‘* |
\ National
Collegeof

[reland

Configuration Manual

MSc Research Project
Data Analytics

Shruthi Manthena
Student ID: x23235853

School of Computing
National College of Ireland

Supervisor: Teerath Kumar Menghwar

\—-
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Shruthi Manthena
Student ID: x23235853
Programme: MSc Data Analytics Year: 2024 - 25
Module: MSc Research Project
Lecturer: Teerath Kumar Menghwar
Submission Due
Date: 12/12/2024
Project Title: A Comparative Study of Machine Learning Algorithms for Vehicle

Insurance Fraud Detection

Word Count:979 Page Count:9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shruthi Manthena

Date: 11/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project u]
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signhature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Shruthi Manthena
Student ID: x23235853

1. Introduction

This configuration manual is a step-by-step guide of the experiment setup and result of the machine
learning study involving vehicle insurance fraud detection. The research assesses datasets and
machine learning algorithms for prediction of claims and identification of fraud. This research
evaluates various Machine learning models Decision Tree, K- Nearest Neighbors (KNN), Light
Gradient Boosting Machine (Light GBM), Random Forest and Support Vector Classifier (SVC). This
manual comprises all the technical details include Software, Hardware infrastructure, Python libraries
used and related packages for visualizations as well. It also includes Equipment specifications, data
pre-processing, algorithms configurations, besides performance assessment. This guide provides step-
by-step instructions which would help and understand the users to configure the environment, to
replicate the experimental setup, do the case experiment and to analyse the results. This document
gives details of the software, packages, and configurations required to ensure that it gives similar
experimental environment therefore similar results.

2. Development Environment

For this Research study, the environment used is Mac OS. Specifications of both Hardware and
Software are explained in detail below. The datasets used for the project are — Insurance claims and
Car Insurance claims.

2.1 Hardware Specifications
e OS: Mac OS
e Chip: Apple M1
The environment was created using the local hardware system specifications mentioned above.

Furthermore, it is not necessary to have the identical specifications to recreate the setting in
order to conduct the experiment or rerun the setup.

2.2 Software Specifications

= Operating System: Mac OS or any other operating system can be used.
Ex: Windows 10/11 or Ubuntu 20.04+
* Programming Language: Python version 3.11.7

'python —-version

Python 3.11.7
Figure 1: Python Version

= Integrated Development Environment (IDE): Jupyter Notebook 6.5.4
or higher version.

2.3 Python Libraries Required

Figure 2 shows the list of necessary Python Libraries required for execution of the code
and these python libraries can be installed using pip command.
e Numpy
Pandas
Scikit-learn
Matplotlib
Seaborn
Keras

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt

import seaborn as sns

wmatplotlib inline
rom sklearn.model_selection import train_test_split
rom sklearn.ensemble import RandomForestClassifier
ron sklearn.neighbors import KNeighborsClassifier

rom sklearn.tree import DecisionTreeClassifier
rom lightgbm import LGBMClassifier

f

f

f

from sklearn.svm import SVC

f

f

from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix, classification_report

Figure 2: Libraries Imported (common for all models)

3. Data Source

Total three datasets are used for this project and are obtained from Kaggle and include
insurance fraud claims with key attributes such as age, policy number, policy state, months
as customer and more.

e (Claim Fraud Identification: Includes insurance fraud labels and associated
features.
https://www.kaggle.com/code/buntyshah/insurance-fraud-claims-
detection/input?select=insurance_claims.csv

https://www.kaggle.com/code/buntyshah/insurance-fraud-claims-detection/input?select=insurance_claims.csv
https://www.kaggle.com/code/buntyshah/insurance-fraud-claims-detection/input?select=insurance_claims.csv

months_as_customer age policy_number policy_bind_date policy_state policy_csl policy_deductable policy_annual_premium umbrella_limit insured_zip insured_sex insured_education_level insured_occupation

328 48 521585 2014-10-17 OH 2501500 1000 1406.91 0 466132 MALE MD craft-repair

28 42 342868 2006-06-27 IN 2501500 2000 1197.22 5000000 468176 MALE MD machine-op-inspet
134 29 687698 2000-09-06 OH 100/300 2000 141314 5000000 430632 FEMALE | PhD sales

25 41 227811 1990-05-25 IL 2501500 2000 1415.74 6000000 608117 FEMALE | PhD amed-forces
28 44 367455 2014-06-06 IL 500/1000 1000 1583.91 6000000 610706 MALE Associate sales

25 39 104594 2006-10-12 OH 250/500 1000 13511 0 478456 FEMALE | PhD tech-support

137 34 413978 2000-06-04 IN 250/500 1000 1333.35 0 441716 MALE PhD prof-specialty

Figure 3: Dataset 1 columns and details

e Automobile Insurance Data: Records insurance policy and claim details.
https://www.kaggle.com/datasets/sagnik 151 1/car-insurance-data

ID AGE GENDER RACE DRIVING_EXPERIENCE EDUCATION INCOME CREDIT_SCORE VEHICLE_OWNERSHIP VEHICLE YEAR MARRIED CHILDREN POSTAL CODE ANNUAL MILEAGE VEHICLE T

569520 65 female majority 0-9y high school upper class 0.629027313918201 1.0 after 2015 00 10 10238 120000 sedan
750365 16-25 male majority 0-9y none poverty 0.3577571170184630 0.0 before 2015 00 00 10238 160000 sedan
199901 16-25 female majority | 0-Oy high school working class ~ 0.4931457852181980 1.0 before 2015 00 00 10238 110000 sedan
478866 16-25 male majority | 0-9y university working class ~ 0.2080128507324560 1.0/ before 2015 00 10 32765 11000.0 sedan
731664 26-39 'male majority | 10-19y none working class 0.3883658881572180 1.0 before 2015 00 00 32765 120000 sedan
877557 40-64 female majority | 20-29y highschool upperclass 0.6191273725847390 1.0 after 2015 00 10 10238 130000 sedan
930134 65 male majority ' 30y+ high school upperclass 0.4929435502195340 0.0/ after 2015 10 10 10238 130000 sedan

Figure 4: Dataset 2 columns and details

e Vehicle Insurance Claim Prediction: Contains historical claim records for
predictive modeling.
https://www.kaggle.com/code/has9800/vehicle-insurance-claim-prediction-98-

99/input
D KIDSDRIV BIRTH ~ AGE HOMEKIDS YOJ INCOME PARENT{ HOME VAL MSTATUS GENDER EDUCATION OCCUPATION TRAVTIME CARUSE BLUEBOOK TIF CARTYPE RED CAR
63581743 0 16MAR39 60 0/ 11 §67,349.00 No $0.00 z_No M PhD Professional 14 Private $14,230.00 11 Minivan yes
132761049 0/ 21JANS6 43 0 11 $91,449.00 No $2,57,262.00 2_No M z_High School z_Blue Collar 22 Commercial $14,940.00 1 Minivan yes
921317019 0 18NOV51 48 0 11 $52881.00 No $0.00 z_No M Bachelors Manager 26 Private $21,97000 1 Van yes
727598473 0 05MAReé4 35 110 §$16,039.00 No $1,24,191.00 Yes zF z_High School Clerical 5 Private $4,01000) 4 zSW no
450221861 0 05JUN48 51 0 14 No $3,06251.00 Yes M <High School z_Blue Collar 32 Private $15,44000 7 Minivan yes
743146596 0 17MAY49 50 0 $1,14,986.00 No $2,43,925.00 Yes zF PhD Doctor 36 Private $18,00000) 1 z.SW no
871024631 0 05MAYBS 34 1) 12 $1,25301.00 Yes $0.00 zNo zF Bachelors Z_Blue Collar 46 Commercial $17,430.00 1 Sports Car no
792300541 0 28FEB45 54 0 $18,755.00 No Yes zF <High School z_Blue Collar 33 Private $878000) 1 zSW no

Figure 5: Dataset 3 columns and details

4. Project Code Files

e Data Cleaning and Preprocessing: Handles missing data, encodes categorical
features and scales numerical values.

e Model Implementation: Includes code for training Decision Tree, KNN, Light
GBM, Random Forest and SVC models.

e Performance Evaluation: Calculates accuracy, F1 score, precision and recall for
each model and dataset.

e Results Comparison: Compares the efficiency of models across datasets.

EDA_Datasetl.ipynb
EDA_Dataset2.ipynb
EDA_Dataset3.ipynb
model-training-datasetl.ipynb
model-training-dataset2.ipynb
model-training-dataset3.ipynb

Figure 6: Code files of EDA and model training of all 3 datasets

https://www.kaggle.com/datasets/sagnik1511/car-insurance-data
https://www.kaggle.com/code/has9800/vehicle-insurance-claim-prediction-98-99/input
https://www.kaggle.com/code/has9800/vehicle-insurance-claim-prediction-98-99/input

S. Data Preparation

5.1 Extracting Data
Loading the datasets from CSV file uploaded:

import pandas as pd

datasetl = pd.read_csv('Datasetl.csv')
infol = datasetl.info()

headl = datasetl.head()

(infol, headl)

import pandas as pd

Load the datasets
dataset2 = pd.read_csv('Dataset2.csv')

Display basic info and first few rows of each dataset
info2 = dataset2.info()
head2 = dataset2.head()

(info2, head2)

import pandas as pd

dataset3 = pd.read_csv('Dataset3.csv')
dataset3.info()

dataset3.head()

Figure 7: Datasets Imported

5.2 Data Pre-processing

e Handling Missing Values: Impute missing data using mean/median or interpolate.
e Data Separation: separating the data variables.

e This format is repeated for every model building code as well as EDA.

data = df_resampled.drop(['PLANT_ID', 'SOURCE_KEY_ gen', 'SOURCE_KEY weather', 'hour'], axis=1)

train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)

X_train = train_data.drop('TOTAL_YIELD', axis=1)
y_train = train_data['TOTAL_YIELD']

X_test = test_data.drop('TOTAL_YIELD', axis=1)
y_test = test_data['TOTAL_YIELD']

rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
rf_model. fit(X_train, y_train)

y_pred = rf_model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

mse, mae, r2

Figure 8: Handling unnecessary columns

df2["CREDIT_SCORE"] = df2["CREDIT_SCORE"].fillna(df2["CREDIT_SCORE"].mean())
df2["ANNUAL_MILEAGE"] = df2["ANNUAL_MILEAGE"].fillna(df2["ANNUAL_MILEAGE"].mean())

le = LabelEncoder()
le_count = @
droplist = []

for col in df2:
if df2[col].dtype == 'object':
print(col, len(df2[coll.unique()))
if len(list(df2[coll.unique())) <= 4:

le.fit(df2[col])

df2[col] = le.transform(df2[col])

le_count += 1
else:

droplist.append(col)

print('%d columns were label encoded.' % le_count)
df2.drop(columns=droplist, inplace=True)

Figure 9: Filling null values and encoding

5.3 Data Splitting

¢ Divide data into training (70%) and testing (30%) sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
Figure 10: Splitting training and testing data
Model Building

This section covers list of models used, training of the models and Evaluation of
models performance using the metrics calculation of the same.

Models trained and used:

e Light GBM

e KNN

e Decision Tree
e Random Forest
e SVC

classifiers = {
'Random Forest': RandomForestClassifier(),
‘'LightGBM': LGBMClassifier(),
'KNN': KNeighborsClassifier(),
'SVC': SVC(),
'‘Decision Tree': DecisionTreeClassifier()

metrics = {}

for name, clf in classifiers.items():
clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

fl = f1_score(y_test, y_pred)

precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y pred)
confusion = confusion_matrix(y_test, y pred)

metrics [name] =
'Accuracy': accuracy,
'F1 Score': f1,
'Precision': precision,
: recall,
'Confusion Matrix': confusion,

Figure 11: Model training code snippet

import matplotlib.pyplot as plt
import numpy as np

models = list(metrics.keys())

accuracy = [metrics[model] ['Accuracy'] for model in models]
f1_score = [metrics[model) ['F1 Score'] for model in models]
precision = [metrics[model] ['Precision'] for model in models]
recall = [metrics([model] ['Recall'] for model in models]

bar_width = 0.2
x = np.arange(len(models))

plt.figure(figsize=(12, 6))

plt.bar(x - 1.5 % bar_width, accuracy, width=bar_width, label='Accuracy', alpha=0.7)
plt.bar(x - 0.5 % bar_width, f1_score, width=bar_width, label='F1 Score', alpha=0.7)
plt.bar(x + 0.5 % bar_width, precision, width=bar_width, label='Precision', alpha=0.7)
plt.bar(x + 1.5 % bar_width, recall, width=bar_width, label='Recall', alpha=0.7)

plt.xlabel('Models")

plt.ylabel('Scores')

plt.title('Model Comparison: Accuracy, F1 Score, Precision, and Recall')
plt.xticks(x, models)

plt.legend()

plt.tight_layout()

plt.show()

Figure 12: Plotting the metrics

7. Evaluation
Below metrics were calculated as part of model’s performance.
Metrics Calculated:

1. Accuracy
2. F1 Score
3. Precision
4. Recall

metricsl[

{'Accuracy': ©.8033333333333333,
‘F1 Score': ©.593103448275862,
‘Precision ©.589041095890411,
‘Recall’': ©.5972222222222222,
‘Confusion Matrix array([[198,

29, 43]]1, dtype=int64)}

metrics [""KN

{'Accuracy’': ©.7166666666666667,
‘F1 Score': ©.17475728155339806,
‘Precision ©.2903225806451613,
‘Recall’': ©.125,

‘Confusion Matrix': array([[206,
[63, 911, dtype=int64)}

metrics["

{*Accuracy': .81,
‘F1 Score': ©.6122448979591837,
‘Precision 0.6,
‘Recall’': ©.625,
‘Confusion Matrix array([[198,
[27, 4511, dtype=int64)}

metrics [""Ranc

{'Accuracy': ©.7933333333333333,
‘F1 Score': ©.44642857142857145,
©.625,

©.3472222222222222,
‘Confusion Matrix array([[213,
[a7, 2511, dtype=int64)}

metrics[“svc"]

{'Accuracy': ©.76,
*F1 Score': 0.0,
‘Precision': 0.0,
*Recall': ©.0,

*Confusion Matrix': array(
L 72, @11, dtype;

metrics["

{'Accuracy': 0.788,
‘F1 Score': 0.6666666666666666,
‘Precision 9.6583850931677019,
‘Recall': 0.6751592356687898,
‘Confusion Matrix': array([[1728, 330]
[306, 63611, dtype=int64)}

metrics ["KNN"]

{'Accuracy': 0.639,
'‘F1 Score': 0.2687373396353815,
‘Precision': 0.3692022263450835,
‘Recall': ©0.21125265392781317,
‘Confusion Matrix': array([[1718, 340],
[743, 19911, dtype=int64)}

metrics["LightGBM"]

{'Accuracy': 0.841,
‘F1 Score': 0.7445099089448313,
‘Precision': ©.7513513513513513,
‘Recall': 0.7377919320594479,
‘Confusion Matrix': array([[1828, 230]
[247, 695]1], dtype=int64)}

metrics["

{'Accuracy': 0.8296666666666667,
'‘F1 Score': 0.7242309767943875,
‘Precision': 0.7365532381997805,
‘Recall': ©0.7123142250530785,
‘Confusion Matrix array([[1818, 240],
[271, 67111, dtype=int64)}

metricsl[

{'Accuracy"
'‘F1 Score'
‘Precision’
‘Recall': 0.0,
‘Confusion Matrix': array([[2058, el,
[942, 011, dtype=int64)}

Scores

metrics [1

{'Accuracy': 0.9993529602070528,
‘F1 Score': ©.99880810488677,
‘Precision': 1.0,
‘Recall’': ©0.9976190476190476,
‘Confusion Matrix': array([[2251, el,
[2, 838]]1, dtype=int64)}

metricsl 1

‘Accuracy': 0.6787447428016823,

‘F1 Score': ©0.18806214227309895,

‘Precision': 0.3002610966057441,

‘Recall’': ©.13690476190476192,

*Confusion Matrix': array([[1983, 268],
[725, 11511, dtype=int64)}

metrics [1

‘Accuracy’: 0.99906294408310579,

'F1 Score': ©0.998211091234347,

‘Precision': 1.0,

‘Recall’': 0.9964285714285714,

‘Confusion Matrix': array([[2251, el,
[3, 83711, dtype=int64)}

metricsl[1

‘Accuracy': 1.0,

‘F1 Score': 1.0,

‘Precision’': 1.0,

‘Recall': 1.0,

‘Confusion Matrix': array([[2251, el,
[@, 840]1], dtype=int64)}

metrics["svc"]

S~ A{'Accuracy': 0.7282432869621481,

‘F1 Score': 0.0,

‘Precision': 0.0,

‘Recall': 0.0,

‘Confusion Matrix': array([[2251, el,
[840, @11, dtype=int64)}

)

Figure 13: Results for model 1, 2 and 3 respectively

8. Results and Visualizations

Light GBM consistently outperformed other models across all datasets.

For Insurance Fraud Detection, it achieved F1 score of 0.612.

For Car Insurance Data, it obtained an accuracy of 0.841 and F1 score of 0.744.
For Vehicle Insurance Claim Prediction, Light GBM achieved perfect scores in all
metrics.

Model Comparison: Accuracy, F1 Score, Precision, and Recall

I Accuracy
F1 Score

I Precision

s Recall

0.8

0.7 4

0.6 4

0.5 1

0.4 4

0.3 1

0.2

0.1+

0.0 -

Random Forest LightGBM KNN svC Decision Tree
Models

Figure 14: Bar graph for Model comparison (1)

Model Comparison: Accuracy, F1 Score, Precision, and Recall

0.8

0.7 A

0.6

0.3

0.2 1

0.1 1

0.0 -

Random Forest

LightGBM KNN svC
Models

Figure 15: Bar graph for Model comparison (2)

Model Comparison: Accuracy, F1 Score, Precision, and Recall

B Accuracy
[F1 Score
B Precision
mm Recall

Decision Tree

1.0 1

0.8

0.6

Scores

0.4

0.2 4

0.0 -

Random Forest

B Accuracy
[F1 Score
B Precision
mm Recall

LightGBM KNN svC
Models

Figure 16: Bar graph for Model comparison (3)

Decision Tree

