Configuration Manual

MSc Research Project
Data Analytics

Ekansh Kothiyal
Student ID: 23222417

School of Computing
National College of Ireland

Supervisor: Shubham Subhnil

~

National
Collegef
Ireland

National College of Ireland National
Project Submission Sheet Co]]ege of

School of Computing Ireland

Student Name:

Ekansh Kothiyal

Student ID: 23222417
Programme: Data Analytics
Year: 2024

Module: MSc Research Project

Supervisor:

Shubham Subhnil

Submission Due Date: 12/12/2024

Project Title: Configuration Manual
Word Count: XXX

Page Count: 5

| hereby certify that the information contained in this (my submission) is information
pertaining to research | conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Ekansh Kothiyal
Date: 7th December 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | O
each project (including multiple copies).

a copy on computer.

You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Ekansh Kothiyal
23222417

1 Introduction

This manual discusses in detail the instructions for configuring and deploying the
tuberculosis detection system using pre-trained CNN models. A hybrid approach was
implemented using deep learning models and transfer learning techniques to perfectly
identifyTB infected from healthy cells.

2 System Requirements

Certain system requirements are needed for efficient model processing and minimizing
the duration of time.

2.1 Hardware Requirements

The device used for the implementation was a Lenovo IdeaPad 330 with the below
configurations:

1. Processor: Intel(R) Core (TM) i5-8250U CPU @ 1.60GHz 1.80 GHz

2. RAM: 8.00 GB

3. Hard Disk: 256GB SSD, 1 TB HDD

4. OS: Windows 10 Pro 64—bit

2.2 Software Requirements

Software Information
Google Collab Platform | Cloud-based environment for running Python scripts.
Python Google Collab uses version 3.8 or later.
TensorFlow/Keras Building, training, and evaluating CNN models like Mo-
bileNetV2 and DenseNet121.
NumPy For mathematical and array manipulation.
Pandas For managing and processing datasets.
Matplotlib/Seaborn For visualizing data.
sci-kit-learn For generating metrics like confusion matrices, precision,
recall, and Fl-scores.

Table 1: Software and their Information

3 Implementation

3.1 Sign in to Google Collab, create a new notebook, and mount
it to Google Drive.

¢ WelcomeToColab & o see
File Edit View Insert Runtime Tools Help

= New notebook in Drive Sode + Text Copy to Drive Comnect v =+ Gem
s

Q
Nelcome to Colab!
{x}
o] xplore the Gemini API
O he Gemini AP| gives you access to Gemini models created by Google DeepMind. Gemini models are buit from the ground up to be
nuitimodal, so you reason seamiessly across text, images, code, and audio.
— *S jow to get started
| 1 So0gle Al Studio and log in with your Google account.
2 ate an key.
o o 3- Use a quickstart for Python, or call the REST API using curl.
Explore use cases
« Create a marketing campaign
« Analyze audio recordings
Pes * Use System instructions in chat
To leamn more, check out the Gemini cookbook or visit the Gemini APl documentation.
=

= Colab now has Al features powered by Gemini. The video below provides information on how to use these features, whether you'e new to

Pvthon or a seasoned veteran

3.2 Import all the necessary libraries

Ipip install tensorflow --upgrade
Installing regqguired libraries
!'pip install xmltodict

!pip install tensorflow

!pip install efficientnet

!pip install imbalanced-learn

import os

import xml.etree.ElementTree as ET
import cw2

import matpleotlib.pyplot as plt

import numpy as np
import random

import tensorflow as tf

from tensorflow.keras.applications import MobileNetwz2

from tensorflow.keras.layers import Dense, GlobalAveragePooling2D

from tensorflow.keras.models import Model

from sklearn.model selection import train_test_split

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.callbacks import EarlyStopping

from tensorflow.keras.applications import DenseNetl121

from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout

from sklearn.metrics import classification_report, confusion matrix
import seaborn as sns|

3.3 Importing the dataset with positive and negative images
and combining them into a single folder with all the images.

Paths to the folders
positive_images_dir = ‘/content/drive/MyDrive/content/tb_positive/"
negative_images_dir = '/content/drive/MyDrive/content/tb_negative_a

ugmented/*

bbox_images_dir = '/content/drive/MyDrive/content/tb_images_bbox/"
all_images_dir = '/content/drive/MyDrive/content/all images2/' # D

os.makedirs(all_images_dir, exist_ok=True)

Copy images
def copy_images(src_dir, dst_dir, image_filenames=None):

if image_filenames is None:
image_filenames = [f for f in os.listdir(src_dir) if f.ends
for filename in image filenames:
src_path = os.path.join(src_dir, filename)
dst_path = os.path.join(dst_dir, filename)
if os.path.exists(src_path):
shutil.copy(src_path, dst_path)

positive_images = [f for f in os.listdir(positive_images_dir) if f.
negative_images = [f for f in os.listdir(negative_images_dir) if f.

Combine all positive and negative images
all_images = positive_images + negative_images

Copy all positive and negative images to the all_images directory
copy images(positive images dir, all images dir, positive images)

3.4 Preprocessing the dataset

from matplotlib.image import imread

Paths to the folders

positive_images_dir = '/content/drive/MyDrive/content/tb_positive/' # Dire
negative_images_dir = '/content/drive/MyDrive/content/tb_negative_augmented,
all_images_dir = '/content/drive/MyDrive/content/all images2/® # Directory

List all images in the positive and negative directories
positive_images = [f for f in os.listdir(positive_images_dir) if f.endswith
negative_images = [f for f in os.listdir(negative_images_dir) if f.endswith

Randomly select 2 positive and 2 negative images
selected_positive_images = random.sample(positive_images, 2)
selected_negative_images = random.sample(negative_images, 2)

Plotting the images
fig, axes = plt.subplots(2, 2, figsize=(10, 8))

Load and display positive images

for i, img_name in enumerate(selected_positive_images):
ax = axes[i//2, i%2]
img_path = os.path.join(positive_images_dir, img_name)
img = imread(img_path)
ax.imshow(img)
ax.set_title(f'Positive Image {i+1}')
ax.axis('off')

Load and display negative images
for i, img_name in enumerate(selected_negative_images):

irectory to store all images together

with(".jpg’)]

endswith('.jpg")]
endswith(*.jpg")]

ctory with positive images
/* # Directory with negative images
to store all images together

(*-Jeg")]
(*.deg")]

3.5 Visualizing the images in the dataset

Positive Image 1

Negative Image 1

Positive Image 2

Negative Image 2

3.6 Oversampling the minority class (Negative sample)

Due to class imbalance (less sample in negative class) oversampling was done
in negative class with positive samples as 1863 and negative as 1863, and
then splitting the dataset into train and validation for training the models.

Load and label images
def load_images_and_labels(directory}):
images = []
labels = []
for filename in os.listdir{directory}:
if filename.endswith{'.jpg
image_path = os.path.j {directory, filename})
image = cv2.imread(image path}
image = cv2.resize(image, (img height, img width))
image = image / 255.2
label = 1 if is_positive_image(image_path} else @
images.append(image)
labels.appendi(label}
return np.array(images), np.array(labels}

Load data and split into training and validation sets

images, labels = lecad_images_and_labels(data_dir)

positive samples = np.sumi{labels}

negative_samples = len(labels) - positive_samples

print(f"Pesitive samples: {positive_samples}, Negative samples: {negative_samples}")

Oversample negative samples
if negative_samples < positive samples:
negative_indices = np.where(labels == @)[2]
additional_indices = np.random.choice{negative_indices, positive_samples - negative samples, replace=True)
images np.concatenate((images, images[additional_indices]))
labels np.concatenate((labels, labels[additional_indices]))

print(f"New positive samples: {np.sum{labels)}, New negative samples: {len(labels) - np.sum{labels}}")

split data
¥_train, ¥ wval, y_train, y val = train test split(images, labels, test size=2.2, random_state=42)

Reduce the size of training data for reduced accuracy and speed
¥_train_subset, _, y_train_subset, _ = train_test_split(x_train, y_train, test_size=e8.5, random_state-=42)
train dataset = tf.data.Dataset.from tensor slices({(X train subset. v train subset)).batch(batch size).shuffle(ieea}

3.7 Building a MobileNetV2 model

Build the model
base_meodel = MobileNetv2{weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3))
base_model.trainable = False # Freeze the base model

x base_model.output

x GlobalAveragePooling2D() (x)

output = Dense(1, activation='sigmoid')(x) # Removed intermediate Dense layers
model = Model(inputs=base_model.input, outputs=output)

Compile the model
model.compile(optimizer="adam', loss='binary_crossentropy’, metrics=[‘accuracy'])

Add early stopping Loading...
early_stopping = Earlystopping(monitor='val_accuracy', patience=2, restore_best_weights=True)

Train the model

history = model.fit(
train_dataset,
validation_data=val_dataset,
epochs=epochs,
callbacks=[early_stopping]

Save the model

model_path = '/content/drive/MyDrive/content/saved_model/mobilenetv2_tb_classifier.hs’'
model.save(model_path)

print(f"Model saved to {model_path}")

Evaluate the model
val_loss, val_accuracy = model.evaluate(val_dataset)
print(f"validation accuracy: {val_accuracy * 10@:.2

3.8 After Model implementation validation Accuracy is
considered as evaluation factor

Validation accuracy: 88.74%

from sklearn.metrics lmport classification_report, confusion_matrix

import matplotlib.pyplot as plt

import sesborn as sns

4 Extract features and true labels from the validation data
val_features = np.array([x for x, _ in val_dataset.unbatch(
val_labels = np.array(ly for _, y in val_dataset.unbatech()])

§ Predict the lab
y_pred = model.predict(val_features)
y_pred = (y_pred > 8.5).astype(int).flatten() & Convert probabilities to binary lab

or validation data

s (@ or 1)

ssification Report

ication Report:")
print(classification_report(val_labels, y_pred, target_names=["Negative®, "Positive”]))

i)
cm = confusion_matrix(val_labels, y_pred)

Plotting the confu
plt.figure(figsizes(

sns.heatmap(cm, snnot=True, fmt='g’, cmap="Blues’, xticklabels=| Negative, "
plt.xlabel(Predicted’)

plt.ylabel(e')

plt.title(’Confusion Matrix')

plt.show()

itive" |, yticklabels=["Negative®, "Positive”])

24724 (== Ba3ns/step
Classi Repor
precision recall +#l-score support
Negative e.88 e.89 ©.83 362
Positive e.s8 °.88 6.83 384
accuracy 6.83 746
macro ave e.89 e.89 0.83 746

3.9 Building a DenseNet121 model

y_train_resampled = np.concatenate(|y_train_subset, y_train_augmented])
train_dataset = tf.data.Dataset.from_tensor_slices((X_train_resampled, y_train_resampled)).batch(batch_size).shuffle(1e82)

Load DenseNet121 for feature extraction
base_model = DenseNet121(weights='imagenet', include_top=False, input_shape=(img_height, img width, 2))
base_model.trainable = False # Freeze the base model

Add custom layers

X = base_model.output

X = GlobalAveragePocling2D()(x)

output = Dense(1, activation='sigmoid’')(x) # Sigmoid for binary classification
model = Model(inputs=base_model.input, outputs=output)

Compile the model
model.compile(optimizer="'adam', loss="binary_crossentropy®, metrics=['accuracy'])

Add early stopping
early_stopping = Earlystopping(monitor='val_accuracy', patience=2, restore_best_weights=True)

Train the model

history = model.fit(
train_dataset,
validation_data=val_dataset,
epochs=epochs,
callbacks=[early_stopping]

)

Save the model

model_path = */content/drive/MyDrive/content/saved_model/densenet121 classifier.hs’

model. save (model_path)

print(f"Model saved to {model_path}")

evaluate the model
val_loss, val_accuracy = model.evaluate(val_dataset)
print(f"validation accuracy: {val_accuracy * 100:.2f}X")

3.10 After Model implementation validation Accuracy is
considered as evaluation factor

Predictions on the validation set
y_pred = model.predict(val_dataset) # Predict using the DenseNet121 model
y_pred_classes = (y_pred > ©.5).astype(int) # Convert probabilities to binary labels (@ or 1)

cation report
pri lassification Report:\n")
print(classification_report(y_val, y_pred_classes))

confusion matrix
conf_matrix = confusion_matrix(y_val, y_pred classes)

Plot confusis
plt.figure(fig)
sns.heatmap(col annot=True, fmt="d', cmap='Blues’, xticklabels=['Negative', 'Positive'], yticklabels=['Negative', 'Positive'])
plt.title("con ix*)

plt.xlabel('Pr Label')

plt.ylabel('True Label®)

plt.shou(

12/12 [=============s================] - 685 5s/step
Classification Report:

precision recall fi-score support

] 0.87 8.84 8.86 362

1 0.86 8.89 .87 384

accuracy .86 745
macro avg 2.87 0.86 2.36 746
weighted avg .35 0.86 .36 738

Total time taken:

MobileNetV2 model overall took 1009 seconds for the training time and evaluation
time with the accuracy of 88.74% , and DenseNet121 model overall took 3274
seconds for the training time and evaluation time with the accuracy of 86.46%.

DenseNet121 is significantly slower, taking approx. 3.25x longer than MobileNetV2
for the same task.

To conclude, this code file includes one project file titled TB_detection.ipynb which
includes both the models training and evaluation with the visualizations.

References

NumPy.org. 2023. NumPy 2.1.0 Release Notes. [online] Available at:
https://numpy.org/doc/stable/release/2.1.0-notes.html

Scikit-learn.org. 2023. Scikit-learn: Machine Learning in Python — Scikit-learn 1.3.1
Documentation. [online] Available at: https://scikit-learn.org/stable/

TensorFlow.org. 2023. TensorFlow: An End-to-End Open Source Machine Learning
Platform. [online] Available at: https://www.tensorflow.org/.

https://scikit-learn.org/stable/
https://www.tensorflow.org/

	Configuration Manual
	Ekansh Kothiyal
	National College of Ireland Project Submission Sheet School of Computing
	PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:
	2 System Requirements
	2.1 Hardware Requirements
	2.2 Software Requirements

	3 Implementation
	3.1 Sign in to Google Collab, create a new notebook, and mount it to Google Drive.
	3.3 Importing the dataset with positive and negative images and combining them into a single folder with all the images.
	3.5 Visualizing the images in the dataset
	3.8 After Model implementation validation Accuracy is considered as evaluation factor
	3.10 After Model implementation validation Accuracy is considered as evaluation factor

	References

