific to each model for optimal clin- 
ical deployment. These insights serve to provide very useful guidance regarding current 
implementation decisions and further development efforts in the area of automated brain 
tumor detection. 

 

Figure 5: Performance Drop 
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6.3 Comparative Performance Analysis 

This comparison across the models in terms of detection capability and computational 
requirement probably brings about the most prominent difference. YOLOv9 sets a new 
benchmark in all metrics in brain tumor detection and remains computationally reason- 
able at 102.3 GFLOPs. However, the higher the IoU threshold considered, the higher the 
difference in performance, with YOLOv9 remaining consistent, while there are significant 
degradations in performance for both PaliGemma and Detectron2. This then gives im- 
portant clinical implications, considering accurate detection of tumor boundary is a key 
to optimum treatment. 

 

6.4 Computational Resource Analysis 

The differences among the three models related to resource consumption were important. 
PaliGemma and Detectron2 resulted in higher use of GPU RAM during the inference 
that can be crucial limiting factor in resource-critical deployment. YOLOv9 was meant 
to become a very efficient algorithm. Indeed, it kept performance superior when compared 
to it, ensuring all resource needs were potentially lower and thus more compatible with 
real-time clinical utilization. 

 

6.5 Comprehensive Model Comparison and Analysis 

A comparative analysis of YOLOv9 against PaliGemma and Detectron2, therefore, gives 
a comprehensive insight with very distinct patterns concerning performance characterist- 
ics, computational demands, and practical applicability for brain tumor detection across 
many dimensions critical to medical imaging applications. 

 
6.5.1 Detection Accuracy Analysis 

The best detection performance is observed in YOLOv9, with an mAP50 of 0.958 and 
far outperforming both Detectron2, which attained 0.698, and that of PaliGemma, with 
0.482. This performance gap increases as the IoU threshold increases to higher IoU 
threshold where YOLOv9 maintained an mAP75 of about 0.85, while the mAP75 of 
Detectron2 falls as low as 0.624 and PaliGemma as low as 0.278. The robustness in 
performance across these different IoU Thresholds for YOLOv9 may suggest a robust 
tumor boundary localization capability, critical in clinical applications. 

 
6.5.2 Tumor-Specific Performance 

Performances of the different models on tumor-specific detection capabilities show vari- 
ous patterns. This indeed shows that Detectron2 is very specialized in certain kinds of 
tumors, especially in meningioma detection with 76.86% AP and normal cases identific- 
ation at 78.37% AP. In contrast, YOLOv9 performs uniformly for all types of tumors in 
a balanced detection viewpoint. PaliGemma promised very well in the general detection 
tasks; however, special detection for tumors resulted in less uniform performance across 
different tumor types. 
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6.5.3 Computational Efficiency and Resource Requirements 

Resource utilization analysis shows large differences in computationTeam Hw require- 
ments. The YOLOv9 framework requires 102.3 GFLOPs and yields the best performance 
with reasonable computational efficiency. In contrast, PaliGemma and Detectron2 have a 
very high GPU memory at inference, which could be detrimental due to their deployment 
conditions. Considering the trade-off between efficiency and performance, the YOLOv9 
model is highly desired for most clinical scenarios in the real world, where diagnostic 
accuracy and processing speed are both important. 

 
6.5.4 Optimal Model Selection 

Among the comprehensive analyses, the findings make YOLOv9 best suited for applica- 
tion in Brain Tumor detection based on several key factors: 

• Performance Superiority: These very high mAP scores over all the thresholds in the 
model, such as mAP50: 0.958 and mAP50-95: 0.78, are indicative of very superior 
detection and localization. 

• Computational Efficiency: In contrast, YOLOv9 maintains high performance with 
reasonable computational costs, making it much more practical for clinical deploy- 
ment. 

• Consistency: The results obtained using this model are quite consistent over a 
wide variety of tumor types and sizes, an important feature for general diagnostic 
applications. 

• Resource Optimization: The balance between performance and computational de- 
mands makes YOLOv9 the most practical choice for real-world implementation. 

However, specific use cases might benefit from other models serving them better: Since 
it is recognized that Detectron2 performs very well on certain tumor categories, it may 
thus be useful for specialized diagnostic applications, in particular, when narrowing the 
focus to meningioma detection. While PaliGemma bears lower overall performance, its 
architecture may offer advantages in situations where integration with NLP capabilities 
can be actively engaged. This comparative study clearly indicates that YOLOv9 has a 
promising balance between high accuracy on one side and steady performance with real- 
world efficiency on the other side, making it the most efficient architecture for detecting 
brain tumors. The results of the investigation subsequently indicate that, in the design of 
the future of medical imaging detection systems, adaptation to the architectural basis of 
YOLOv9-supplementing its identified specialized strengths with alternative models where 
needed for certain applications is thus recommended. 

 

6.6 Discussion 

The experimental evaluation carried out on YOLOv9, PaliGemma, and Detectron2 sheds 
light on some very useful insights into their respective efficiencies in the detection of 
brain tumors while using different architecture inspirations and implications. This section 
frames these findings within the extant literature and analyzes the peculiarities of each 
model, with special consideration to the novelty brought by PaliGemma. 
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6.6.1 Architectural Distinctions and Their Impact 

PaliGemma is completely different in nature from common object detection models, such 
as YOLOv9 or Detectron2. While the latter two represent typical architecture in com- 
puter vision, finetuned for object detection, PaliGemma introduces a completely new 
paradigm: that of vision-language. According to Beyer et al. (2024), PaliGemma com- 
bines one SigLIP vision encoder with one Gemma-2B language model; thus, it is able 
to interpret any given visual content from the perspective of language understanding. 
This architectural difference is highlighted as one of the main reasons for both strengths 
and weaknesses of the current study. These could be some of the reasons for the modest 
performance of PaliGemma, which has a mAP50 of 0.482 compared to YOLOv9, which 
has a mAP50 of 0.958, and Detectron2, which has a mAP50 of 0.698. First, PaliGemma 
is strong in general vision-language tasks. However, its architecture has not been optim- 
ized for any kind of precise spatial localizations needed in medical imaging. Whereas the 
model’s approach to changing visual features into a space of language before making pre- 
dictions introduces some kind of added complexity in tasks requiring the exact boundary 
detection. 

 
6.6.2 Performance in Context of Previous Research 

These results show various improvements compared to the state-of-the-art literature. 
YOLOv9 performed exceptionally well, improving the work of G et al.(2023), which res- 
ulted in an accuracy of 98.02% on ResNet50. This proves the efficiency and effectiveness 
of YOLOv9’s Programmable Gradient Information mechanism in medical image pro- 
cessing applications. This good performance of PaliGemma is relatively low compared 
to classic object detection models studied here and should, therefore, be put in a proper 
perspective with respect to the goals set for its architecture. This model has been shown 
effective by Beyer et al. (2024) for general vision-language tasks. It is consequently reas- 
onable to assume that this current limitation within medical imaging may be overcome 
by adapting the model to this domain. Its ability to process visual information within 
a language understanding framework affords possibilities of integrating clinical metadata 
and radiological reports with image analysis in ways not possible in the older object 
detection models. Detectron2’s category-specific performance aligns with findings from 
Kartheeban et al. (2022), particularly in meningioma detection (76.86% AP). However, 
its Feature Pyramid Network architecture provides more consistent performance across 
tumor types compared to previous implementations. 

 
6.6.3 Critical Analysis of Model-Specific Implementation 

6.6.3.1 PaliGemma Implementation Insights 
The application of PaliGemma underlined some key aspects that have not been explicitly 
included in the traditional object detection models: 

• Token-based Representation: While this is a unique challenge compared with other 
applications of medical imaging, where precise spatial localization is usually im- 
perative, it requires the model to represent the spatial information with tokens of 
text. 

• Vision-Language Integration: A combination of visual and linguistic features allows 
the inclusion of clinical knowledge in it, though the presented application does not 



22  

take full advantage of such a possibility. 

• Transfer Learning Dynamics: This may indicate that more advanced fine-tuning 
methods are required for the medical imaging tasks in the pre-training of the model 
on general vision-language tasks. 

 
6.6.3.2 YOLOv9 and Detectron2 Implementation Considerations 
Some of the most straightforward paths to the implementation for which these models 
were based were specifically architecture in object detection: 

• It is observed that the PGI mechanism of YOLOv9’s is very effective in maintaining 
the spatial information, which is quite critical for tumor boundary detection. 

• The FPN architecture in Detectron2 showed a broader capability on tumors of 
variable size, associated with more computational overhead. 

 
6.6.4 Areas for Improvement 

The analysis explains and delineates critical areas involving different model implement- 
ations that require improvements. The development in PaliGemma should go further in 
the direction of medical-specific token representation schemes for better spatial nuances 
in tumor detection. Good mechanisms are required to improve this model with regard 
to maintaining the spatial information particular to vision-language capabilities. Integ- 
ration of features to comprehend medical reports could provide that link which seems to 
be lacking between visual detection and clinical interpretation. 

YOLOv9, despite the superior performance, offers opportunities for fine-tuning the 
PGI mechanism in view of medical image applications. In this regard, the current im- 
plementation has to be further pruned into a much lighter-weight architecture while 
considering the trade-off between detection performance and computational efficiency. 
This will be advantageous for resource-constrained clinical settings. 

Detection would most likely be served better by fine-tuning the region proposal mech- 
anisms of Detectron2 for medical imaging. The current architecture works well but ap- 
pears to leave room for enhancements in computational efficiency without necessarily 
sacrificing performance in category-specific detection. 

 
6.6.5 Methodological Improvements 

Drawling from the contributions of Mahmud et al.(2023), several methodological refine- 
ments are critical to carrying forward tumor detection capability. Both the composition 
and preprocessing methods have to be advanced further to reflect more clinically complex 
scenarios. This involves increasing the diversity in medical imaging data while ensuring 
balance in the representation of tumor types and sizes. The inclusion of clinical metadata 
would further contextualize model training and evaluation. Training protocols need to 
be fine-tuned further to cope better with the peculiarities of medical image analysis. 
This involves the development of special fine tuning strategies for PaliGemma, hence 
obtaining improved bridge gap general vision language tasks to the specifics of medical 
imaging. This would be further enhanced through the incorporation of the approach of 
curriculum learning for better adaptation of the model to the varying difficulty level of 
detection. Cross-model knowledge distillation techniques show exciting avenues toward 
better performance without losing computational efficiency. 
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Moreover, this requires the expansion of the assessment framework beyond the con- 
ventional metrics to truly capture the wide spectrum of clinical needs. This includes 
developing robust measures of model interpretability that are in line with clinical decision- 
making processes. The evaluation of model calibration would be key to understanding 
the reliability of the predictions in clinical contexts. Failure mode analysis would provide 
valuable information for model improvements and guidelines on clinical implementation. 

 
6.6.6 Future Research Directions 

The following review points out several promising avenues for future research in detector 
medical imaging. Architectural innovation, especially the advance towards hybrid ap- 
proaches that effectively combine PaliGemma’s deep language understanding capability 
with excellent detection performance by YOLOv9. Attention mechanisms optimized for 
medical imaging applications may improve the accuracy of detection while still main- 
taining computational efficiency. The research in clinical integration needs to focus on 
developing better frameworks that integrate model predictions smoothly into prevailing 
clinical workflows. It could involve laying out particular interpretability requirements dur- 
ing clinical adoption, besides performing holistic assessments of real-world performance 
in clinical settings. If protocol standardization for model validation in clinical environ- 
ments were developed, technology would be wider. Transfer learning remains another im- 
portant future research direction, especially towards the development of medical specific 
pre-training techniques that will better capture the subtlety of both anatomical struc- 
tures and pathological variations. A study of different domain adaptation techniques may 
result in increasing model generalizability across various medical imaging modalities and 
clinical environments. A few shot learning ability may be a venue to deal with persistent 
issues regarding the number of available labeled medical data. The roadmap ahead will 
be to make decisions with great concern for technical advancement and clinical applicab- 
ility. Future studies need to balance the push of improved detection accuracy provided by 
technical improvement with pragmatic constraints of clinical implementation. More effi- 
cient architecture development, improvement of interpretability mechanisms, and robust 
validation frameworks will be of crucial essence in further advancing automatic tumor 
detection. 

 
6.6.7 Comparative Literature Analysis 

• Dataset scope: My study utilizes a significantly larger dataset (8,903 images) 
compared to previous works. More comprehensive coverage of tumor types (men- 
ingioma, glioma, pituitary, no tumor). Enhanced validity through larger sample 
size. 

• Model Sophistication: First comprehensive evaluation of YOLOv9 and Pali- 
Gemma for medical imaging. Integration of vision-language capabilities (Pali- 
Gemma). More advanced architectural features (GELAN, PGI mechanisms) 

• Performance Metrics: More detailed evaluation metrics (mAP50, mAP75, precision- 
recall). Class-specific performance analysis. Resource utilization measurements. 

• Implementation Depth: More sophisticated preprocessing pipeline. Standard- 
ized evaluation framework. Detailed computational resource analysis. 
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7 Conclusion and Future Work 

This research addressed the central question: ”How do the advanced deep learn- 
ing models, specifically YOLOv9, PaliGemma, and Detectron2, compare in 
terms of accuracy, processing speed, computational efficiency, and clinical ap- 
plicability for brain tumor detection in medical imaging, and what are the 
key factors influencing their performance?” The study has thus been able to define 
both strengths and limitations of each architectural approach through its systematic 
implementation and evaluation, therefore providing further valuable insights in both aca- 
demic research and clinical applications. This comparative analysis showed a distinctive 
performance for each of the three models. YOLOv9 came out as the best solution and 
posted a very impressive mAP50 of 0.958 while sustaining computational efficiency at 
102.3 GFLOPs. This performance proves that such a Programmable Gradient Inform- 
ation mechanism is exceptionally effective in maintaining spatial information relevant 
for tumor detection, far outpacing both PaliGemma, at mAP50: 0.482, and Detectron2, 
at mAP50: 0.698. PaliGemma introduced a new vision-language paradigm to medical 
image analysis while achieving moderate detection performance. Its distinctive architec- 
ture, comprised of a SigLIP vision encoder joined with a Gemma language model, affords 
unique opportunities for effectively incorporating the clinical context into the analysis of 
visual information. Although the described performance metrics were worse compared 
to that achieved by conventional object detection approaches, its current capability for 
processing both kinds of visual and textual information may enable more comprehensive 
diagnostic support systems. Also, unsurprisingly for a model that specialises in images 
of tumours, the performance of Detectron2 was correspondingly good at special tasks, 
like the detection of meningioma at 76.86% AP, and the identification of normal cases at 
78.37% AP. While this is still nowhere near the overall results of YOLOv9, this special 
performance suggests value in more focused diagnostic applications where the highest 
possible category-specific detection performance is required. 

A few limitations arose in this process.  First, while fairly extensive, the dataset 
consists of 8,903 images from one institution. Model generalization may thus be lim- 
ited for a variety of different clinical settings and a variety of imaging protocols.  Second, 
while models showed good performances in this controlled evaluation scenario, further in- 
vestigation is needed on their behavior within real-word scenarios, given different imaging 
equipment and protocols. Third, the computational requirements, mainly for PaliGemma 
and Detectron2, may be an implementation challenge in resource-constrained healthcare 
environments. The impact of this work goes beyond technical performance metrics. The 
success of YOLOv9 infers that architectural innovations focusing on information preser- 
vation and effective feature extraction can significantly enhance medical image analysis. 
Although at this time with performance limitations, PaliGemma opens views on integ- 
rating clinical knowledge within image analysis. Detectron2 specialized performance puts 
into evidence the value of targeted solutions for specific diagnostic tasks. The following 
directions unfold as potential and interesting avenues of research. By way of follow-up to 
this work, there is the possibility to create hybrid architectures that incorporate the de- 
tection precision of YOLOv9 into PaliGemma’s language understanding, thus fixing the 
current limitations while leveraging the strengths of both approaches. The investigation of 
domain-specific optimization may strengthen PaliGemma’s performance on medical ima- 
ging tasks while retaining its special skills regarding vision-language. Resource-efficient 
deployment strategies are under investigation, especially for resource-constrained ones, 
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toward broadening facilitation for clinical use. 
Commercialization opportunities are available in a number of areas, for example: 

specialized deployment solutions that integrate these models with existing medical ima- 
ging workflows can facilitate uptake in clinical practice. This could also be availed to 
small healthcare facilities through cloud-based services with integrated privacy-preserving 
mechanisms. Standardized interfaces by which the models can be integrated may be 
developed to allow for smooth integration into the existing systems used by the health- 
care industry. Future studies shall focus on three aspects: domain-specific pre training 
strategies that could help the model perform better on different medical imaging mod- 
alities; studies on interpretability mechanisms focused on clinical applications, with the 
purpose of increasing trust and, consequently, adoption in clinical settings; lastly, the in- 
vestigation of federated learning methods with the goal of being able to improve models 
across institutions while not affecting data privacy. The eventual clinical success of these 
technologies will be determined by their ability to integrate into existing healthcare work- 
flows while providing reliable, interpretable results. The current study laid the foundation 
for further studies in AI-assisted medical imaging and performed both remarkable pro- 
gress in recent years due to modern architectural innovations and remaining challenges 
toward the realization of the full potential of these technologies in clinical practice. While 
YOLOv9 currently provides the best solution on brain tumor detection, these findings 
suggest further research using hybrid approaches which combine the strengths of different 
architectural paradigms could provide even more powerful diagnostic tools. 
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