\ National
Collegeof

Ireland

Configuration Manual

MSc Data Analytics
Research Project

Msc. in Data Analytics
National College of Ireland

Supervisor: Mr. Noel Cosgrave

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
Msc. Data analytics
Student Name:
Student ID:
Programme: MSc Data Analytics Year: 2024-2025
Module: Research Project
Supervisor: Mr. Noel Cosgrave
Submission Due
Date: 12/12/2024
Project Title: INTEGRATING SENTIMENT ANALYSIS AND FINANCIAL METRICS TO
UNDERSTAND CONSUMER BEHAVIOR IN THE AUTOMOTIVE
INDUSTRY
Word Count: 786 Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Dale
lobo

Date: 12/12/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Introduction:

This manual provides detailed instructions for configuring and deploying the phishing URL detection
system developed in this research project. The system employs a hybrid model integrating machine

learning and deep learning techniques to accurately identify phishing URLSs.

1 System Requirements:

To guarantee efficient model processing and to minimize the duration required, it's crucial to be
equipped with the necessary hardware and software resources.
1.1. Hardware Requirements:
The implementation is performed on an HP Pavilion; the configuration of the device is as
follows.
1.Processor: AMD Ryzen 7 3700X, 3.0 GHz

2.RAM: 16.00 GB
3.Hard Disk: 1 TB HDD for data storage, 512 GB SSD
4.08 Windows 11 (64-bit)

1.2 Software Requirements:

Before beginning the model construction phase, the below mentioned software, libraries, and
tools were set up and installed on the system.

Software/Tools Version Information

Python Python is a widely-used, high-level
programming language known for its
simplicity and versatility. It is
commonly used for data analysis,
machine learning, artificial
intelligence, and web development.
Python supports various libraries for
scientific computing and data
processing, making it ideal for tasks
like sentiment analysis and financial
modeling.

Google Colab Google Colab (short for
Colaboratory) is a cloud-based
platform provided by Google that
allows you to write and execute
Python code in a Jupyter notebook

2.

environment.

Pandas

Pandas is a powerful Python library
used for data manipulation and
analysis. It provides two main data
structures, DataFrame and Series,
which are used for handling and
analyzing structured data. It supports
operations like data cleaning,
transformation, and aggregation,
making it an essential tool for
working with large datasets.

Transformers

Transformers is a Python library by
Hugging Face that provides pre-
trained deep learning models,
particularly for Natural Language
Processing (NLP) tasks. It includes
models like BERT, GPT, and T5,
which can be used for tasks such as
sentiment analysis, text
classification, and language
generation. It simplifies working
with state-of-the-art models and
integrates easily with frameworks
like PyTorch and TensorFlow.

Sci-kit Learn

Scikit-learn is a machine learning
library in Python that provides
simple and efficient tools for data
mining and data analysis. It offers a
wide range of algorithms for
classification, regression, clustering,
and dimensionality reduction. Scikit-
learn is widely used for building
machine learning models due to its
easy-to-understand API and robust
documentation.

Implementation:

In this section there is a complete guide to run the project in any windows system.

1. Opening a web browser and going to Google Colab.

Open notebook

Examples
Search notebooks

Title

& Projectimymh

0 Welcome To Colzb

& PWO724 IR1612_customer, Chumn,_Modellin . December &

& Wiater Quality_Detection-1.igynb

& MZjomh

& Untitled16.ipynb

+ New notebook

1. After opening jupyter notebook click on the File, New Notebook or Open Notebook.
2. In notebook, Import all the required libraries.

Sentiment Analysis
from nrclex import NRCLex

import nltk

import pandas as pd

import re

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

from nltk.stem import WordietlLemmatizer

from sklearn.feature_extraction.text import CountVectorizer

nltk.download(' punkt_tab")

import numpy as np
import pandas as pd
import tensorflow as tf

from
from
from
from
from
from

tensorflow.keras.models import Model

tensorflow.keras.layers import Input, Embedding, ConvlD, GlobalMaxPoolinglD, LSTM, Dense, Dropout, Co
tensorflow.keras.preprocessing.text import Tokenizer

tensorflow.keras.preprocessing. sequence import pad_sequences

sklearn.model_selection import train_test_split

sklearn.preprocessing import StandardScaler, OneHotEncoder

3. Import the Provided Dataset.

import pandas as pd

df = pd.read_csv("/content/car_5_brands.csv")

6. Next Step will be Pre Processing Step will be performed using following Code.

Drop redundant columns
df = df.drop{columns=["Unnamed: &"], errors="ignore'}

Hondle missing values

Check for missing values

missing_values = df.isnull(}.sum()
print("Missing values:'\n", missing_walues)

Miszing values:
Rating @
car_year
brand_name

date

review

dtype: inted

3
a
a
a

Dataset Overview:

<class "pandas.core.frame.DataFrame':
Rangelndex: 31938 entries, @ to 31937
Data columns {(total 8 columns):

Column Non-Null Count Dtype

a Rating 31938 non-null floated
1 car_year 31938 non-null inted

2 brand_name 31938 non-null object
3 date 31938 non-null object
4 review 31938 non-null object
5 cleaned_review 31938 non-null object
& emotions 31938 non-null object
7 dominant_emotion 31938 non-null object

dtypes: floated(l), int&4({1), object(s)
memory usage: 1.9+ MB
None

First 5 Rows:

Rating car_year brand_name date %
a c.8 2918 Audi 2818-87-11
1 L.8 2818 Audi 20818-85-24
2 L.8 2818 Audi 20818-85-82
3 L.8 2918 Audi 2817-12-87
4 5.8 2818 Audi 2817-18-25

4. Exploratory Data Analysis has been Performed and Visualisation has been done using

following Code
Distribution of Ratings

20000 1

15000 A

Frequency

10000

5000 4

0 e
2.5 3.0 35 4.0 4.5 5.0

1.0 1.5 2.0
Rating

L P S P U R S e (S PP PSR SR

Number of Reviews by Brand

- W A e

8000 1

7000

6000 1

5000 A

Number of Reviews
&
=]
=

=]
3

2000 1

1000 4

Brand Name

Ratings by Car Year

T o o o
8 o o o
g 0 © © O O
(] 0 © O O O
o o 0 O 0 © © ©
= o o © g (=] © o O 0O
5 S 2288 0O 06 0 0 O
o © 0 o O O o ¢ O o O
o QO ©Q Q O O 0 g Q © O O ©Q e
254 0 © O © © © © © ¢ 0o © o <+ <L L 4
6 6 6 0 6 o 6 6 6 6 6 6 © © 0 O O
o 0 0 0 © 0 © 6 0 0 0 0 0 6 0 0 ©
Cc 0 0O 0 0 0O @ 0 O O 0 © © @ O O O O
2040 ©0 © © © © © © © ©0 O O o O O 0O © © ©o o =]
) © 6 © 6 06 0 O 6 0O © O © O O ©
o 6 0o 0 0 @ @ 0 @ 0 © 0 0 O O o o
9 0 9 9 g ¢ o 0 o 0) o
15{0 © 0 0 o 6 o 0o 0 © 0 o o o
Q o o o g O ©O o o Q Q
o o o 6 0 0 o O o
o © O 0
104 © © o o o o © © o © o o O o o © o o -+~ ©°
A B D D N DD f R B I T G I T R e
P P S AN AR P N P T L P RN
TG . R - "u“@ A A A AR AR AR AR AR AR A AP
Car Year

5. After Data Pre Processing the Data Splitting is Performed before Building a Model

Train-test split
Split into troim and test first
¥X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=8.2, random_state=42}

Now verify the shapes again
print({"Shape of ¥_train:", X_train.shape)
print({"Shape of y_train:", y_train.shape)

Shape of ¥_train: (25558, &)
Shape of y_train: (2555@,)

6. Models Implementation has been Performed with the following Code

from keras.models import Model
from keras.layers import Input, Embedding, LSTM, Dense, Dropout, Concatenate, Flatten
from keras.optimizers import Adam

Define the text input Layer

text_input = Input(shape=(5@,), name='text_input') # 5@ tokens max Length for padded sequences
embedding_layer = Embedding(input_dim=5888, output_dim=128, input_length=58)(text_input) # Embedding Laye
lstm_layer = LSTM({&64)(embedding layer) # L5TM Layver to capture sequential patterns

Define the numerical imput Layer
numerical_input = Input(shape=(X_train_numerical.shape[l],), name="numerical_input')
numerical_dense = Dense(64, activation='relu')(numerical imput)

Define the cotegorical input Layer
categorical_input = Input(shape=(X_train_categorical.shape[l],), name='categorical input')
categorical_dense = Dense(64, activation="relu')(categorical_input)

Concatenate all the input Layers
merged = Concatenate()([1lstm_layer, numerical dense, categorical dense])

Add some dense Layers for further processing

merged_dense = Dense{128, activation="relu')(merged)

dropout_layer = Dropout(@.5)(merged dense)

output_layer = Dense{1l)}(dropout_layer) # Output Layer for regression (since you're predicting o rating)

Define the model
model = Model{inputs=[text_input, numerical input, categorical_ input], outputs=output_layer)

Compile the model
model.compile{optimizer=Adam(), loss='mean_squared error', metrics=['"mas'])

Summarize the model architecture
model . summary)

from keras.models import Model
from keras.layers import Input, Embedding, ConvlD, MaxPoolinglD, GlobalMaxPoolinglD, Dense, Dropout, Conca
from keras.optimizers import Adam

Define the text inmput Layer
text_input = Input(shape=(5@,), name="text input') # 58 tokens max Length for padded seguences
embedding_layer = Embedding(input_dim=5808, output_dim=128, input_length=58)(text_input) # Embedding Llaye

Convolutional Layer for Text Feature Extraction

conv_layer = ConvlD{128, 5, activation='relu'}(embedding laver) # 10 convolution with 128 filters and ker
max_pool_layer = MaxPoolinglD({pool_size=2)(conv_layer) # Max pooling with pool size 2

global_pooling layer = GlobalMaxPoolinglD(){max_pool_layer) # Global max pooling to get the best feature

Define the numerical input Layer
numerical_input = Input(shape=(X_train_numerical.shape[l],), name="numerical_input")
numerical_dense = Dense(64, activation='relu’}(numerical input)

Define the categorical input Layver
categorical_input = Input(shape=(X_train_categorical.shape[1],), name='categorical_input')
categorical_dense = Dense(64, activation='relu'){categorical_input)

Concatenate all the input Layers
merged = Concatenate(){[global_pooling_layer, numerical_dense, categorical_dense])

Add some dense Llavers for further processing

merged_dense = Dense(128, activation="relu')(merged)

dropout_layer = Dropout(®.5)(merged_dense)

output_layer = Dense(l)(dropout_layer) # Output Layer for regression (since you're predicting a rating)

Define the model
model_cnn = Model(inputs=[text_input, numerical_input, categorical_input], outputs=output_layer)

Compile the model
model_cnn.compile{optimizer=Adam(), loss="mean_squared _error', metrics=['mae"]1)

Summarize the model architecture
model_cnn.summary ()

Train the CAN model
history = model_cnn.fit(
[X_train_text, X train_numerical, X _train_categorical], # Input datao
y_train, # Target Labels (ratings)
epochs=18, & Number of epochs
batch_size=32, # Botch size
validation split=@.1, # Volidation split (18% of the troining dota for validotion)
verbose=1 # Show training progress

Evaluate the model on the test data

loss, mas = model cnn.evaluate(
[¥_test_text, X test_numerical, X_test_categorical], # Test datg
y_test # Test torget labels

)

print(f"Test Mean Absolute Error (MAE): {mae:.2f}")

Cwmeb 1 £

7. The Accuracy is considered as evaluation factor after Model Implementation

288,208 25 1lms/step
L5THM Model Evaluation Metrics:

Mean Absolute Error (MAE): @.3959

Mean Squared Error (MSE): @.4188

Root Mean Sguared Error (RMSE): 8.5418
R-zguared (R2}: @.3242

Explained Variance Score: @.3263

8.

20887208 35 ldms/step
CHM Model Evaluation Metrics:

Mean Absolute Error (MAE): ©.4685

Mean Squared Error (MSE): ©.4149

Root Mean Squared Error (RMSE): @.6441
R-squared (R2): &.317%

Explained Variance Score: @.3323

Linear Regression Metrics:

R-squared: @.3387

Mean Squared Error (MSE): @.3778

Root Mean Sguared Error (RMSE): 8.5148

Random Forest Regressor Metrics:
R-squared: @.3768

Mean Squared Error (MSE): @.351@

Root Mean Squared Error (RMSE): ©.5825

The concluding code files are include the ipynb file and the csv dataset
References

Numpy.org. 2021. NumPy. [online] Available at: <https://numpy.org/>.

