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Comparative Analysis of Machine Learning and Deep 
Learning Models for Water Potability Prediction 
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23243236 
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Abstract 

Water is one of the most important human needs, but with the rising incidences 
of waterborne diseases, there is a need for an efficient method of monitoring the 
water quality. Current approaches for evaluating the potability of water are time-
consuming and may not be applicable in real-time. This research focuses on the 
following gaps and limitations in the prior research to examine the effectiveness of 
machine learning (ML) and deep learning (DL) models. The performance under 
different conditions was tested on two datasets: a dataset of 300,000 samples and 
low sampled and class imbalanced dataset of only 3,000 samples. Machine learning 
models like XGBoost and Random Forest along with various deep learning 
models like TabNet were used, while feature scaling, one-hot encoding, and 
handling missing values were done for the dataset. These findings showed that ML 
models, especially XGBoost, were more accurate with 97% and efficient than DL in 
predicting the outcomes because of their suitability in managing structured data. 
Although some DL models such as TabNet used provide good results, these models 
raise several problems in terms of their computational load and the required 
volume of data. This study compares traditional ML methods with state-of-the-art 
DL techniques in a systematic manner to provide best practices for water quality 
data. 

 

1 Introduction 

Water is among the most important resources in the globe as it is required by all 
individuals for survival and among the necessities of life is water. The problem of water-
borne diseases has not been solved by better water treatment methods because most 
regions in the world cannot afford proper testing of water. Demographic increases and 
enhancement, especially in the cities, as well as inadequate water management and 
disposal of waste from agriculture and industries, have contributed to the increase in 
the stringency of water quality. Water quality prediction is valuable to protect people’s 
health and maintain the environment when accurate information is provided at the right 
time (Wu and Wang; 2022; Dalal et al.; 2022). However, traditional methods for deriving 
WQI are accurate, require a lot of manual work, are time-consuming, and can only offer 
results at a later time. In this research, both ML and DL methods will be applied to 
formulate and solve these problems and also enhance water quality prediction (Saroja 
et al.; 2023; Ghosh et al.; 2023; Ainapure et al.; 2023). 
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In the case of water quality prediction, many researchers have demonstrated that the 
application of ML and DL algorithms is quite effective (Dawood et al.; 2021; Suleiman 
et al.; 2023; Abuzir and Abuzir; 2022; Patel et al.; 2022). They are very accurate like 
Random Forest and XGBoost but again highly dependent on features and thus, the model 
is limited to recently emerging features and newer contexts. On the other hand, the DL 
models such as LSTM and TabNet have the advantage of training and interpreting big 
and high dimensional data, and yet there is still a lot of room for improvement to outdo 
traditional models (Xu et al.; 2019). The prior literature also focuses on the application 
of larger datasets with water sources such as lakes, rivers, and groundwater to enhance 
the reliability and generalizability of the models Zhao (2021). To fill these gaps in this 
work, improved computational methods are employed and evaluated on large and varied 
datasets. 
Research Question and Objectives: The primary research question this study seeks to 
answer is; How can one develop ML and DL models that can accurately and with good 
reliability forecast water quality across water sources? To answer this question, the goals of 
this research are as follows: compare the performance of different conventional ML, and DL 
techniques; define the best settings of architecture and hyperparameters for models; study 
the strengths and weaknesses of each approach in terms of interpretability and 
computational complexity. Moreover, this work seeks to address the problems of how to 
implement these models in practice, particularly in large-scale settings. The presence of 
variability in greater numbers of samples also increases the prospects of generalized 
estimates; the architectural evolution of DL such as TabNet can build better forecast 
models than conventional Machine Learning algorithms with due calibration; there are 
humongous trade-offs between desirability, readability, and computational complexity to 
choose from the most suitable models for specific uses. 
  In pursuing these goals, this work uses a dataset from a large set, at 300,000 samples, 
extracted from a 5-million-row population dataset. The unavailability of data is 
addressed, and feature scaling and normalization are also considered. The presented models 
are Decision Tree, Random Forest, XGBoost, LSTM, GRU, and TabNet are used. The 
enhancement of the parameters is used to achieve better performance, and the 
comparative assessment is used to show the pros and cons and the possibility of getting 
better solutions. Because this study only incorporates experiments with big data, it aims to 
fill the above gaps. The present work offers significant contributions to the utilization of 
computational ML and DL methods for water quality prediction through a thorough 
discussion of the performance differences for a range of data sets. It also provides fine-
grained knowledge of how expanded DL architectures and diverse datasets support more 
precise and reliable predictions. Together, it provides solutions to the concerns of scale 
and explainability while serving as a bridge between novel concepts and real-world 
applications in water resource management and public health. 

The specific organization of the report is one of the best ways to show that the ideas are 
interconnected to produce a chronological approach, and the report contains an 
introduction that involves the research problem, the relevance of the subject, and the 
objectives of the study. Besides explaining prior works, the literature review also points 
out a gap that forms the basis of the study. The nature and origin of the datasets, the 
preparatory processing of the data, the models used, and the assessment measures are 
discussed in the methodology section. Mainly, results and discussion sections related to 
the analysis of mechanisms of experiments, the comparison with the findings of other 
studies, and the indication of further research relevance. The final part of the study 
discusses the key 
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conclusions, the academic contributions of the study, and recommendations for future 
studies. This structure allows for a comprehensive understanding of this research project 
and its implications. 

 

2 Related Work 

Base papers: Various machine learning (ML) and deep learning (DL) based studies in 
relation to water quality prediction have been conducted and most of their interests include 
how sophisticated ML and DL models can further enhance their model accuracy, scalability, 
and generalizability on multiple attested datasets and enhanced methodologies. For 
example, Xu et al. (2019) and Zhao (2021) pointed out that the models are less robust 
when larger datasets were constructed from samples from different water sources, such 
as lakes, rivers, and groundwater. As noted by Zhang and Jin (2024), novel DL models 
like TabNet have not been explored for tabular data heavily in the field. Furthermore, 
as Alnaqeb et al. (2022) and Rustam et al. (2022) indicated, sampling techniques or 
weighted loss functions may represent promising areas for future study to address the 
problems posed by the class imbalance of the datasets. 

 

2.1 Machine Learning Approaches 

Decision Trees, Random Forests, and XGBoost have been identified as the most 
impactful models for water quality prediction. The researchers have proved that XGBoost is 
an accurate, effective classifier that surpasses others as the result of the gradient-boosting 
mechanism and the input’s structure compatibility (Gill et al.; 2023). Likewise, for the 
LightGBM, the stability in handling the imbalanced data has been applauded, though 
containing a certain accuracy of 99.74 % in certain cases (Khan and See; 2024). Since 
Random Forest is an ensemble method, it provides high interpretability and high 
reliability for water quality prediction tasks (Whelan; 2022). Nonetheless, these models 
largely depend on features extracted from data and lack effective mechanisms to handle 
temporal dependencies, making them unsuitable for situations demanding sequential data 
analysis (Gao et al.; 2023). 

Another successful type of model integration has been accomplished by bagging and 
boosting techniques. For example, CatBoost and LightGBM have shown great perform- 
ance on water quality classification problems, proved by (Chakravarthy et al.; 2023). 
Further, the active learning methods have been combined with support vector machines 
of which the enhancement of binary classification has been noted (Zhao; 2021; Alnaqeb 
et al.; 2022). However, these methods have a high computational complexity and include 
much hyperparameter optimization, which becomes a problem in limited circumstances. 
This trade-off between accuracy and computational efficiency is an inherent characteristic 
of the algorithms, which deserve scalable solutions. 

 

2.2 Deep Learning Approaches 

ANNs (Artificial Neural Networks) have been popular for the flexibility of their application 
and relatively simple implementation The authors Rustam et al. (2022) obtained 96 % 
accuracy on small datasets, thus showing that ANN can be used to predict water quality. 
However, the study shows that this accuracy of ANN deteriorates when applied to the 
larger and more diverse data set of 69%. The former leads to a decline in 
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the performance level of ANN since it is not capable of capturing complex, non-linear 
relationships for that additional optimization. 
One of the most common reasons for using time-series forecasts is the existence of 
temporal dependencies, especially using Long Short-Term Memory (LSTM) networks. 
Xu et al. (2019) used LSTM in combination with SARIMA to improve the prediction of 
seasonal fluctuations in water quality and showed higher accuracy than statistical models. 
In the same way, Liu et al. (2024) proposed an improvement of LSTM using the Cuckoo 
Search algorithm, which yielded even higher performance indices, including lower error 
rates. However, these models require extensive computation and large datasets, which 
poses problems for implementation in areas of low-resource settings. 
Hybrid Models: Autoencoders and CNN-BiLSTM: Some studies combine Autoencoder 
with LSTM, and CNN with BiLSTM to solve dimensionality and the multivariate 
correlation problem. Zhang and Jin (2024), for instance, used the AE-LSTM to reach a 
higher accuracy in the prediction of nitrogen and phosphorous levels. Likewise, Guo et 
al. (2023) proposed CNN-BiLSTM with attention mechanisms and outperformed other 
DL models in identifying spatial-temporal features in river water quality datasets. 
Although rich in potential, these models are computationally intensive and depend on 
the availability of feature and data preprocessing talent. 

 

2.3 Emerging Techniques and Novel Approaches 

Wavelet Transform-Based Models: Wu and Wang (2022) suggested the use of a 
hybrid ANN-Wavelet-LSTM process for the deconstruction of water quality signals into 
high and low-frequency bands. This approach was more accurate and less sensitive to 
overfit than the single models. But to implement it and especially preprocess the data it 
needs large amounts of domain knowledge. 
Seasonal and Spatial Models: SARIMA-LSTM was used to consider seasonal fluctuations in 
water quality in Xu et al. (2019) and spatial-temporal features in AE-LSTM in Zhang and 
Jin (2024). Although these methods successfully captured the temporal behavior of the 
environment, they were often coupled with extensive data preprocessing and model 
parameter optimization to obtain the best results. 
Attention Mechanisms and Advanced Feature Selection:  Guo et al. (2023) have 
also stressed that due to attention mechanisms, critical features are emphasized in the 
time series datasets, and thus, interpretability, as well as accuracy, are improved. Likewise, 
Zhao (2021) paid attention to active learning and feature selection for enhancing SVM 
results because data knowledge is essential for model enhancement. 

 

2.4 Challenges and Limitations in Current Literature 

Some limitations still exist in water quality prediction. A limitation in developing datasets is a 
severe problem, especially when using region-specific datasets, which introduces significant 
limitations to the generalization of the results (Gill et al.; 2023; Zhang and Jin; 2024; 
Sreekumar et al.; 2024). Including various categories of water as it is done in this 
study solves this problem by increasing the range of applicability. One of the difficulties 
is the balance between the model’s complexity and its ability to be easily understood. 
While there are highly interpretable models, for instance, Random Forest, deep learning 
models are non-interpretable, or as some like to refer to them, black boxes that make 
them less applicable in legal and practical environments. In addition, 
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Scalability and computational complexity are the major challenges that users must face 
Specific deep learning models such as CNN-BiLSTM and AE-LSTM consume much 
computational power and thus are not very suitable for real-time and low resource 
settings (Wu and Wang; 2022; Stepanova et al.; 2024). 

 

2.5 Relevance and Contribution of Current Research 

This research addresses these challenges by leveraging a large and diverse dataset of 
300,000 rows and employing various machine learning and deep learning models. By 
optimizing performance through hyperparameter tuning and achieving full convergence, 
the study ensures robustness and efficiency. The inclusion of data from diverse water 
sources, such as lakes, rivers, and groundwater, enhances the ecological relevance and 
generalizability of the findings. Moreover, this research emphasizes a balance between 
accuracy and interpretability, making a significant contribution to the field. It effectively 
addresses the trade-offs identified in existing literature, paving the way for more scalable 
and practical solutions in water quality prediction. 

 

3 Research methodology 

This Research focus is on the Primary dataset as it is the inclusion of data from different 
water types, including lakes, rivers, and groundwater, increases the external validity and 
ecological potential of the results. The present research uses a broad and comparative 
strategy to investigate how well both ML and DL models predict water pot- ability. The 
selection of ML and DL models is justified by literature focusing on their ability to 
accurately predict structured/tabular data and to learn complex features (Gill et al., 
2023; Whelan, 2022). Random Forest and XGBoost were selected since they are 
efficient in capturing non- linear relationships and in dealing with missing values while 
LSTM, GRU and TabNet were taken as powerful DL models to search for other under- 
lying features and interactions within the observation. This study aims to answer the 
research question interactions: What adjustments must be made to ML and DL models 
so that the forecast of water quality across diverse water sources is optimal and accurate? 
Data Collection and Preprocessing The main data set for this research includes 
300,000 samples of physical and chemical attributes and continuous variables consisting 
of pH, iron, nitrate, chloride and other attributes. It also includes categorical features like 
watercolor and metadata such as the month having a significant impact on water quality 
as well as the time of the day. A second test dataset consisting of 3,000 samples was 
employed to analyze class distribution since the minority class which is the potable 
water is rare in this set. Each data processing step was performed to prepare the datasets 
for model training. In the case of the primary data set, rows containing missing values 
were dropped to exclude an impact of imputed data in the dataset to retain the close 
resemblance of the dataset to the original one. The procedure of imputing missing 
values for the secondary dataset was done using the Mean of the relevant column. Features 
like Color, Source, Month are categorical and were thus converted to numeric values 
using the label encoding technique. As for class distribution, the primary dataset was 
balanced so no additional sampling steps were required. But, the secondary dataset had 
problem of class imbalance and to rectify it, we randomly oversampled the minority 
class, which was potable water. Standardization of the features was also done to aid the 
models and bring the attributes to a common scale. In the case of ML, StandardScaler 
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was used, but in the case of the DL, we used MinMaxScaler to prepare the training data. 
Model Selection and Techniques: The Primary dataset study implemented a total 
of six models for comparative evaluation: For machine learning we use Decision Tree, 
Random Forest and XGBoost. For deep learning, we use LSTM, GRU and TabNet. First, 
we chose these models because they are suitable for structured/tabular data, have 
nonlinear relationships, and can handle missing values and feature interactions. For 
secondary dataset, we implemented models such as Random Forest, Support Vector 
Machines (SVM), and XGBoost. A DL model was constructed using TensorFlow’s Keras 
API, employing neural network architecture with multiple layers. Machine Learning 
Models: For prediction tasks on structured data, with the ability to capture complex 
interactions and nonlinear relationship, Decision Tree, Random Forest and XGBoost 
were selected. In particular, XGBoost is fast at working with imbalanced datasets and 
resilient with noisy data (Whelan, 2022; Gill et al., 2023). Deep Learning Models: 
Although the water quality data does not explicitly have temporal dependencies, LSTM 
and GRU were included as win experiments to see if there were subtleties in the data 
that could be captured with latent sequential patterns that were not apparent. A deep 
learning model for tabular data, TabNet was included for its capability to tie their 
decision tree structures to deep learning algorithms to learn interactions between 
features in tabular data (Zhao, 2021). We investigated if these deep learning models 
could improve performance beyond that,even on non-sequential data. 

Data Analysis and Evaluation Metrics: The models’ performance was evaluated using 
key metrics: precession, accuracy, precision, recall, and F1-score. For datasets that are 
imbalanced, these metrics were selected on account of their ability to provide a 
balanced evaluation. This defines Accuracy as it provides an overall measure of how 
many correct predictions are made, Precision and Recall, both concentrating on how 
well the model identifies potable vs non-potable water and how few of the latter are 
misclassified as the first. To compensate for any class imbalances, and a more complete 
evaluation of model performance, the F1 score was used, balancing precision and recall. 
We chose these metrics to verify that not only our models have high prediction 
accuracy, but also can deal with class imbalance, misclassification. Further, some hyper 
parameters were tuned using cross validation to prevent over fitting and ensure good 
generalization to data outside of the set of held out data. To further quantify how the 
Random Forest and XGBoost models related to water potability, feature im- portance 
analysis was performed to identify the water quality parameters that were most 
important in predicting water potability. Furthermore, this research also seeks to strike 
the balance between model interpretability and accuracy and as such make a noteworthy 
contribution to the literature. This approach efficiently manages the conflicts pointed 
out in prior work to enable the development of more flexible and efficient solutions for 
water quality prediction. 
Statistical Techniques and Model Validation: Confusion matrices and classific- 
ation reports were used to validate the models and judged how the performance of the 
models. Model optimization was important and grid search cv was used to find the best 
settings to hyper parameters for ML models. A custom training configuration for the 
deep learning models was used for LSTM and GRU with the 2 layers and size of 64 of 
the hidden, as well as early stopping for the TabNet to avoid overfitting. Interpretability 
and scalability provided singular focus for the analysis of the results with the models’ 
ability to approach the class imbalance, noise and missing data challenges being essential 
in their applications. Specifically, this study seeks to demonstrate how well different mod- 
els behaved upon being given larger, more varied datasets and if deep learning models 
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like TabNet could have a tangible advantage over their traditional ML counterparts in 
accurately predicting water quality. 
Computational Resources and Equipment: Efficient model training on large datasets 
necessitated the use of multi core processors and GPUs in the computational 
environment used for training and evaluation of the model. The main programming lan- 
guage used in this thesis is Python and Scikit learn was used for the ML models and 
TensorFlow was used for the deep learning models. These tools built the models and 
helped test each model, but at the same time, they also made sure that computations 
were performed in the best and fastest manner possible. 
limitations and strengths of the approach: However, the limitation of this 
methodology is that it’s use of deep learning models such as LSTM and GRU as one of 
the main limitations of deep learning, which is normally applied to sequential data. In 
the case where there are no temporal dependencies in the dataset, these models might 
not give us significant gains over the ML models. Second, the time and computational 
complexity of hyperparameter tuning deep learning models may be too costly in 
resource constrained environments. This ap- proach, however, has the strong point that 
several models are used, which allows for a wide study of their performance in 
structured data. This research can solve by combiningML and DL model to get insight on 
the best way to predict water potability and make recommendation for future research 
focus on this field. 
 
 
 
 
 
 
 
 
 

 
Fig 1: Workflow diagram 

4 Design Specification 
The design of the water potability prediction system is to incorporate the ML and DL 
models in the form of a scalable and efficient manner. The implementation remains at the 
structure level and the predictions are very strong with tabular data sets. It can be used 
for data preprocessing, model training, and evaluation while placing a significant focus on 
modularity and scalability. The system is built in Python with the use of Scikit-learn for 
implementing ML and TensorFlow for implementing DL. Large amount of computational 
power in the form of multi-core processors and GPUs is used to perform the computation- 
ally expensive operations such as training of Deep Learning models on big data. In the 
present design, several predictive models are applied, and all of them are customized to 
the specifics of the given dataset and its demands. Some ML models like Decision Trees, 
Random Forest, and XGBoost are incorporated because they are effective with structured 
data. These models do not require manual determination of features automatically and 
also work well with non-linear real-world relations. On the DL side, models such as 
LSTM, GRU, and TabNet are applied for potential pattern search in data. For instance, 
TabNet is specifically designed for tabular data and is a hybrid of tree-based methods 
and Deep Learning. 
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New Model/TabNet Description: Unlike existing deep learning models, e.g. LSTM and 
GRU, which are primarily designed for sequential data, TabNet has been engineered to 
recognise structured data, such as the water quality data in this study. Since it’s a tree-based 
model with some deep learning coupled together, TabNet isa very good model for tabular 
problem handling when traditional neural networks might turn out to be a problem. It 
takes feature embeddings to learn and learn how to apply attention mechanisms to find 
important features and their interaction. Finally, TabNet can retain interpretability while 
achieving higher accuracy than other models, a useful quality for real world applications 
such as water quality prediction, where it is necessary for stakeholders to interpret the 
factors affecting predictions. The architecture of TabNet consists of a series of decision trees 
collaborative with deep neural networks to promote the ability of the model to learn 
feature interactions. Moreover, it is also built to handle missing values, as we often deal 
with real world data which have holes and it is important to cope with it. Using a sparse 
attention mechanism, the model is more efficient and interpretable than traditional neural 
networks. 
Scalability and System Integration: Scalability was built into the system so more 
complex water quality parameters, or larger datasets, can easily be accommodated in 
the future. The system is built in a modular fashion, making it possible to accommodate 
new models is needed without reengineering much of the system. For instance, the 
system can be refined to use additional environmental data, such as weather patterns, 
or seasonal variations to make more precise predictions when further environmental in- 
formation becomes available. Modularity and scalability are emphasized to enable the 
system’s deployment for real time water quality monitoring in municipal water supply 
systems as well as smaller rural settings. Additionally, the system’s interpretability (via 
models such as Random Forest or TabNet) guarantees that decision makers can trust 
the predictions made by the model. The system architecture guarantees proper data 
management, preprocessing, and is- sues like missing values or categorical variables. It is 
applied to categorical variables where rows with missing values are deleted in order not 
to affect the results. Most of the existing models are evaluated using standard evaluation 
parameters which include accuracy, precision, recall, and F1-score which gives a clear 
insight of model performance. This design allows for accurate prediction of water quality 
while being scalable for larger data sets, and easily extendable in the future. 
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5 Implementation 

5.1 About Datasets 

In this study, two datasets were selected to predict water potability using different water 
quality attributes. 

Water Quality Dataset 1: This dataset has 300,000 samples which are quite large 
enough to build accurate prediction models. Various attributes like pH, iron, nitrate, 
chloride, lead, and zinc in water, a categorical data type that includes watercolor, and 
metadata which includes month, day, time of day, and target variable which is water 
potability. Although the data is large and contains features originating from different 
sources, there are some gaps within some of the features like “Source” and” temperature- 
related” attributes that need preprocessing for handling missing values. Such a data set 
provides perfect ground for analyzing temporal and chemical factors, which affect water 
potability. 

Water Quality Dataset 2: This subset has 3,200 samples with features like pH, 
hardness, solids, chloramines, sulfate, and potability. In contrast to the first dataset, 
there is an imbalance in the dataset. The smaller number of instances and the class 
imbalance are a problem for model development, especially for identifying patterns for 
the minority potable class, however, these are also the great potential for using 
resampling, data augmentation, or weighted modeling techniques to combat these 
problems effectively. 

5.2 Data Preprocessing for Water Quality Dataset 1: 

Null Value Handling: For the Water Quality Dataset 1, features were inspected 
specifically for missing values. The analysis revealed that most features included null 
values in the dataset. Instead of imputing missing values, rows containing the missing 
values were deleted. The rationale for this decision was not to contaminate the model 
with imputed values, which would probably distort the data distribution. The removal 
of rows containing null values made the dataset as close to the actual structure as 
possible, eliminating the influences of possibly erroneous or imputed data by the 
model. 

Class Distribution: The dataset is balanced with the number of samples of both 
classes, potable and non-potable. Based on this balance, no further resampling was 
performed since the class distribution did not create an imbalance that could challenge 
model performance. 

Categorical Data Encoding: To handle categorical data as “Color”, “Source” and 
“Month”, label encoding was used to handle them. This converted all string values to 
numeric form which makes data more applicable for machine learning algorithms. This 
encoding was done that the categorical features did not affect the learning of the model 
and made proper predictions. 
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5.3 Data Preprocessing for Water Quality Dataset 2: 

Null Value Handling: For the Water Quality Dataset 2, only a few missing values were 
detected. These missing values were filled using the mean of their respective columns. 
Given the small number of missing values, this method was considered appropriate, as it 
maintained the overall data structure without introducing significant bias. 

Class Imbalance: The main complication in this dataset was class imbalance: Class 
1, or the potable class, is the minority. To overcome this problem, resampling strategies 
were used in this study. The samples of the minority class were randomly augmented to 
equal the samples in the majority class (non-potable). The majority and the minority 
classes were then resampled so that the model would be trained on a balanced dataset, 
which is important for the minority class samples. 

Categorical Data Encoding: Like in Dataset 1, all the categorical variables were 
then transformed into numerical format using label encoding. This was done to ensure that 
the machine learning models did not have issues handling categorical data in that they 
mistake for string values. 

Finally, for preprocessing, the rows with missing values were removed from Water Quality 
Dataset 1 since removing was not deemed appropriate; and, with a balanced class 
distribution, no oversampling or under sampling was performed. For Water Quality Dataset 
2, the missing data was imputed using the mean and oversampling was done to handle the 
class imbalance problem. Categorical features in both datasets were addressed using label 
encoding to be compatible with the machine learning algorithms. Finally, the last stage of 
implementation was training and validating the models with the datasets processed and 
then testing models on data which is unseen. Six models were developed and trained: the 
same three ML models (Decision Tree, Random Forest, and XGBoost) and three DL 
models (LSTM, GRU, and TabNet). To get the highest possible performance out of 
these models, they were fine-tuned using hyperparameter optimisation. The resulting 
models were able to reach full pattern extraction to meaningful patterns and accurate 
potable water predictions. Performance metrics were then computed based on how well 
our predictions sat at the test set by making predictions for each model. The outputs 
from this stage were the trained models themselves, together with their respective 
evaluation report, confusion matrix and graphical representation of performance 
comparison. 
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Outputs Produced: The implementation produced several outputs that were essen- 

tial for answering the research question and achieving the study’s objectives: Trained 
Models: Six prediction models were built and trained, using traditional ML and Deep 
Neural Network, where XGBoost consistently performed the best for the tabular/structured 

data. • Performance Metrics: In each model, the measures, including accuracy, precision, 
recollection and F1-measure, were derived to offer an overall view of model efficiency as 

well. • Transformed Data: The feature scale normalization was used to normalize the 
features, label encoding was used for the target variable and missing values were handled. 
These transformations made the data suitable for the chosen algorithms and prepare to 

train them. • Visualization Outputs: Qualitative results included a confusion matrix of 
each model, feature importance for models like Random Forest and XGBoost models, and 
loss curve for the LSTM and GRU model. These visualizations were useful in making 
sense and comparing the above results. 

Tools and Technologies Used: The implementation used a high-performance sincere 
environment to handle large datasets and the actual training of deep learning models. The 

tools and technologies used include: • Programming Language: Python was the main 
language selected as the most flexible and having the richest ecosystem of libraries for 

ML and DL. • ML Frameworks: In terms of executing most traditional ML models such 
as Decision Trees, Random Forest, and XGBoost, Scikit-learn was used, and its 

parameters were tuned. • DL Frameworks: TensorFlow and Keras were used for 

building and training the presented DL models including LSTM, GRU, and TabNet. • 
Visualization Libraries: Matplotlib and Seaborn libraries were used to develop the plots 
required in the 

data analysis and to quantify the performance. • Computational Resources: DL mod- 
els’ training was performed using multi-core processors and GPUs since these operating 
modes were critical for managing the fundamental dataset appropriately and training the 
models. 

 

6 Discussion/ Evaluation of Models 

Using Water Quality Dataset 1 for predicting water potability, several machine learning 
(ML) and deep learning (DL) models were chosen to compare their effectiveness for the 
given task. 

 

6.1 Evaluation Metrics 

In this study, various evaluation measures for the machine learning models for water 
potability prediction, accuracy, precision, recall, and F1-score are employed. 

• Accuracy is the measure of the total correct estimate giving a broad view of how 
it performs. However, in the case of class imbalance, accuracy may not be a good 
measure to assess the performance of a given model. 

• Precision calibrates the true positive rate, that is the right classification of potable 
water, to the total positive, which is important to avoid misclassification of non- 
potable water to potable water because it poses some danger. 
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• Recall, in contrast, calculates the model ability to get all the samples of potable 
water right meaning as many safe water samples as possible will be correctly tagged. 

F1-score, the harmonic mean of precision and recall, is used to overcome the biased 
result between the two measures as well as is advantageous when there is a class 
imbalance in the data set. interpreting string values as continuous variables. These 
metrics combined guarantee that the developed model offers accurate and safe pre- 
dictions regarding water quality. 

 

6.2 Choice of Machine Learning Classifiers 

• An XGBoost model was implemented because of its effectiveness and speed in training 
and making predictions on structured/tabular data. It is an optimized gradient boost- 
ing algorithm that can easily handle data imbalances which could be a major concern 
whenever the classes to be used, such as potable and non-potable water, are not 
balanced. It’s useful in capturing non-l i n e a r  relations and interactions between 
features such as pH, Iron chloride, etc. which may affect the potability of water. 
XGBoost can also handle missing values and noisy data and therefore a good candidate 
for this problem 

 • The Decision Tree classifier was chosen for water potability prediction, the model should 
determine the relations between several features, and decision trees segment the data 
according to these features. Such an ability to capture complex interactions is useful when 
deciding whether a water sample is potable or not. While the decision trees can be easily 
overfitting, especially on a small sample space, it is highly understandable and visualize 
how graphical features such as high levels of Iron or Turbidity affect the classification. 

• Random Forest Classifier is particularly useful for problems such as water potability 
since there are several features influencing it. Also, Random Forest does not suffer from 
noisy or missing data and the feature importance analysis shows which variable is most 
important for the model to decide whether the water is potable or not 

 

6.3 Choice of Deep Learning Models 
 
LSTMs are built for sequential data and for capturing long range dependencies. Even though the 
water quality data does not possess temporal dependencies, LSTMs were contemplated as part of 
an exploration of the deep learning approach. Rustam et al. (2022) showed that LSTM and GRU 
could perform well with large size datasets for water quality prediction classification problems. 
Drawing from those insights, LSTM and GRU models are used in my study with the aim to explore 
the possibility of capturing the complex latent sequential patterns that might exist in the data. 
Although the data is not explicitly sequential, this dataset contains features like "Month," "Day," 
and "Time of Day" could potentially exhibit subtle trends or periodic variations due to seasonal 
factors such as heavy rains/ drought that these models are designed to detect. 

• Even though these models are not ideal for non-sequential, by considering above reasons, 
experimented with these state-of-the-art models. In case some temporal features were not 
easily recognizable in water quality data (for instance, daily fluctuations 
or monthly trends), LSTM would pick them. However, since there are no clear time-based 
dependencies in the dataset, LSTM may not bring much improvement over and above 
other machine learning methods, though it was used to test the possibility of using deep 

learning for this problem. • Like LSTMs, GRUs are also considered a recurrent 
neural network (RNN) architecture used to train data with sequential information. They 
are less complex than LSTMs in terms of computational structure, which means that their 
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training is quicker. For this task, GRUs were considered to evaluate the deep learning 
methods to find out if there exist temporal patterns in the data. Like LSTM, if the dataset 
had temporal or sequential characteristics, it was possible that GRU could identify those 
characteristics. Nonetheless, since there is no clear temporal structure in the dataset, 
GRU may not perform better than typical machine learning algorithms, although it was 

experimented with to compare deep learning methods. • TabNet is a deep learning model 
that is aimed at tabular data and is highly relevant to predicting water potability given 
chemical and physical characteristics. Despite these traditional artificial neural networks 
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Figure 2: Architecture of LSTM and GRU 
are not designed to handle structured data; this is where TabNet comes in, as it takes 
decision trees and adds deep learning to pick up more intricate relationships. Indeed, 
it can work with the missing values, and features of different types, and can discover 
complex interactions between features. TabNet was adopted to investigate whether it 
can enhance performance against standard machine learning algorithms. Its architecture 
is optimized for use with tabular data, and it could potentially provide for more detailed 
learning from the data, especially if there exist interactions between features that cannot 
be easily described using classical techniques 

 

6.4 Reasoning for Model Selection 

XGBoost, Random Forest, and Decision Trees were chosen because these models were 
previously known to work well with structured tabular data and are known to capture 
complex relations between the features which are ideal for predicting water potability. 
These models are insensitive to noise and imbalance of classes and do not demand a lot 
of computational capacity. Besides, they are more easily interpreted to give insights into 
the correlation between different water quality parameters and portability. 

For this purpose, LSTM, GRU, and TabNet neural network models were considered 
primarily to identify the potential benefits of neural networks for this problem. These 
models are more appropriate for learning from large datasets and are presumed to work 
even better if there are interactions in the data. However, since there is no inherent 
sequential or temporal structure in the dataset, the deep learning models were then 
trained to check whether they could discover any latent interactions that other machine 
learning models are unable to model. 

To achieve a balance between the levels of detail and complexity of the data and the 
accuracy of the water potability prediction the use of both machine learning and deep 
learning models were employed, and various models were tested. 
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Figure 3: Architecture of TabNet 

 

7 Evaluation and Discussion of Results 

The evaluation of several ML (machine learning) and DL (deep learning) algorithms 
for the water potability prediction task, provides metrics, including accuracy, precision, 
recall, and F1-score. The discussion in the following section reveals the comparison of 
each of the model’s performances and highlights their accuracy in predicting whether the 
water is potable or otherwise. 
 

Model Accuracy Precision Recall F1-Score 
Machine Learning Models 

XGBoost 0.9708 0.97 0.97 0.97 
Decision Tree 0.9380 0.94 0.94 0.94 
Random Forest 0.9018 0.91 0.90 0.90 
Logistic Regression 0.6548 0.65 0.65 0.65 

Deep Learning Models 

LSTM 0.8314 0.83 0.83 0.83 
GRU 0.8186 0.82 0.82 0.82 
TabNet 0.8416 0.84 0.84 0.84 

Table 1: Model Performance Comparison for Water Potability Prediction (for all the 
metrics higher the values better the model). All the values reported will be in range 0 

and 1 
 

 

7.1 Machine Learning Models 

7.1.1 XGBoost Classifier: 

XGBoost model has performed efficiently, by achieving an accuracy of 97.08%; for the 
other three metrics, the result was 0.97 of precision, recall, and F1-score. These 
statistics show that the model has a high level of reliability in repetitively recognizing 
both potable and non-potable water samples. This makes XGBoost very strong because 
it can 
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(a) Training and validation loss of LSTM (b) Training and validation loss of GRU 
 

 

(c) Confusion matrix of LSTM model (d) Confusion matrix of GRU model 

Figure 4: Training and validation loss of LSTM and GRU models with Confusion matrices 

 
also handle non-linear relations, missing features, and instances of class imbalance. Its 
performance demonstrates why it remains one of the go-to models for structured, tabular 
data and why it is the best model for the water potability prediction task. 

 
7.1.2 Decision Tree Classifier: 

The Decision Tree model had the highest reliability with weighted-average precision, 
recall, and F1 measure of 0.94 and accuracy of 93.80%. Its main strength is, therefore, 
the ability to provide clear and easy-to-interpret results in terms of the factors affecting 
water potability. Although less accurate than the XGBoost model, the Decision Trees are 
easier to interpret to discover feature importance and to make a fast decision. However, 
the model is not very robust since it over splits data and can be highly sensitive to small 
datasets which hampers its’ generalization ability. 

 
7.1.3 Random Forest Classifier: 

Random Forest acquired an accuracy of 90.18, and the precision, recall, and F1 score 
equaled 0.91, 0.90, 0.90. The Random Forest is overfitting resistance and has a better 
performance in capturing various feature interactions. Nonetheless, it is a little slower 
than XGBoost, which might be attributed to the inadequate optimization of 
hyperparameters. However, it still stands as a stable model for medium-sized datasets 
and can be enhanced using fine-tuning and sampling approaches. 
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(a) Validation accuracy vs Number of es- 
timators on validation data for random 
forest model 

 
(b) Validation accuracy vs maximum depth 
on validation data for random forest model 

 

 

  
 

(c) Validation accuracy vs Number of es- 
timators on validation data for XGBoost 

(d) Validation accuracy vs maximum depth 
on validation data for random forest model 

Figure 5: Plots of hyper parameter tuning on various model 

 
7.1.4 Logistic Regression: 

Logistic Regression was the least effective, achieving accuracy, precision, recall, and F1-
score of 0.65 each. The model making of Logistic Regression is a straight line and 
found unfit to model the non-linearity present in the data set, a weakness for this problem. 
It is also used mainly to determine a reference measure for comparing the execution of a 
process within an organization. 

 

7.2 Deep Learning Models 

7.2.1 Long Short-Term Memory (LSTM): 

The LSTM model provided a weighted average of precision, recall, and the F1 score of 
0.83 and the accuracy of 83.14 %. Though it performs slightly better than GRU, the 
accuracy is far below the standard machine learning algorithms such as XGBoost and 
Decision Trees. LSTM has this sequential property that does not go well with the current 
data set because it is not temporally divided. This moderate performance indicates that 
LSTM can be quite inefficient for non-sequential tabular data. 
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(a) Confusion matrix of XGBoost model 

(b) Confusion matrix of Decision tree 
model 

 

 

 
 

(c) Confusion matrix of Random Forest 
model (d) Confusion matrix of TabNet model 

Figure 5: Plots of confusion matrices on various model 

 
7.2.2 Gated Recurrent Unit (GRU): 

The GRU model was slightly worse than LSTM and its accuracy was 81.86 with such 
specificity, sensitivity, and F1 measure as 0.82. Like LSTM, GRU addresses temporal 
data which makes it unsuitable to model non-temporal relations in the dataset. Compar- 
atively, GRU is less time-consuming than LSTM; however, its efficiency shows that using 
recurrent architectures in non-recurring problems is not without difficulty. 

 
7.2.3 TabNet: 

TabNet achieved higher performance among the deep learning models with an accuracy 
value of 84.16 %, precision, recall value, and F1-score of 0.84. Due to its specific design 
for processing tabular data, it was able to encode many cross-feature interactions effect- 
ively. However, it is still lower than the results of a standard ML algorithm, XGBoost, 
which means that classical algorithms are still better for this dataset. 
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7.3 Machine Learning Models Outperform Deep Learning 

Models 

The results prove that the efficiency of ML (machine learning) models is significantly 
higher than the efficiency of DL (deep learning) models for water potability prediction. 
The baseline models of XGBoost and Decision Trees provided a significantly better accuracy 
of the models and even the parameters of precision, recall, and F1-score balanced the 
results. 

The main reason for such differences is the disparity of the given dataset. The water 
quality data is numeric, two-dimensional, and has no temporality or spatiality component. 
Such datasets are best trained with Classical ML models since these are built to work with 
non-linear data and can work with noisy or even incomplete data. Of these, the XGBoost 
gradient boosting approach offers an effective tool to improve performance making it the 
leader. 

In contrast, deep learning models such as LSTM and GRU are designed for a 
sequential or time series dataset which the water quality does not possess. Therefore, these 
models failed to define some worthwhile patterns and had a considerably lower predictive 
accuracy. Slightly outperformed by TabNet, which is designed for tabular data, it was 
clear that XGBoost was once again surpassing DL models due to their need for more 
complex data with complex patterns. 

This comparison shows how crucial it is to choose models according to the datasets, 
based on their characteristics. DL models are very useful for some specific data types 
(image, text, or time-series data), but there can be no big improvements for structured 
tabular data, where XGBoost already shows excellent performance. 

 

7.4 Results on water quality dataset 2 

The second dataset reveals that even though various resampling methods have been 
applied to address the problem of class imbalance; the final performance of the model is 
not quite satisfactory because of the scarcity of samples which range from 3000 samples. 
Logistic Regression again proved rather weak as it only yielded 50% accuracy due to the 
high level of difficulty of the overloaded and imbalanced data set. This was even worse 
than Random sampling, though at a slightly higher figure of 66.6% Random Forest was 
still unable to provide accurate predictions. The same can be said about XGBoost which 
achieved an accuracy of 63.9% and despite having an opportunity to outperform Random 
Forest in most cases, it failed to do that and to tackle the problems resulting from the 
minority class. 

The other deep learning models showed similar performance with a test accuracy of 
66.50%. Yet, the models were unable to fully utilize the resampled dataset: the performance 
of the proposed approach slightly outperformed other machine learning methods. These 
results suggest that resampling techniques can help to reduce im- balance to some extent 
but they are not able to overcome problems with the dataset and perhaps feature 
engineering or using advanced methods specifically for imbalance will be necessary. Further 
hyperparameter optimization of all the models, including XGBoost, Random Forest, Logistic 
Regression, and Decision Trees, revealed that, in general, the outcomes differ only slightly 
for the same reason – the smaller number of samples in the sample set. Among the 
tuning parameters of XGBoost, the numeracy of estimators, learning rate, and maximum 
depth were chosen, while for Random Forest, the estimators, 
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tree depth, and splitting criteria were selected randomly. For the first choice of features, 
Logistic Regression was optimized for its regularization parameter, and Decision Trees for 
the maximum depth of decision trees. Still, due to a relatively small training sample size, 
there was not enough evidence for the models to generalize, proving the idea that even 
the best hyperparameter selection cannot solve the problems arising from small-sample 
data. 

 

8 Hyperparameter tuning 

Hyperparameter tuning is crucial when designing machine learning and deep learning 
models because it involves selecting the right combination of parameters. In the Decision 
Tree classifier, the parameter was set as ‘max depth’ to manage the intricacy of the 
tree. The grid search applied a range from 3 to 25 in order not to overfit and, at the 
same time, not to underfit. For ‘XGBoost’ the most important hyperparameter was the 
‘n estimators’, which gives the number of boosting stages to be conducted and was varied 
from 5 to 500. This tuning made it possible to achieve enough boosting rounds to capture 
intricate patterns without overfitting. Other works carried out included tuning of Logistic 
Regression for the regularization parameter C ranging from 0.01 to 100 to have control 
over complexity and accuracy. 

The LSTM, GRU, and TabNet models were all trained with different parameters, 
and the best results are presented here. Both LSTM and GRU models had two layers, 
a hidden size of 64, and a learning rate of 0.001. These settings were chosen to provide 
a sufficient capacity for learning patterns while avoiding the model’s complexity. The 
TabNet model was trained for 50 epochs with early stopping and stopped at the 43rd 
epoch to avoid overfitting the model. For Random Forest, the parameters that were tuned 
are ‘n estimators ‘, ‘max depth‘, and ‘criterion‘ These parameters are on the number of 
trees, depth of a single tree, and the split criterion respectively. In the tuning of each 
model, an effort was made to optimize both the computation time and the overfitting of 
the model. 

 

9 Conclusion and Future work 

9.1 Conclusion 

This research presents an empirical analysis that compares ML (machine learning) and DL 
(deep learning) in predicting water potability. Based on the comparison of the presented 
models, XGBoost can achieve the highest accuracy and stability in processing structured 
data in comparison with the ML models, namely, Random Forest and Decision Trees, and 
DL models, namely, LSTM and GRU. ML approaches are known to excel in managing 
non-linear association, formatted table format data, and missing values making such 
tasks such as water potability prediction feasible. On the other hand, DL models failed 
to perform well because the target dataset does not possess temporal characteristics 
which are the core competency of most DL models. The results of the second experiment 
using a second, less balanced dataset reiterated these observations as even when applying 
extensive resampling and hyperparameter tuning, the models simply could not perform 
well. These findings have highlighted how computational approaches can revolutionize 
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public health and water resource management by providing easily scalable and highly accurate 
methods for tracking water quality. This study advances Patel et al, (2023) research by utilizing a 
larger and more diverse dataset that includes more attributes like Water Source, Water 
Temperature, and Air Temperature, making it more realistic water quality dataset compared to 
prior studies. A key contribution is also like using TabNet, an advanced deep learning model 
specifically optimized for tabular datasets. This study demonstrates TabNet's ability to handle 
structured data more effectively than traditional deep learning models, highlighting its potential for 
tasks involving non-sequential tabular data. By comparing traditional models like XGBoost, Random 
Forest, and Decision Trees with deep learning models on water datasets, this study concludes that 
ML models outperformed DL models while also showing scope in research on more DL models to 
enhance the performance. 

 

 

 

9.2 Future Work 

Future studies can extend this work on the development of complex models that combine 
the interpretability of the ML approaches with the flexibility and adaptability of the DL 
structures. For instance, models that incorporate decision tree algorithms in collaboration 
with the neural networks, like tree-based embeddings or attention mechanisms could 
be able to detect the intricate feature interaction while at the same time remaining 
interpretable. In addition, the generalization and reliability of the predictions can be 
enhanced if more diverse and more real-time data from water sources such as rivers, 
lakes, and groundwater are included in the study. 

Another potential direction is the application of unsupervised learning techniques for 
feature extraction and potentially helpful in minimizing the amount of preprocessing re- 
quired. AutoML (Automated machine learning) also has great potential to ease processes 
of hyperparameters tuning and model selection, which is now consuming much 
computational time and effort to find the best configurations. Possible approaches to 
address the issues of smaller and imbalanced data in the second dataset of this study 
would be to consider new resampling techniques or synthetic data simulations. Moreover, 
integrating real-time data pipelines into these models could enhance the possibility of 
producing dynamic predictions, as well as enhance their practical applicability for large 
scale in public health and water management systems. Such developments could extend 
toward enhancing the precision, effectiveness, and interactiveness of computational models 
in approaching essential issues. 
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