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Tuberculosis Detection Using Pre-Trained CNNs

Ekansh Kothiyal
23222417

Abstract

Tuberculosis (TB) is a leading infectious disease globally, that continues to em-
phasize its high mortality rate and contagious properties, especially in low and
middle-income regions. There have been many diagnostics in this area. Still, with
current diagnostics methods, they face huge limitations in sensitivity, speed, and
accessibility which leads to delays in early TB detection and treatment. Deep learn-
ing models are explored in this study, specifically convolutional neural networks
(CNNs), which act as a tool to enhance TB diagnostics that help classify all the
cell images as TB-infected or healthy cells. Two pre-trained Models MobileNetV2
and DenseNet121, have been investigated for their effectiveness in TB image classi-
fication. In this study, MobileNetV2 is selected due to its computational efficiency
and DenseNet121 is chosen due to its deep feature extraction capabilities. The
models were trained using transfer learning on a sputum smear microscopy dataset
with TB-infected and healthy cell images. The findings in this research highlight
the viability of pre-trained CNN models as an important tool in TB diagnosis.

1 Introduction

One of the top infectious killer diseases is still Tuberculosis (TB) with an estimated 10
million new cases and nearly 1.4 million deaths in 2019. Lower- and middle-income coun-
tries were majorly affected by this Chakaya et al. (2021). The cause of tuberculosis is
the bacteria called Mycobacterium tuberculosis, which mainly focuses on the lungs but
can sometimes affect other organs too, leading to many symptoms and diseases. There
have been many cases of delay in the diagnosis of tuberculosis despite the advancement
in the treatment of TB. The goal of this research is not only to enhance the early detec-
tion and treatment of TB but also to prevent long-term health impacts on the affected
population with this disease. Still, nowadays the techniques for the detection of TB have
limitations that slow down the process of accurate detection, especially where there is
a limited resource setting. There are many challenges across the globe such as limited
access to healthcare facilities and technology, high cost of diagnostic tools, and lack of
trained professionals in low-resource regions Walzl et al. (2018) that highlight the ur-
gency for new diagnostics methods and technologies that are cost-effective help in the
improvement of TB detection, and also support global TB initiatives.

There have been many traditional diagnostics methods which include sputum spear
samples, nucleic acid amplification tests (NAATs) Pagaduan and Altawallbeh (2023),
some culture tests, and chest x-ray tests Kumar and Dhingra (2023). In highly popu-
lated countries most commonly accessible method is sputum smear microscopy, but has
low sensitivity with patients with low bacterial load or extrapulmonary TB. In the case
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of culture tests, these are more sensitive and require several weeks for the result which
usually delays the initiation of the treatment. More expensive methods are NAATs such
as GeneXpert but are faster and give more accurate results. To perform NAATs special-
ized equipment and infrastructure may not be available in low-resource settings. These
methods primarily focus on the direct detection of bacteria and may miss out on cases
where bacteria is spread outside the lungs and bacteria may not be present in some
sputum samples. All these limitations combined create a need for new innovative dia-
gnostics methods that help in higher sensitivity, and speed, and help in diverse healthcare
environments, mostly in areas where TB burden is at its highest.

In the detection of TB, AI plays a major role particularly deep learning which is a
promising field in medical diagnostics Cao et al. (2021). These deep learning algorithms,
especially convolutional neural networks (CNNs), enable computers to learn and extract
important features from complex datasets through image analysis. These features of
CNN are invaluable in medical imaging, for the diagnosis of diseases accurate pattern
recognition is very essential. Vandana and Kannan (2021)Oncology, dermatology, and
radiology are some of the fields where CNN has been successfully implemented, showing
perfect accuracy in identifying disease patterns present in images containing bacteria.
This study explores the potential of models in diagnosing TB with two advanced pre-
trained models, Shome et al. (2024) MobileNetV2 and DenseNet121 Rochmawanti and
Utaminingrum (2021), which are known for their efficiency in image recognition. These
pre-trained models have become an important factor in medical diagnosis because of
their adaptability to any tasks with transfer learning. MobileNetV2 and DenseNet121
were chosen here because of their computational efficiency and strong performance in
medical image analysis. MobileNetV2 is known for its lightweight structure which is
most useful in areas with less computational resources, while DenseNet121 is known for
its deep connectivity across all the layers offering robust feature extraction which leads
to enhancing the accuracy of the classification.

The main aim of this research is to assess the performance of both the models Mo-
bileNetV2 and DenseNet121 in differentiating between TB-infected positive samples and
healthy cells while examining, processing speed and accuracy. Implementation of trans-
fer learning is applied to these pre-trained models, this helps in evaluating these models’
potential as more reliable alternatives than traditional TB diagnosis methods which some-
times often lack in various aspects like sensitivity, speed, or accessibility of TB control.
The use of CNN in this study could support reliable and strong diagnostic processes,
also reducing the delays in treatment, especially in the regions where this kind of rapid
and fast diagnosis is essential in managing high cases and limited resources in healthcare
infrastructure. Also, this study focuses on addressing the gaps in traditional diagnostics
methods with AI-driven approaches. The development of automated diagnostics tools
can potentially transform TB diagnosis enabling faster and more accurate detection in
diverse healthcare contexts by the insights derived from this evaluation.

The research question of this study is ”How does the classification accuracy of pre-
trained CNN models, MobileNetV2 and DenseNet121, compare in identifying tuberculosis-
infected versus healthy cells using transfer learning?” This study highlights the potential
of AI-driven methods, that demonstrate their ability to surpass traditional TB diagnostic
techniques. The comparative performance of the models MobileNetV2 and DenseNet121
is focused on here, this research will dig deeper into the concepts of these convolutional
neural networks and whether they can deliver the precision, speed, and accessibility that
are required to meet the global TB diagnostics needs. The findings that are achieved
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from this study could shine some light on how AI will help bridge current diagnostics
gaps and offer a pathway towards high-quality TB diagnostics that could transform TB
detection and management where there is limited resource setting worldwide.

2 Related Work

Tuberculosis is one the major global health issues due to its complexities which surrounds
its detection and diagnosis. It can manifest in different body systems and mimic other
diseases, leading to a delay in diagnosis that can worsen patient outcomes. Also, there
is a rise in multidrug-resistant TB (MDR-TB) which further complicates the diagnosis
and treatment landscape, leading to innovations in diagnostic technologies to improve
the speed, accuracy, and accessibility. The healthcare system has faced many unresolved
challenges due to reliance on traditional diagnostic tools. For example, while performing
the ECG or chest X-rays that are widely used for TB screening rely on the expertise
of trained radiologists, which may not always be available in resource-limited settings.
There might be some challenges due to the interpretation of image results that increase
the potential for diagnostic errors. These limitations are particularly present in regions
with high TB burdens. There have been many advancements in digital health and ar-
tificial intelligence (AI) which have presented new opportunities for evolving the TB
diagnosis. With large datasets, there are AI-driven approaches in particular with the use
of convolutional neural networks (CNNs).

This study specifically focuses on the use of transfer learning with pre-trained CNN
models, while exploring how these methods and architecture can contribute to improving
the TB diagnosis. Minimizing the use of large datasets and training time these transfer
learning model offers the ability of the existing model to do specific tasks. This approach
could help address the diagnostic challenges which are posed by TB and some other mixed
infections.

2.1 Challenges and Limitations in Tuberculosis Diagnosis

A comprehensive analysis was provided by (Walzl et al.; 2018) on the advancement and
challenges in the development of TB diagnosis and biomarkers. There was an understand-
ing that while significant progress has been made in understanding TB and its clinical
display, these advancements are not fully helpful in diagnostic breakthroughs that can
address the issues at a global level. The key highlight of this study was the dependency
on traditional diagnostics methods such as sputum smear microscopy, culture tests, and
nucleic acid amplification tests (NAATs). Also, G. Walzl et al. found that sputum smear
microscopy lacks sensitivity, especially in individuals with extrapulmonary or paucibacil-
lary TB. The authors have also explored the issues related to resource constraints in low-
and middle-income countries, where TB is at its highest level. These diagnoses such as
NAATs (e.g., GeneXpert) require high cost and specialized infrastructure. These kinds
of advancements in low-income regions where TB cases are often underdiagnosed or mis-
diagnosed create a gap in diagnostic capabilities. There have been many other challenges
that were discovered by Walzl et al. like difficulty in diagnosing latent TB infection
and differentiating it from active diseases. Apart from all these challenges, this study
highlights the efforts that are put in to develop new biomarkers and diagnostic tools. To
become impactful in high-burden areas further validation and large-scale implementation
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are required but also advancements in molecular diagnosis and point-of-care testing hold
promising results.

Another study was conducted by (Das et al.; 2019) with the argument for the relev-
ance of sputum smear microscopy in TB diagnosis. Sputum smear microscopy remains
a critical diagnostic tool in many low-resource regions because of its simplicity of use,
affordability, and accessibility. Limitations were highlighted in this research on spu-
tum smear microscopy which includes its low sensitivity, especially in patients with low
bacterial loads and extrapulmonary tuberculosis. There have been many cases of under-
diagnosis of TB or delayed treatment which impacts TB control programs negatively.
Also, the preparation of sputum smears requires highly skilled personnel which leads to
compromising diagnostic accuracy.

On the other hand, there was an argument that was led by Das et al. that molecu-
lar diagnoses such as NAATs which offer high sensitivity and specificity are not usually
reliable in resource-constrained regions because of their high cost, requirement for spe-
cialized infrastructure, and dependency on continuous power supply. In many developing
countries there is a challenge in sputum smear microscopy where the TB burden is high
and healthcare resources are limited. It was discovered that sputum smear microscopy
serves as a frontline diagnostic method for cases with initial stage and treatment mon-
itoring in a healthcare setting. In contrast, molecular methods are ideal for confirming
TB cases in referral centers. In conclusion of this study, Das et al. underlined the use
of modern diagnostic techniques and maintained the utility of traditional methods like
sputum smear microscopy

On the other hand (Andom et al.; 2023) provided valuable insights into the effect-
iveness of tuberculosis diagnosis and treatment in low-resource regions with focusing on
the kingdom of Lesotho. Geographical and economic barriers played a critical role in this
research. This research was done in the rural areas of Lesotho where patients have to
cover long distances to access healthcare facilities while giving significant transportation
costs. These factors lead to delays in diagnosis with an increase in disease transmission.
Also, the financial burden of these diagnostic tests and other healthcare expenses often
discourage individuals from seeking timely medical attention, especially in economically
vulnerable regions. It was discovered that when molecular diagnostics such as GeneXpert
are available, many issues such as power outages, equipment maintenance, and supply
chain inefficiencies limit their abilities and utilities where there is a shortage of resources.
A few strategies were discussed in this study such as decentralizing diagnostic services to
bring care closer to all the communities, reducing the costs for low-income patients, and
improving outcomes by integrating TB diagnostic with broader healthcare initiatives. Re-
ducing the stigma and increasing awareness of the importance of early TB detection and
treatment were discussed in this study with public health campaigns. Addressing these
barriers such as systemic, economic, and social challenges in TB diagnosis requires policy-
level intervention and community-based strategies usually, which were the key findings
from Andom et al. in low-resource settings such as Lesotho.

(Sathitratanacheewin et al.; 2020) investigated the use of deep learning models to
classify tuberculosis using chest X-rays, focusing on the dataset distribution shifts that
can affect diagnostic performances. The focus of this research was addressing the critical
challenges in the application of AI-driven solutions to TB diagnosis. The performance
of these deep learning models often declines when tested on datasets with diverse demo-
graphic or clinical characteristics but deep learning models perform remarkably well with
high accuracy with training on homogeneous datasets. There is a major limitation in
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developing automated diagnostic tools which is known as dataset distribution shift. For
example, there might be a huge difference in the model training on chest X-rays when
tested on different regions as many regions might have various imaging protocols and pa-
tient demographics. One of the challenges highlighted in this study was inconsistency in
imaging equipment and techniques for TB diagnosis across healthcare facilities between
high and low-resource regions. The performance of AI algorithms can also be impacted
by the difference in image quality, resolutions, and noise level in the images. This acts as
a risk in clinical applications where accuracy and consistency are the key factors. Clini-
cians often find it difficult to trust the predictions due to the deep learning models’ lack of
interpretability. These things lead to the inability to model decisions which complicates
the adaptation in real-world scenarios where transparency and accountability are very
important. To address all these challenges, Sathitratanacheewin et al. took a diverse
dataset that included images from multiple regions, populations, and healthcare settings
to mitigate the issues. Techniques such as domain adaptation and data augmentation
were used in this study to improve the model’s robustness. Also, the collaborative ef-
forts put in between AI developers and healthcare practitioners are important for the
algorithm to meet clinical standards.

Some newer diagnostic tests were discovered by (Chopra and Singh; 2020) such as
molecular assays and rapid diagnostic tools, which have significantly improved the speed
and specificity of TB detection. In many low-income regions advanced diagnostics like
GeneXpert remains cost-prohibitive with limited access. There are restrictions on reli-
ance on cold chain logistics and high-maintenance laboratory tools in rural areas. The
limitation of point-of-care diagnostic is universally not validated for diverse TB strains
and patient demographics. The need for more affordable, portable, and robust diagnostic
tools in high-burden regions took the attention of the authors, their analysis highlights
the gap between diagnostic innovation and practical implementation.

Few studies show the complications and challenges with post-tuberculosis lung disease
(PTLD) (Allwood et al.; 2021). This study focuses on problems in identifying long-
term pulmonary damage caused by TB, with inadequacy the conventional diagnostic
tools, such as chest X-rays and sputum cultures. Another point raised in this study
was the limited integration of lung function testing and advanced image analysis in TB
diagnostic. Development of the diagnostic framework that extends beyond microbial
detection and focuses on holistic lung health for addressing TB-related complications.
The differentiation of latent tuberculosis infection (LTBI) from active tuberculosis (TB)
was put into highlight by (Gong and Wu; 2021) which is a major challenge for effective
TB control. Limitations were highlighted such as the tuberculin skin test (TST) and
interferon-gamma release assays (IGRAs) which sometimes cannot differentiate between
active TB and LTBI. This research also explains the lack of context-specific diagnostic
frameworks which is associated in high burden regions where access to these molecular
diagnostics remains limited. Their analysis helps in the necessity for research investments
and global collaboration for innovative diagnostic strategies for both clinical needs and
public health goals.

Some serious challenges posed by tuberculosis (TB) and HIV co-infection, in areas
with high diseases show the impact on the immune system which reduces the readab-
ility of traditional diagnostic tests like tuberculin skin test (TST) and sputum smear
microscopy (Letang et al.; 2020). Usually, the diagnostic process is complicated by HIV-
positive individuals and often results in atypical TB presentations or extrapulmonary TB.
The lack of integration between TB and HIV care services acts as a systemic barrier to
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timely diagnosis and treatment. An innovative approach was called in this research using
diagnostics tools that are sensitive and practical for decentralized healthcare systems.

2.2 Advancements in Machine Learning and Deep Learning

Deep learning is revolutionizing the healthcare industry with its ability to handle and
analyze complex datasets, keeping this in mind (Esteva et al.; 2019) conducted a study
highlighting the deep learning capacity to improve diagnostic accuracy in various health-
care fields such as dermatology, radiology, and pathology, where image data is used. The
performance of deep learning models was checked to its potential not only to match but
also to exceed human expert performance in some specific diagnostic tasks, improving its
capacity to learn complex patterns in images. The quality and quantity of the dataset
used greatly influenced the model’s performance, which also underlines the importance of
large datasets to train deep learning models. The need for interpretability and explain-
ability in Deep learning applications was also discussed so that clinicians can understand
how these models arrive at their conclusions for integration in the clinical workflows.
Black box nature is one of the challenges associated with many deep learning models
which can affect the performance with adoption in sensitive healthcare areas. Future
roles of the deep learning model in healthcare were pointed out by Esteva et al. with
the emerging techniques in transfer learning and federated learning that have proven
promising results for data privacy and security. This study focused on how the synergy
between the deep learning model and clinicians can be put to use to enhance the patient’s
care. This partnership can lead to many better outcomes like early detection, diagnosis,
and personalized treatments.

(Razzak et al.; 2018) researched how deep learning has transformed medical image
processing with a focus on the automation of image-based diagnostic tasks, improving
the detection, segmentation between images, and classification of any medical anomalies.
CNN in particular was a highlight of this research being a cornerstone in medical im-
age analysis because of its ability to learn the old features from raw data which reduces
the reliability of manual feature extraction. Transfer learning as a solution was one of
the important key highlights, enabling pre-trained models to adapt to medical imaging
tasks by fine-tuning the smaller dataset. Also, advancements in generative models and
unsupervised learning techniques could improve data scarcity challenges. They also sug-
gested that combining domain knowledge with AI architecture could increase the trust
and adoption of AI-driven diagnostics in healthcare or clinical environments.

(Rana and Bhushan; 2023) on the other hand discussed the potential of the machine
learning model and deep learning model both in the field of medical image analysis. The
important aspect of this study was the role of hybrid models that combine ML algorithms
with DL framework and architecture for enhancing the adaptability of diagnostic systems
across different datasets. This combination incorporates a robust feature extraction pro-
cess and classification while addressing challenges such as data heterogeneity and limited
labeled datasets. The importance of transfer learning was also pointed out here in medical
imaging which enables pre-trained models to adapt to specific medical applications and
tasks with minimal use of any computation resources. Several challenges were discussed
like the need for large annotated datasets, computational costs, and patient data privacy.
Despite all these challenges, the potential of ML and DL approaches helps in achieving
higher accuracy and also helps in early detection, treatment process, and personalized
medicines.
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The images that are fed in the deep learning model are very complex and sometimes
it is difficult to detect patterns or abnormalities in these images, so (Mohapatra et al.;
2021) conducted a study with medical images of radiological scans, X-rays, CT scans,
MRIs, and histopathological images. CNN is used here as it has the advantage of an
automatic feature extraction process which reduces the need for manual feature extrac-
tion which is usually time-consuming and prone to errors. The highlights of this study
were the practical applications of CNN in diagnosing diseases through medical images.
CNN works in such a way that it can detect abnormalities in images such as tumors,
lesions, or other pathological changes that sometimes go unnoticed. Integration of CNN
with patient demographics to create a hybrid model is also discussed. This helps in a
personalized diagnostic system, where the data captured from images is combined with
clinical information for better accuracy and results. They faced several issues such as
class imbalance, high computational demands for training deep learning models, vari-
ations in image quality, and patient populations. Solutions such as data augmentation,
model fine-tuning, and incorporating domain-specific constraints were implemented to
improve the accuracy rate.

There was a concern raised by (Singh et al.; 2020) about deep learning models that it
is not just important to provide accurate predictions but also to offer clear explanations
for better decision-making processes. This is important in the healthcare sector where
all medical practitioners must trust and understand the reasoning behind an algorithm’s
predictions before implementing it in a patient’s care decision. The importance of explain-
ability in deep learning models is discussed here, while deep neural networks are often
regarded as black boxes because of their Complex and nonlinear nature. Many techniques
such as saliency maps, attention mechanisms, and layer-wise relevance propagation are
discussed here as ways to provide information about how models reach their conclusions.
These techniques are helpful for clinicians and researchers to visualize which area of im-
ages has contributed most to a model’s decision, making it easy to trust and identify
the errors in the system. The study also addresses the challenges in image processing as
images can be highly complex and can have subtle variations, which makes it difficult for
the model to explain in a human-understandable manner. The need for standardization
in explainable AI techniques was also discussed. They suggested that any kind of research
in this area should not just focus on improving accuracy but also ensuring that they are
transparent, ethical, and trustworthy.

A novel deep learning-based model was explored by (Zakareya et al.; 2023) for the
diagnosis of breast cancer from medical images using CNNs to improve diagnostic accur-
acy. The combination of hybrid architecture with multiple deep learning layers for feature
extraction and classification accuracy was introduced while addressing challenges such as
class imbalance and noise in the images. Techniques like transfer learning and fine-tuning
of pre-trained models showed optimizing performance in breast cancer detection. Util-
ization of a large dataset of medical images demonstrated the model’s robustness and
generalizability across different types of images like mammograms, ultrasound, and MRI
scans. This study discusses the trade-offs involved in the model’s complexity to make the
model more transparent to clinicians. Many studies were done for the diagnosis of heart-
related conditions, and an investigation of the application of the deep learning model was
done by (Wong et al.; 2020) which focuses on state-of-the-art neural networks for the
analysis of complex cardiovascular images, such as echocardiograms and CT angiograms
for more precise detection of anomalies like coronary artery blockages, heart valve defects,
and myocardial infarctions. The authors proposed an advanced deep-learning framework
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to incorporate multi-modal data integration which combines patient medical history with
imaging data to deliver a comprehensive output. To increase the learning capabilities of
the model reinforcement learning techniques can be implemented into an existing model.
They also focused on the use of explainable AI methods for better visualization which
helps in the decision-making process of deep learning algorithms. Certain things were
proven like diagnostic insights were clinically relevant and actionable, bridging the gap
between technology and healthcare practitioners.

2.3 Research Gaps in TB Diagnostics

The role of AI is one of the key factors in addressing diagnostic challenges in Tubercu-
losis(TB), focusing on radiology applications in one of the studies conducted by (Kulkarni
and Jha; 2020). The authors of this research explored the application of deep learning
in identifying the abnormalities in chest X-rays. Research gaps identified were the lack
of a comprehensive dataset that represents different patient demographics and disease
conditions which sometimes leads to biased AI predictions. Other issues such as the
integration of AI systems into existing healthcare systems, are due to regulatory and
technical barriers. The development of explainable AI models was done by the authors
to improve diagnostic accuracy and transparency for clinical validation. These kinds of
approaches are very important to build trust and adoption among healthcare profession-
als. For future research, it was suggested that the focus should be on building a scalable
AI framework that would be capable of real-time diagnosis while addressing issues like
data privacy and standardization.

An innovative approach was led by (Duong et al.; 2021) for tuberculosis detection
using chest X-rays incorporating Vision Transformer (ViT) models and transfer learn-
ing techniques. Advanced feature extraction of ViT was used for capturing global re-
lationships in medical images to overcome limitations in traditional machine learning
algorithms. Pre-trained ViT models with transfer learning were implemented, optimizing
the system for the nuances of TB detection. Again the research gap includes the need
for larger, more representative datasets for the reduction of potential biases in prediction
using AI. Exploration of hybrid models that combine image data with clinical information
may increase diagnostic precision. This ensures that decisions made by such models are
transparent by medical practitioners and professionals.

Other studies also include drug resistance patterns and good diagnostic accuracy by
an integrative approach focusing on deep learning and machine learning models explored
by (Liang et al.; 2022). By using the clinical and molecular datasets authors identified
the potential of AI systems in identifying the complex relationships that are not identified
by traditional diagnostic methods. The utilization of AI for the prediction of multi-drug
resistant TB (MDR-TB) was contributed to this study. These approaches are scalable
which makes them adaptable from low-resource regions to high-tech laboratories. The
research gaps identified in this study include the need for harmonized datasets to train
robust AI models. Another issue that was pointed out was the integration of this system
into clinical practice, where the usage and interpretability by healthcare professionals,
remain a significant challenge. This study also incorporates more interdisciplinary col-
laborations to refine these AI tools for usage in real-world applications. Other significant
gaps in the diagnostic care cascade for tuberculosis were explored by (Shah et al.; 2022)
in various areas including the patient, community, and healthcare systems. Challenges
such as delays in diagnosis, low awareness about TB symptoms among patients, and
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management of the disease were discovered. These kinds of barriers often lead to fail-
ure in early treatment and contribution to disease care and transmission. A few aspects
were captured from this study, focusing on the interplay between patient and systemic
factors. For example, major issues in the care of the patient arise from stigma and fin-
ancial constraints. Misinformation is also a key reason for delays in diagnosis among
the community, patients have to face problems with limited access to diagnostic tools
with under-trained professionals. For all these challenges AI has proven to be enhancing
the accuracy and accessibility of diagnostic tools especially in areas with low resources.
Usually, diverse and high-quality datasets are unavailable in regions with high TB cases.

A study done by (Aamir et al.; 2024) outlines how AI dependency on these data
sources creates gaps in diagnosis and treatment for rural and underserved populations.
Another important insight pointed out in this research was how AI is bridging the gap by
implementing mobile health platforms where AI-powered smartphone applications could
perform any kind of screening as per the symptoms or X-ray images, which could offer
promising solutions in low-resource regions. The evolution of AI was also discussed with
its being a standalone diagnostic tool for integrating the clinical decision-making process,
analysis, and patent management. Due to limited diagnostic infrastructure often things
are overlooked like AI could enhance drug resistance detection for TB especially. Solutions
were proposed such as collaboration between AI researchers, clinicians, and policymakers
that advancement in technology could be used in practical solutions for controlling TB.

3 Methodology

The methodology for this research followed a structured approach, which aimed at devel-
oping an efficient tuberculosis detection system using some deep learning techniques and
algorithms. Careful documentation and execution were done in each step of this research
from data collection to model evaluation for the surety of reproducibility.

Data Preparation and Management: Preparing and managing a dataset is a
crucial step in any machine learning pipeline. Data was collected from one open-source
platform ”Kaggle” containing TB-positive and TB-negative images. These datasets were
stored in Google Drive in unified directories for a smooth streamlined process. The
dataset contains images with sputum samples of patients with TB and without TB.

Figure 1: Positive sputum sample

As in Figure 1, the image contains a sputum sample from the patient diagnosed with
bacteria called Mycobacterium tuberculosis, and in Figure 2 negative sputum samples
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or healthy samples. There was a class imbalance in the dataset which is a common
issue in medical image analysis, which was addressed by a combination of oversampling
and data augmentation techniques. With the help of oversampling it was sure that
the minority class (negative class) was represented during the training of the model
while data augmentation on the other hand simulated real-world scenarios to enhance
the generalizability of the model. There were various augmentation techniques used in
this process which were geometric transformations such as rotation, zoom, shear, and
flips, as well as intensity variations. Training data was diversified, which helped the
model to be well-equipped to handle previously unseen cases. After preprocessing and
labeling the dataset, the data was split into training and validation subsets in an 80:20
ratio for sampling. For unbiased evaluation of the model’s performance, this method
was used for the preservation of the class proportions across both sets. To feed the
images in the neural network advanced preprocessing strategies were implemented such
as normalization and resizing.

Figure 2: Negative sputum sample

Model Architecture and Training: This phase focused on the design and training
of the deep learning models. The selection of pre-trained models was done based on their
superior feature extraction capabilities which were MObieNetV2 and DenseNet121. The
reason for the selection of MobileNetV2 was because of its lightweight architecture which
would be suitable for deployment in resource-constrained devices and DenseNet was se-
lected because of its ability to reuse features efficiently through its dense connectivity
design. For encoding the knowledge in pre-trained models and using them in TB de-
tection, transfer learning was implemented here. In the beginning feature extraction
layers were frozen to retain their knowledge and a few custom layers were changed for
the specific task of TB classification. To reduce the dimensionality a new layer called
the GlobalAveragePooling2D layer was included, for capturing complex patterns in the
images ReLU activation was implemented and for overfitting some layers were dropped
out. In the end, for the production of binary classification final layers employed a sig-
moid activation function. These training processes were configured in this research for
robust model performance. The model was trained for 10 epochs with a batch size of 64
and 128 using the Adam optimizer for adjustment of weights. For sustaining the binary
classification problems, binary cross-entropy was selected as the loss function. During
the training of DenseNet121 learning rates were fine-tuned for prevention of overfitting
and optimizing convergence. To further improve the training data quality techniques like
oversampling and resampling were applied here and for DenseNet121 negative class were
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undersampled to match the positive cases for balanced training data.
Evaluation Methodology: Rigorous evaluation was done to assess the model’s per-

formance in detecting TB. Accuracy, precision, recall, F1-score, and confusion matrices
were the performance metrics for providing a comprehensive view of model behavior.
Accuracy was used for the model’s overall correctness, while precision and recall were
evaluated to correctly identify the TB positive cases among all. In dealing with imbal-
anced data a single measure of the model’s effectiveness was measured with an F1 score
balancing the precision and recall. To get deeper insights into misclassification patterns
confusion matrices visualized the distribution of true positives, true negatives, false posit-
ives, and false negatives. 20 percent of the dataset was reserved for conducting validation
on the model. A comparison was done with the results of MobileNetV2 and DenseNet121
for the evaluation of the model’s performance. DenseNet was considered a superior model
particularly classifying positive images with negative images. DenseNet model’s feature
extraction capabilities came into the picture in identifying which layer contribution was
most significant to the classification process. These analysis processes were informed for
the fine-tuning decisions, which included the unfreezing of DenseNet121’s last 30 layers
that allowed them to adapt to TB detection tasks. Here statistical techniques were cru-
cial in validating the methodology. The impact of data augmentation was checked by
comparing the model’s performance with or without the augmentation process, which
told us that recall rates for TB-positive cases improved gradually demonstrating how the
augmentation is effective in enhancing the model’s generalized ability. Also, the success
of resampling approaches was tested by analyzing class distribution and their influence
on evaluation metrics.

For the reproduction of the research, all processes were conducted on Google Collab,
leveraging its GPU and TPU capabilities for a faster computation process. Libraries used
in this research were TensorFlow, OpenCV, and Scikit-learn for tasks ranging from model
building to pre-processing the data and evaluation of the model. Visualization tools like
Matplotlib and Seaborn were used to present the results graphically including accuracy,
loss, classification report, and confusion matrices. The methodology used in this research
combines state-of-the-art deep learning techniques with some data pre-processing and
statistical analysis to create a framework for TB diagnosis and detection. Step-by-step
processes were used here for transparency and reproducibility while integrating these
advanced models and handling balanced data demonstrates the potential of AI in handling
and addressing critical healthcare challenges.

4 Design Specification

The implementation of detecting tuberculosis in this study is designed to focus on the
architecture, framework, and techniques while detailing the requirements and functional-
ity of the proposed design. A hybrid approach combined transfer learning with tailored
preprocessing for feature extraction techniques. The framework used in this project was
TensorFlow, chosen for its versatile nature in building, training, and deploying machine
learning models. All the benefits of transfer learning were considered when implement-
ing two pre-trained architectures, MobileNetV2 and DenseNet121. These two models
can easily analyze medical images because of their ability to extract hierarchical features
while maintaining computational efficiency. The input of the images was set to a fixed
size of 224×224×3 for image preprocessing and analysis. The model’s coverage during
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training was improved with the input requirements of MobileNetV2 and DenseNet121.
Model Architecture The primary source for detecting Tuberculosis is neural net-

work architecture which is designed to combine transfer learning while updating the
model for medical imaging analysis. For extracting the features from the images this
architecture uses pre-trained CNNs, MobileNetV2 and DenseNet121. These networks
are pre-trained on a diverse ImageNet dataset, which is excellent in identifying complex
patterns, features, and textures in the images. A generic feature detector in these models
identifies characteristics in the images like edges, shapes, and textures. Fine-tuning was
done to certain layers of DenseNet121 to improve the model’s ability to adapt different
domain features in medical images which optimizes its performance for the detection of
tuberculosis. This architecture includes custom layers that help in the refinement and
interpretation of the extracted features for binary classification. To reduce the spatial
dimensions of the feature maps a global average polling layer was implemented that
provides a representation that minimizes overfitting tasks. For modeling the relationship
between features in the images, ReLU activation functions from these dense layers are
included. Drop-out layers here are added to enhance generalization by introducing ran-
domness during the training process and also reducing dependency on specific patterns.
A sigmoid-activated output layer used in the model architecture provides a probability
score that indicates the chances of tuberculosis-positive diagnosis. For achieving high
accuracy this architecture is scalable and its computationally efficiency is reliable in both
high-resource and constrained or restricted environments.

Proposed Model Functionality Advanced image processing, feature extraction,
and classification techniques can be achieved in end-to-end tuberculosis detection in spu-
tum smear microscopy images. Starting with preprocessing the microscopic images which
involves resizing to the target dimensions and scaling the pixel values across the data-
set normalization was implemented. By using these preprocessing steps it was ensured
that the model received consistent input with minimized variability caused by differ-
ences in the quality of the images. To detect the visual features that are relevant for
tuberculosis detection this study incorporated intensity scaling for the image processing
analysis. The supporting element of these models is transfer learning-based architecture
with pre-trained convolutional neural networks (CNNs), specifically MobileNetV2 and
DenseNet121. ImageNet served as a powerful feature extractor for the identification of
patterns in sputum smear images that align with acid-fast bacilli (AFB)—the primary
indicator of tuberculosis. This process took freezing-specific layers for retaining edges
and texture identification mechanisms while the later layers were fine-tuned for the ad-
aptation with the domain-specific features of sputum smear microscopy images. Certain
challenges came into the picture for the imbalanced datasets which is a common issue
in medical image analysis. Overfitting of the model is reduced here by applying geo-
metric transformations like rotations flips, and scalings. Due to fewer negative samples,
the oversampling technique was done to ensure enough of the samples were fed during
the training phase. A comprehensive evaluation framework was assessed for the system’s
reliability that included metrics such as precision, recall, F1-score, and accuracy for deliv-
ering consistent and actionable results. These evaluations help the model in fine-tuning
with real-world applications, where it is expected to function effortlessly in diverse en-
vironments with limited resource regions or extreme laboratory conditions. A decent
amount of automation, efficiency, and accuracy was achieved by integrating these com-
ponents for the classification of TB positive and negative samples. This functionality is
not only limited to technical implementation but also promising in clinical settings which
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reduces manual efforts, accelerates the diagnosis process, and provides reliable support
for managing tuberculosis diagnosis programs.

5 Implementation

The detection of tuberculosis in sputum smear microscopy was implemented using the
model’s robust nature in processing image classification. This section details the final
stage of the implementation using the tools, framework, and methodologies for the desired
outputs. This process consists of stages that are stated earlier such as preprocessed
datasets, and evaluation metrics for demonstrating the system’s performance. Python
was the primary language, used here with libraries such as TensorFlow and Keras.NumPy
and Pandas were used for data handling and manipulation, and for visualization and
performance metrics, Matplotlib and Seaborn were used.

The implementation began with maintaining consistency and quality by preparing the
sputum smear microscopy images dataset. The images went through resizing to standard
dimensions that were suitable for the pre-trained model. This resizing process was done
to make sure all the samples had uniform dimensions, eliminating the variability for bet-
ter model learning. Comparing the images was an important step while maintaining the
uniform range by scaling the pixel value and for the adjustment of brightness and con-
trast intensity scaling was applied. Also, the variations were addressed by differences in
staining techniques or slide preparation. The steps undertaken here were crucial for min-
imizing noise from the images. MobileNetV2 and DenseNet121 showed promising results
in medical imaging tasks chosen for their lightweight nature and feature-rich architec-
ture. Pre-trained layers in these models act as feature extractors for identifying patterns
in sputum images like the morphology of acid-fast bacilli (AFB), which are indicative of
tuberculosis. Specific layers of DenseNet121 were fine-tuned to extract features for med-
ical imaging. Due to this, it helped the model to capture domain-specific features that
were unique to sputum smear microscopy images. Custom dense layers were added for the
feature extraction phase to interpret and refine these features for binary classification into
TB-positive and TB-negative categories. Implemented Adam optimizer in the training
process, which is known for its efficiency in adjusting learning rates. Hyperparameters
such as learning rate, batch size, and the number of epochs, are carefully fine-tuned for
achieving optimal model performance. For the binary classification loss function, binary
cross-entropy was used during the training. The model avoided overfitting by regularly
monitoring training and validation accuracy.

Performance metrics precision, recall, F1-score, and overall accuracy provided com-
prehensive results of the model’s ability to correctly identify TB-positive and TB-negative
sample images. This model ensured the capability of processing sputum smear micro-
scopy images, classifying them with high accuracy, and generating diagnostic probability
scores.

Tools and Technologies
1. Programming Language: Python is the primary language used, chosen for its

versatility and diverse library support for machine learning and image processing tasks.
2. Deep Learning Libraries: TensorFlow and Keras were used to build, train,

and fine-tune the neural networks. These frameworks provide pre-trained models for
simplifying the integration of MobileNetV2 and DenseNet121 into the project.

3. Data Processing: NumPy and Pandas were used for data manipulation, in-
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cluding loading and preprocessing the image dataset. These methods help in smooth
preprocessing pipelines and handling the data effectively.

4. Visualization Tools: Matplotlib and Seaborn were considered for visualization
of exploratory data analysis, model performance evaluation, and the interpretation of
results.

5. Development Environment: Jupyter Notebook was used for its interactive
environment which allowed effortless integration of the code, documentation, and visual-
ization.

6 Evaluation

A comprehensive analysis of this research was done by certain evaluation metrics focusing
on the key points and providing rigorous training. In this section, below is the evaluation
of MobileNetV2 and DenseNet121.

6.1 MobileNetV2

MobileNetV2 was trained with the dataset containing 1863 positive TB samples and
1863 negative TB samples. 10 epochs were used while training the model, during which
it showed notable improvements in both training and validation performance. During the
starting phase, the model achieved a training accuracy of 71.51 percent, which gradually
increased to 90.81 percent by the final epoch. Validation accuracy also gradually increases
from 83.11 percent to 88.74 percent, which indicates the consistent progress in the model’s
ability to generalize unseen data. The model’s continuous learning and optimization
process was seen when there was a decrease in validation loss from 0.3998 to 0.2677.
The confusion matrix as seen in Figure 3 provides a more granular view of the model’s
performance where for negative class, 323 samples were correctly identified as negative
samples, and 39 samples were misclassified as positive.

Figure 3: Confusion Matrix for MobileNetV2

For the positive class, 339 samples were correctly classified as positive, and 45 samples
were misclassified as negative. These results indicate that while the model was generally
accurate in classification, there were some misclassifications, particularly in the positive
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Figure 4: Classification Report for MobileNetV2

class, which saw a higher number of false negatives compared to false positives in the
negative class.

Evaluating further through precision, recall, and F1-score shed light on the model’s
balanced performance as seen in Figure 4. Precision and recall for the negative class were
0.88 and 0.89, respectively, and for the positive class precision and recall were slightly
higher at 0.90 and 0.88, respectively. F1 scores for both classes were higher at 0.88 for
negative and 0.89 for positive, showing the model’s ability to maintain a good balance
between precision and recall, which is very important in handling imbalanced datasets.
These findings are proof that MObileNetV2 can effectively distinguish between positive
and negative samples, with few misclassifications for positive class. The model achieved
an overall accuracy of 88.74 percent, indicating MobileNetV2 is highly effective for its
classification tasks. It can achieve higher precision and recall for positive class, suggesting
that it could be a good fit for applications where distinguishing positive samples is critical.
Also, in Figure 5 we can see the ROC curve with AUC of 0.89. The model’s performance
was promising in this research, but more rigorous analysis could be achieved with tools like
t-tests or ANOVA, which could help in quantifying the significance of the improvements
in validation accuracy. These kinds of analyses could provide a clear understanding of
the increased performances, whether they are statistically significant or merely due to
some random variation. The model’s learning process is solid and can be understood by
increasing accuracy and decreasing loss over time. This analysis could help in comparing
the MobileNetV2 with other models for validating its efficacy in the context of this
research.

Figure 5: ROC curve

6.2 DenseNet121

DenseNet121 was trained for the second experiment on the same dataset with 1863 posit-
ive samples and 1863 negative samples for a total of 10 epochs. The validation accuracy
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achieved here was 85.25 percent with a validation loss of 0.3324 which indicates it per-
formed relatively well. In the beginning, the accuracy was low at 73.89 percent but con-
tinuous improvement was seen with accuracy reaching 86.74 percent by the 10th epoch.
Validation accuracy on the other hand improved from 77.48 percent to 85.25 percent
reflecting the model’s generalized ability to effectively work on unseen data. Although,
validation accuracy was less than MobileNetV2 (88.74), DenseNet121 still performed well
and showed a clear upward trend in both training and validation.

Figure 6: Confusion Matrix for DenseNet121

The confusion matrix as seen in Figure 6 provides additional insights into the model’s
classification behavior, for the negative class correct classification was done with 311
samples being negative while 51 samples were misclassified as positive. For positive class
325 samples were correctly classified as positive, and 59 samples were misclassified as
negative. Fewer errors were shown in this evaluation with the results of a slight tendency
for misclassification of positive samples that leads to a higher number of false negatives
as compared to MobileNetV2. Overall, the misclassification rate remained low, with
the model successfully identifying the majority of both negative and positive samples.
As seen in Figure 7, the classification report consists of precision, recall, and F1-score
where DenseNet121 demonstrated balanced performance. The precision and recall for the
negative class were 0.84 and 0.86, respectively, while for the positive class, the precision
and recall were 0.86 and 0.85, respectively. The F1 score for the negative class was
0.85 and 0.86 for the positive class which is an indication of well-rounded classification.
DenseNet121 was slightly outperformed by MobileNetV2 which showed a higher precision
and recall for the positive class. But DenseNet121’s F1 score suggests it was still highly
effective in distinguishing between the two classes.

Figure 7: Classification Report for DenseNet121

There was an observation made that DenseNet121 is similar to MobileNet121 as it
exhibited steady learning throughout the epochs. We can see there was a steady decrease
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in the training and validation loss and accuracy gradually increased. As seen in Figure
8 there is an ROC curve of DenseNet121 with an AUC of 0.93. As compared with
MobileNetV2, DenseNet121 improvements were not as promising as that of MobileNetV2.
The validation accuracy of DenseNet121 reached 85.25 and 88.74 was the accuracy of
MobileNetV2. For a better understanding of the differences in accuracy, some tests can
be considered like a paired t-test, which would be helpful. These tests would be helpful in
understanding whether MobileNetV2’s superior performance is due to random variation
or inherent model differences.

Figure 8: DenseNet121 ROC curve

6.3 Evalutaion Summary

A concise summary of the evaluation is provided by addressing key questions related to
the research question, that focuses on the performance, challenges, and model significance
used in tuberculosis detection.

Which model achieved higher classification accuracy in identifying tuberculosis-
infected versus healthy cells?

After training both the models MobileNetV2 and DenseNet121, the prior received a
higher validation accuracy of 88.74 percent outperforming the latter with 85.25 percent
validation accuracy. This indicates that MobileNetV2 is more effective in distinguishing
TB-positive from TB-negative samples.

How do the models compare in terms of precision, recall, and F1-score?
For TB-infected cells (Positive samples) MobileNetV2 had a precision of 0.90 with a

recall of 0.88 and F1 score of 0.89 while DenseNet achieved a precision of 0.86, Recall
of 0.85, and F1-Score of 0.86. For healthy cells (Negative sample) MobileNetV2 had a
precision of 0.88 with a recall of 0.89 and F1 score of 0.88 while DenseNet achieved a
precision of 0.84, Recall of 0.86, and F1-Score of 0.85. This indicates that MobileNetV2
demonstrated better precision and recall, especially in recognizing TB-infected samples.

What statistical approaches were used to validate the models’ perform-
ance?

For handling the class imbalance and enhancing the generalizability oversampling
and data augmentation techniques were implemented.ROC curve and AUC score were
used to assess the model’s discriminative ability. Future improvements like involving t-
tests or ANOVA could be implemented to confirm the statistical significance of observed
performance differences.
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What are the implications of the findings for real-world applications?
MobileNetV2’s high accuracy and lightweight architecture make it suitable for de-

ployment in low-resource regions such as rural healthcare settings. DenseNet121 on the
other hand was effective but may require further optimization to reduce false negatives,
especially for critical TB detection tasks.

7 Conclusion and Future Work

This study is set to answer the research question: ”How does the classification accur-
acy of pre-trained CNN models, MobileNetV2 and DenseNet121, compare in identifying
tuberculosis-infected versus healthy cells using transfer learning?”. The results from both
models demonstrated promising performance in identifying tuberculosis-infected cells.
Both the models showed steady improvements in accuracy during the training period in-
dicating the model’s ability to learn and generalize effectively. Balanced precision, recall,
and F1 scores were highlighted for their overall effectiveness in distinguishing between
tuberculosis-infected and healthy cells. Although, a slight difference in accuracy was
seen, both the models proved the capability of performing the classification task reliably
and demonstrating the viability of pre-trained CNN models. In answering the research
question the findings of this research suggest that both MobileNetV2 and DenseNet121,
when used with transfer learning, are effective in classifying tuberculosis-infected cells.
The objective of this research was met by comparing the classification accuracy of both
models and showing that both of them are capable of performing well in this context.
This can be proven from this research that the potential of pre-trained CNN can be used
for medical applications, especially for the detection of diseases like tuberculosis.

Key Findings of this research were that both the models showed steady learning and
improvement over training epochs. There was a good balance between precision, recall,
and F1 scores. Despite the slight difference in performance, both models were effect-
ive in the identification of tuberculosis-infected cells. These findings could contribute to
the automation of medical diagnosis helping in early detection and improving health-
care outcomes. Implications of this research were stated that larger and more diverse
datasets would prove essential in various patient populations and image conditions. In-
tegration of these models in clinical workflow could help enhance the speed and accuracy
of tuberculosis diagnosis.

Future work of this research could be the use of additional pre-trained models, such as
ResNet or VGG, to see if they offer improvements over MobileNetV2 and DenseNet121.
Another area that could be investigated is fine-tuning these models for more specialized
datasets such as different stages images of tuberculosis or varying imaging techniques
that could be used for improvement in the model’s robustness. Moreover, real-world
testing with clinical data would provide a better understanding of their performance
and reliability in real-world applications and it could be commercialized because of its
potential as it could be integrated into diagnostic platforms or mobile applications for
quick and accurate diagnosis.
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